JPS58174509A - Preparation of spicular ferromagnetic iron powder - Google Patents

Preparation of spicular ferromagnetic iron powder

Info

Publication number
JPS58174509A
JPS58174509A JP57054975A JP5497582A JPS58174509A JP S58174509 A JPS58174509 A JP S58174509A JP 57054975 A JP57054975 A JP 57054975A JP 5497582 A JP5497582 A JP 5497582A JP S58174509 A JPS58174509 A JP S58174509A
Authority
JP
Japan
Prior art keywords
spicular
iron powder
acicular
iron oxide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57054975A
Other languages
Japanese (ja)
Inventor
Akira Nakada
昭 中田
Yoshiyuki Takewaki
竹脇 由幸
Makoto Toyooka
誠 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP57054975A priority Critical patent/JPS58174509A/en
Publication of JPS58174509A publication Critical patent/JPS58174509A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Abstract

PURPOSE:To obtain the spicular ferromagnetic iron powder excellent in coercive force, by heating and dehydrating spicular crystal-contg. iron oxide coated with hydrous silicic gel to obtain ferric oxide coated with silicic acid, granulating said ferric oxide to specified particle size, and reducing the resulting particles. CONSTITUTION:Spicular crystal-contg. iron oxide is dispersed and suspended in water to which polyphosphate is added as a dispersant, and a water-soluble silicate is added to the suspension at a ratio of 1-10wt% in terms of SiO2 to the spicular-crystalline iron oxide. Spicular crystal-contg. iron oxide coated with hydrous silicic gel is obtained by neutralizing and acidifying the suspension. The obtd. iron oxide is heated and dehydrated into ferric oxide coated with silicic acid, and then granulated to 6-250 meshes. The particles of this ferric oxide coated with silicic acid are brought into contact with reducing gas to obtain the spicular ferromagnetic iron powder. This iron powder has coercive force of Hc>=1,400 oersted in saturated magnetism of sigmas>=150emu/g.

Description

【発明の詳細な説明】 本発明は針状強磁性鉄粉の製造方法に係り、さら蚤二詳
しくは、飽和磁化;シS≧lso@mu7g口おいて、
保磁力;HC≧1,400エルステツドの針状強磁性鉄
粉の製造方法(二関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing acicular ferromagnetic iron powder.
Method for producing acicular ferromagnetic iron powder with coercive force: HC≧1,400 oersted (2 related methods).

理想的C二製造された針状強磁性鉄粉は、大きな飽和磁
化(σS)、および高い保磁力(Hc)を有し、高出力
、高配録密度の期待できる磁気記録材料、特(ニメタル
テーブ用磁性材料に適応するものとじて重要な物質であ
るため、その理想に近づけるための製造方法が種々提案
されている。一般的な針状磁性鉄粉の製造方法は、 (イ)原料鉄塩をアルカリ性水溶液中で酸化し、針状晶
含水酸化鉄(FeOQH)を生成する工程、−)U)工
程で得た針状晶含水酸化鉄にケイ酸塩等を被覆、または
被着する工程、 (ハ)同工程で得た被覆または被着針状晶含水酸化鉄な
加熱脱水し、酸化第二鉄(α−Fe、へ)を得る工程、 (ロ)←9工程で得た酸化第二鉄粒子を還元し針状磁性
鉄粉(Fe )とする工程、 から成っている。
The acicular ferromagnetic iron powder manufactured by Ideal C2 has a large saturation magnetization (σS) and a high coercive force (Hc), and is a magnetic recording material that can be expected to have high output and high recording density. Since it is an important substance that can be applied to magnetic materials, various manufacturing methods have been proposed to bring it closer to the ideal.The general manufacturing method for acicular magnetic iron powder is as follows: (a) Raw material iron salt A step of oxidizing in an alkaline aqueous solution to produce acicular hydrated iron oxide (FeOQH), -) A step of coating or adhering silicate etc. to the acicular hydrated iron oxide obtained in step U), ( C) A step of heating and dehydrating the coated or adhered acicular hydrated iron oxide obtained in the same process to obtain ferric oxide (α-Fe), (B) ← The ferric oxide obtained in step 9 It consists of the step of reducing the particles into acicular magnetic iron powder (Fe).

針状磁性鉄粉の飽和磁化、保磁力等の磁気特性は、その
形状異方性(針状性)に大きく依存し、前記(イ)工程
で得られる針状晶含水酸化鉄の針状性を最終の針状磁性
酸化鉄を得るに)工程4−至るまでの長い工程を経て如
何に維持するかが大きな課題となっており、針状性に優
れた針状晶含水酸化鉄な得る(イ)工程を始めとして各
工程毎に種々の提案がある。たとえば、(イ)工程に関
し、第1鉄塩な原料とし、α−FeOOHを得る方法と
して特公昭39−5610号公報、特開昭56−226
37号公報等(二記載された方法があり、Ni 、 Z
n 、 810!等の添加物の存在下(二第−鉄塩な原
料として針状性の改良されたα−Feα旧を製造する方
法が、特開昭56−156706号公報、特開昭56−
166312号公報、特開昭56−69231号公報、
特開昭56−20105号公報、特1lIi855−7
1002号公報等(二おいて提案されている。また、第
二鉄塩を原料とする方法、β−Fe00Hを得る方法、
お上びγ−FeOOHを轡る方法等が、特公昭55−4
695号公報、特開昭56−149329号公報、特公
昭55−339号公報、特開昭55−3323号公報等
において提案されている。←)工程(二関しては、(イ
)工程で得られた針状晶含水酸化鉄+:8i0.被覆を
処す方法が特公昭56−9005号公報、特開昭66−
1:: 13411号公報、特開昭56−20105号公報、特
開昭56−77931号公報等(−1Aj及び81被覆
を処す方法が特開昭56−156706号公報に、Ti
e、を被覆する方法が特公昭55−20366号公報(
:、リン酸塩な被覆する方法が特開昭54−37297
号公報にシリコーン油等を被覆する方法が特開昭55−
33091号公報、特開昭155−85605号公報等
(二記載されている。
The magnetic properties such as saturation magnetization and coercive force of the acicular magnetic iron powder largely depend on its shape anisotropy (acicularity), and the acicularity of the acicular crystal hydrated iron oxide obtained in the step (a) above is highly dependent on its shape anisotropy (acicularity). The major challenge is how to maintain this through the long process up to step 4 (to obtain the final acicular magnetic iron oxide). B) There are various proposals for each process, including the process. For example, regarding the step (a), methods for obtaining α-FeOOH using ferrous salt as raw materials are disclosed in Japanese Patent Publication No. 39-5610 and Japanese Patent Application Laid-open No. 56-226.
No. 37, etc. (there are two methods described, Ni, Z
n, 810! A method for producing α-Feα with improved acicularity as a ferric salt raw material in the presence of additives such as
Publication No. 166312, Japanese Unexamined Patent Publication No. 56-69231,
JP-A No. 56-20105, Patent No. 1lIi855-7
No. 1002, etc. (proposed in 2). Also, a method using ferric salt as a raw material, a method for obtaining β-Fe00H,
The method of using γ-FeOOH was published in 1986-4.
This method has been proposed in Japanese Patent Application Laid-Open No. 695, Japanese Patent Application Laid-open No. 149329-1980, Japanese Patent Publication No. 339-1983, Japanese Patent Application Laid-Open No. 3323-1983, and the like. ←) Step (As for the second step, the method for treating the acicular crystalline hydrated iron oxide +:8i0. coating obtained in step (a) is disclosed in Japanese Patent Publication No. 56-9005 and Japanese Patent Application Laid-Open No. 1988-66-
1:: JP-A-13411, JP-A-56-20105, JP-A-56-77931, etc. (A method for treating -1Aj and 81 coatings is described in JP-A-56-156706,
A method of coating e is described in Japanese Patent Publication No. 55-20366 (
: The method of coating with phosphate is disclosed in JP-A-54-37297.
The method of coating with silicone oil etc. is disclosed in Japanese Unexamined Patent Application Publication No. 1983-
No. 33091, Japanese Unexamined Patent Application Publication No. 155-85605, etc. (2).

(ハ)工程に関し4・←)工程で被覆または被着を処さ
れた針状晶含水酸化鉄を400〜750℃の温度4−加
熱し、脱水する方法が特開昭55−115920号公報
に、減圧下において加熱脱水する方法が特開昭55−6
5304号公報に、十分なHIO分圧の存在下において
加熱脱水する方法が特開昭56−20105号公報等に
開示されている。さら(=、に)工程(−関し、H工程
で得られた被覆された酸化第二鉄(α−Fe、0.)を
275〜420℃の温度下(=水素で還元する方法が、
特開昭315−115902号公報等(二、還元を20
0〜350℃および330〜400℃の温度範囲の二段
階(−分けて行う方法が特開昭54−62915号公報
に開示されている。
Regarding the (c) process, 4-←) A method of heating the acicular hydrated iron oxide coated or adhered in the step 4- to a temperature of 400 to 750°C to dehydrate it is disclosed in JP-A-55-115920. , a method of heating and dehydrating under reduced pressure was disclosed in JP-A-55-6.
Japanese Patent Application Laid-Open No. 56-20105 discloses a method of heating and dehydrating in the presence of a sufficient HIO partial pressure. Regarding the further (=, ni) step (-), the method of reducing the coated ferric oxide (α-Fe, 0.) obtained in the H step with hydrogen at a temperature of 275 to 420°C (=,
Japanese Unexamined Patent Publication No. 315-115902, etc. (2.
JP-A-54-62915 discloses a method in which the reaction is carried out in two stages in the temperature ranges of 0 to 350°C and 330 to 400°C.

しかしながら、前記した如き多くの提案(二上り得:1
1.:11 られる針状磁性鉄粉の磁気特性が該磁性鉄粉の飽和磁化
;σS≧150 emu/g、または、該磁性鉄粉を適
当な結合剤と混練した磁性塗料を塗布して得られた磁気
記録媒体の飽和磁束密度;Bs≧3500ガウスにおい
て、保磁力Hcが1400エルステツドを越えるものは
極めて稀であり、またその製造方法は極めて複雑な工程
から成る(=も拘らず得られる製品の磁気特性は、ばら
つきが大きく再現性に乏しいため工業的に採用し得る製
造方法ではない。
However, many proposals such as those mentioned above (2 points: 1
1. :11 The magnetic properties of the acicular magnetic iron powder obtained are the saturation magnetization of the magnetic iron powder; σS≧150 emu/g, or the magnetic properties obtained by applying a magnetic paint prepared by kneading the magnetic iron powder with a suitable binder. When the saturation magnetic flux density of a magnetic recording medium is Bs≧3500 Gauss, it is extremely rare for the coercive force Hc to exceed 1400 Oersteds, and the manufacturing method thereof consists of extremely complicated steps (= despite the fact that the magnetic Since the characteristics vary widely and reproducibility is poor, this is not an industrially applicable manufacturing method.

本発明は、飽和磁化;σ3≧150emu/jlにおい
て保磁力;HC≧1400エルステッドの針状強磁性鉄
粉を再現性よく製造し得る工業的(−採用可能な針状強
磁性鉄粉の製造方法を提供することを目的とする。
The present invention provides an industrial method for producing acicular ferromagnetic iron powder capable of producing with good reproducibility a acicular ferromagnetic iron powder having saturation magnetization; σ3≧150 emu/jl and coercive force; The purpose is to provide

本発明者等は、前記目的を達成すべく鏝意研究の結果、
ケイ酸被覆酸化第二鉄(α−Fs、O,)の一定粒度範
囲の粒子を還元することにより、針状性の維持された針
状磁性鉄粉が再現性よく得られることを見出し本発明を
完成した。
In order to achieve the above-mentioned purpose, the present inventors have conducted extensive research,
It was discovered that acicular magnetic iron powder with maintained acicularity can be obtained with good reproducibility by reducing particles of a certain particle size range of silicate-coated ferric oxide (α-Fs, O,), and the present invention has been made. completed.

本発明は、ケイ酸塩で被覆された針状晶含水酸化鉄を加
熱脱水後還元する磁性鉄粉の製造方法(二おいて、含水
ケイ酸ゲルで被覆された針状晶含水酸化鉄を加熱脱水し
て得たケイ酸被覆酸化第二鉄の250メツシエないし6
メツシエ(:造粒された粒子を還元することを特徴とす
る針状強磁性鉄粉の 5− 製造方法である。
The present invention relates to a method for producing magnetic iron powder in which acicular crystal hydrated iron oxide coated with a silicate is heated and dehydrated and then reduced. 250 meshier to 6 of silicic acid coated ferric oxide obtained by dehydration
Messier: A method for producing acicular ferromagnetic iron powder characterized by reducing granulated particles.

本発明(−おいて、含水ケイ酸ゲルで被覆された針状晶
含水酸化鉄とは、加熱脱水することにより、ケイ酸(S
lot)で被覆された酸化第二鉄(α−Fe、0. )
を生成し得るものをいう。針状晶含水酸化鉄(Pe0Q
H)は、実質的に針状、好ましくは、軸比(長軸/短軸
)が5ないし加、長軸長が0.3μmないし2.0pm
の枝分れの少いものであればよく、その結晶形はα体、
β体およびγ体のいずれでも、またそれらの混合物でも
よい。さらに、その製造(二当り、鉄塩以外の他の金属
塩、酸化物、または水酸化物が添加されたものであって
も実質的C二含水酸化鉄(F”eOOH)からなるもの
であればよく、特に、第1鉄塩のアルカリ性水溶液に、
ニッケルイオンおよび亜鉛イオンの存在下、酸素含有ガ
スを導入して得られる針状゛晶含水酸化鉄(α−Fe0
0H)は軸比および長軸長のばらつきが少く枝分れも少
ないので好ましい。また、含水ケイ酸ゲルは、水可溶性
ケイ酸塩、たとえば1号ないし3号水ガラス、メタケイ
酸ナトリウム5水和物、セスキケイ 6− 酸ナトリウム9水和物等の水溶液を中和酸性化すること
により生成する含水ケイ酸ゲルである。該含水ケイ酸ゲ
ル(二よる前記針状晶含水酸化鉄の被覆方法には制限は
なく、たとえば、分散剤としてのポリリン酸塩を添加し
た水(−針状晶含水酸化鉄を分散懸濁し、この中に前配
水可溶性ケイ酸塩のINIを81へに換算して針状晶含
水酸化鉄(一対し、lないし10重置%添加し、ついで
中和酸性化すること)=より、針状晶含水酸化鉄表面(
二含水ケイ酸ゲルの好ましい被覆が形成される。
In the present invention (-), acicular crystal hydrated iron oxide coated with hydrated silicic acid gel is obtained by heating and dehydrating the acicular crystal hydrated iron oxide.
ferric oxide (α-Fe, 0. ) coated with
refers to something that can generate Acicular crystal hydrated iron oxide (Pe0Q
H) is substantially acicular, preferably with an axial ratio (major axis/minor axis) of 5 to 2, and a major axis length of 0.3 μm to 2.0 pm.
As long as it has less branching, its crystal form is α-form,
It may be either β-form or γ-form, or a mixture thereof. Furthermore, its manufacture (per 2, consisting essentially of C dihydric iron oxide (F"eOOH), even with the addition of other metal salts, oxides, or hydroxides than iron salts) Especially in alkaline aqueous solutions of ferrous salts,
Acicular crystalline hydrated iron oxide (α-Fe0) obtained by introducing oxygen-containing gas in the presence of nickel ions and zinc ions
0H) is preferable because it has less variation in axial ratio and major axis length and less branching. Hydrous silicic acid gel can also be obtained by neutralizing and acidifying an aqueous solution of water-soluble silicate, such as No. 1 to No. 3 water glass, sodium metasilicate pentahydrate, sodium sesquisilicate hexahydrate, etc. It is a hydrous silicic acid gel produced by There is no limit to the method of coating the acicular hydrated iron oxide using the hydrated silicic acid gel (2). In this, the INI of the soluble silicate is converted to 81, and acicular crystal hydrated iron oxide (add 1 to 10% by weight per pair, then neutralize and acidify) = acicular crystals. Crystalline hydrated iron oxide surface (
A preferred coating of dihydrate silicic acid gel is formed.

本発明(=おいて、前記含水ケイ酸ゲルで被覆された針
状晶含水酸化鉄を加熱脱水して得られるケイ酸被覆酸化
第二鉄(α−Fe、01)の250メッシ番ないし6メ
ツシエの粒度範囲の粒子が還元の原料となる。ケイ酸被
覆酸化第二鉄の粒子は、含水ケイ10 準となるまで乾燥した後、常法たとえば押出造粒転勤造
粒等(二より250メツシ為ないし6メツV工に造粒し
た後加熱脱水するか、もしくは前記r滓を適宜解砕して
加熱脱水した後、250メツV工ないし6メツシ凰(二
粉砕分級すること1二より製造する。加熱脱水されたケ
イ酸被覆酸化第二鉄の粉砕は常法たとえばボールミル中
でビヒクルと混練すること等により、針状晶含水酸化鉄
の針状性を損うことなく容易(二粉砕することができ、
粉砕後は分級し、250メツV工ないし6メツシエの粒
度間I!Iに整粒する。含水ケイ酸ゲル被覆針状晶含水
酸化鉄の加熱脱水は、350℃ないし800℃の温度で
3時間ないし1時間、好ましくは生成したケイ酸被覆酸
化第二鉄のB、E、T、法で測定した比表面積が30d
41ないし100 rd/IIとなるように行う。
According to the present invention, 250 mesh to 6 mesh of silicate-coated ferric oxide (α-Fe, 01) obtained by heating and dehydrating the acicular hydrated iron oxide coated with the hydrated silicic acid gel. The silicic acid-coated ferric oxide particles are dried to about 10% hydrated silica, and then processed using conventional methods such as extrusion granulation, transfer granulation, etc. It is produced by pulverizing the sludge into 250 to 6 mesh granules, then heating and dehydrating it, or crushing the sludge as appropriate, heating and dehydrating it, and then pulverizing and classifying it into 250 meth to 6 mesh granules. The heat-dehydrated silicic acid-coated ferric oxide can be easily crushed by a conventional method, such as kneading it with a vehicle in a ball mill, without impairing the acicularity of the acicular crystal hydrated iron oxide. I can do it,
After crushing, it is classified and the particle size is between 250 mesh V and 6 mesh I! Sort the grains to I. The acicular hydrated iron oxide coated with hydrated silicic acid gel is thermally dehydrated at a temperature of 350°C to 800°C for 3 to 1 hour, preferably by B, E, T method of the produced silicic acid coated ferric oxide. The measured specific surface area is 30d
41 to 100 rd/II.

本発明において、前記ケイ酸被覆酸化第二鉄(α−Fa
、0. )の粒子と還元性ガスとを接触すること1:よ
り目的とする針状強磁性鉄粉(Fe )が得られる。
In the present invention, the silicate-coated ferric oxide (α-Fa
,0. ) Contacting the particles with a reducing gas 1: The desired acicular ferromagnetic iron powder (Fe 2 ) can be obtained.

ケイ酸被覆酸化第二鉄と還元性ガスとの接触は固定床還
元炉、回転レトルト炉、好ましくは流動床還元炉を用い
430℃ないし550℃の還元温度下(二回分式で行う
。還元温度は高温はど還元速度は速くなるが、550℃
を越える温度では粒塊を構成している針状鉄粉の単位粒
子の変形や焼結が起り易く、また430℃未満の温度で
は還元性ガスたとえば乾燥した水素ガスを大量に使用し
ても還元速度が遅く好ましくない。さら4:鉄粉粒子の
還元炉内における滞溜時間分布−二基く磁気特性値の分
布幅の拡大を避けるため(−還元操作は回分式操作であ
る。
The silicate-coated ferric oxide is brought into contact with the reducing gas using a fixed bed reduction furnace, a rotary retort furnace, or preferably a fluidized bed reduction furnace at a reducing temperature of 430°C to 550°C (conducted in two batches. The reduction rate becomes faster at higher temperatures, but at 550℃
At temperatures exceeding 430°C, deformation and sintering of the unit particles of acicular iron powder that make up the granules are likely to occur, and at temperatures below 430°C, even if a large amount of reducing gas, such as dry hydrogen gas, is used, reduction will not occur. The speed is slow and undesirable. Further 4: Residence time distribution of iron powder particles in the reduction furnace - To avoid widening of the distribution width of the two magnetic property values (- The reduction operation is a batch operation.

本発明は、従来の磁性鉄粉の製造工1it(”:、含水
ケイ酸ゲル被覆鉄粉または、それを加熱脱水したケイ酸
被覆酸化第二鉄の造粒工程を追加する改良C:より、そ
れぞれの工程が、好ましい態様で、たとえば、軸比が5
ないし加、長軸長が0.3μ飼ないし2.0pmの枝分
れの少い針状晶含水酸化鉄を、該針状晶含水酸化鉄に対
し、81へ(−換算して1ないし10重量%の含水ケイ
酸ゲルで被覆し、該含水ケイ酸ゲル被覆針状晶含水酸化
鉄を造粒後加熱脱水するか、加熱脱水後造粒したB%E
1T、法で測定した比表面積が30d/Iないし100
 d/II (Dかっ、250メツシ翼ないし6メツシ
瓢のケイ酸被覆酸化第二鉄の粒子と水素ガスとを流動還
元炉を用い480 ℃ 9− ないし550℃の温度下に回分式に接触させること6二
より、該ケイ酸被覆酸化第二鉄粒子中の酸化第二鉄(α
−FelOa )を、元の針状晶含水酸化鉄の針状性を
損うことなく還元し針状性(=優れた飽和磁化;す≧1
!SOemu/Iニおイテ、保磁力; He ≧140
0エルステッドの針状強磁性鉄粉を製造することができ
る方法を提供するものである。また、造粒されたケイ酸
被覆酸化第二鉄粒子を得るために特殊な粘結剤を使用し
ないため、添加物によるトラブルを防止することができ
、さら弓:造粒されたケイ酸被覆酸化第二鉄粒子を還元
するため、たとえ流動床還元炉を用いたとしてもキャリ
オーバー一二よる飛散損失が少い。
The present invention is based on the conventional manufacturing process of magnetic iron powder (Improved C: which adds a granulation process of hydrous silicate gel-coated iron powder or silicate-coated ferric oxide obtained by heating and dehydrating it). Each step is carried out in a preferred manner, for example, when the axial ratio is 5.
to 81 (converted to 1 to 10 % by weight of hydrated silicic acid gel, and the acicular crystal hydrated iron oxide coated with the hydrated silicic acid gel is granulated and then heated and dehydrated, or B%E that is granulated after heated and dehydrated.
1T, specific surface area measured by method is 30d/I to 100
d/II (D) 250 mesh blades to 6 mesh gourds of silicate-coated ferric oxide particles are brought into contact with hydrogen gas in a batchwise manner at a temperature of 480° C.9 to 550° C. using a fluidized fluidized reduction furnace. 62, the ferric oxide (α
-FelOa) is reduced without impairing the acicularity of the original acicular hydrated iron oxide, and the acicularity (=excellent saturation magnetization;
! SOemu/I, coercive force; He ≧140
The present invention provides a method capable of producing acicular ferromagnetic iron powder of 0 oersteds. In addition, since no special binder is used to obtain granulated silicic acid-coated ferric oxide particles, troubles caused by additives can be prevented. Since ferric particles are reduced, scattering loss due to carryover is small even if a fluidized bed reduction furnace is used.

本発明は、飽和磁化;σS≧150@mu77において
、保磁力;HC≧1400エルステッドの針状強磁性鉄
粉を効率よく、かり暮現性よく製造する方法を提供する
ものでありその産業的意義は極めて大きい。
The present invention provides a method for efficiently producing acicular ferromagnetic iron powder with saturation magnetization: σS≧150@mu77 and coercive force: HC≧1400 Oersteds, and has industrial significance. is extremely large.

以下、実施例により本発明をさらに詳細(:説明する。Hereinafter, the present invention will be explained in further detail with reference to Examples.

ただし、本発明は下記実施例に限定されるものではない
However, the present invention is not limited to the following examples.

 10− 実施例1゜ 0)ゲータイトの製造 水504にNガスを吹込みながら60℃(;加温し、入
して0.5時間攪拌し、液中のFe”イオンの含量が全
鉄(二対し2.5%以下になったことを確認した。この
液1: Ni804・6H10; 328.6jlとZ
n804−7H,o ;179.71Iを投入溶解した
後r過して清澄液を得た。
10- Example 1゜0) Manufacture of goethite Water 504 was heated to 60°C while blowing N gas into it, stirred for 0.5 hours, and the content of Fe'' ions in the liquid was reduced to It was confirmed that the concentration was 2.5% or less.This solution 1: Ni804.6H10; 328.6jl and Z
n804-7H,o;179.71I was added and dissolved, and then filtered to obtain a clear liquid.

別に501の水C:固型N暑OH(フレーク状、純度9
7%)10.31匂を溶解し60℃C二保持しつつ前記
のFe80番他を含む溶液を攪拌しつつ加え水酸化第一
鉄の懸濁液を得た。攪拌翼端の周速を5.ILLS、4
m:になるよう(=攪拌速度を増してから空気を201
15+の速度で吹込み、60℃で酸化反応を継続した。
Separately 501 water C: solid N hot OH (flake-like, purity 9
7%) 10.31 odor was dissolved and maintained at 60° C., and the solution containing Fe No. 80 and others was added with stirring to obtain a suspension of ferrous hydroxide. The circumferential speed of the stirring blade tip is 5. ILLS, 4
m: (= increase the stirring speed and then add air to 201
The oxidation reaction was continued at 60° C. with blowing at a rate of 15+.

反応液チンプル5 ml’k 5 % HCI 45m
j ニ加t テヨ< a合後r遇したf液をFel十試
験紙で残留Fe”+イオンを検出し不検出となった時点
で酸化反応を停止した。この反応液をフィルタープレス
でf過し、300 jの水で洗浄して、N1を3.85
原子%(対Fe原子)、Znを1.20原子%(対Fe
原子)含む軸比10〜20長さ1.0〜1.5##Iの
ゲータイト湿flAP滓(ケーキ)を得た。
Reaction solution chimple 5 ml'k 5% HCI 45m
After the reaction, the oxidation reaction was stopped when residual Fe"+ ions were detected using Fel test paper. This reaction solution was subjected to f-filtration using a filter press. and washed with 300 J of water to reduce N1 to 3.85
atomic% (vs. Fe atoms), Zn 1.20 atomic% (vs. Fe atoms)
A goethite wet flAP slag (cake) having an axial ratio of 10 to 20 and a length of 1.0 to 1.5 was obtained.

←)含水ケイ酸ゲル被覆 80℃(;予熱した純水501を特殊機化工業製ホモミ
キサ−[F](2゜2kw)で攪拌しつつ〜キサメタ燐
酸ソーダ; 2ONを加え、前記ビ)で得られた湿潤r
滓ス(試薬) 155 gを純水11に溶解して加えさ
ら(二高速攪拌を6時間継続した。
←) Water-containing silicic acid gel coating at 80°C (; While stirring preheated pure water 501 with a Homomixer [F] manufactured by Tokushu Kika Kogyo (2° 2kw) ~ add xametaphosphate sodium 2ON, and prepare the mixture obtained in step B) above. wet r
155 g of slag (reagent) was dissolved in 11 parts of pure water, and then high-speed stirring was continued for 6 hours.

次(二攪拌しつつ10%H,804を加えてPH7,0
に調整し更に、純水11 (: Na、HPO4721
とIG(、Po、34jlを溶かして投入しPH6,0
とした。30分後):攪拌を低速C″−落とした。その
後2.5時間80℃に保ち低速撞拌は継続した。
Next (add 10% H, 804 while stirring twice to pH 7.0
Further, pure water 11 (: Na, HPO4721
Dissolve and add IG (, Po, 34jl to pH 6,0.
And so. After 30 minutes): The stirring was reduced to low speed C″.The temperature was then kept at 80° C. for 2.5 hours, and low speed stirring was continued.

加温と攪拌を止め一夜放置した。Heating and stirring were stopped, and the mixture was left overnight.

重液をフィルタープレスでr過し3001の純水で洗浄
してS10!が2.34wt%被普した被覆ゲータイト
の湿温f滓を得た。
Filter the heavy liquid with a filter press and wash it with 3001 pure water, S10! A moist temperature f slag of coated goethite with 2.34 wt% of carbon content was obtained.

(ハ)加熱脱水 湿潤r滓は15m x 15cm+ X 0.7C11
の板状であるので2〜4C111角(−折り角皿(=乗
せ130℃で乾燥し、さらに加熱脱水を350 、50
0 、650 、800℃の各温度で実施して、4種類
の脱水条件の興なる塊状へマタイトとした。
(c) Heating dehydration wet r slag is 15m x 15cm+ x 0.7C11
Since it is in the shape of a plate, it is dried at 130°C and heated at 350°C and 50°C.
The dehydration was carried out at temperatures of 0, 650 and 800°C to obtain massive hematite under four types of dehydration conditions.

に)粉砕造粒 塊状のへフタイト4種をそれぞれ、原理的には石臼と同
様の粉砕機(俗にコーヒーミルと言う)で粉砕し師分け
した篩上は再開粉砕し、篩下はニーダ−により水分50
%を加えてミニマイザー造粒器(不二パウダル製)によ
り造粒し130℃4:て再度乾燥し篩分けした。このよ
うにして粒度ωメッシ、−〜32メッシェの造粒品を得
た。
2) Each of the four types of heftite in the form of crushed granulated lumps is crushed using a crusher similar to a stone mill (commonly called a coffee mill). Moisture 50
% and granulated using a Minimizer granulator (manufactured by Fuji Paudal), dried again at 130°C and sieved. In this way, a granulated product with a particle size of ω mesh of - to 32 mesh was obtained.

(ホ)還元 上記造粒品(加熱脱水温度のことなる4種)について各
々10011づつ流動還元炉c二仕込み、桟ガスを1O
NI屑で流通せしめて450℃、480℃、500℃の
各温度で還元し合計8N類の鉄粉を得た。
(e) Reduction For the above granulated products (4 types with different heating and dehydration temperatures), 10011 each were charged into two fluidized-bed reduction furnaces, and 10
It was passed through NI scrap and reduced at temperatures of 450°C, 480°C, and 500°C to obtain iron powder of 8N in total.

この鉄粉の磁気特性を第1表に示す。なお、表 13− 中のTdは脱水湿質、tdは加熱脱水時間、Trは還元
温度trは還元時間を示す。
The magnetic properties of this iron powder are shown in Table 1. In Table 13, Td indicates dehydrated wet material, td indicates heating dehydration time, Tr indicates reduction temperature, and tr indicates reduction time.

第  1  表 実施例2゜ 実施例1の(イ)のニーと同様にして得られたゲータイ
ト湿渡ケーキを(0)の工程における水ガラスの量を2
331 にNa1HPO,をtos、p +:、賜PO
a ヲ8111 E変えたほかは以下(ロ)(ハ)に)
鉋)の工程な責施例1′と同 14− 様に実施して10種類の鉄粉を得た。この粉末磁気特性
を第2表(二示す。8101は鉄含量当り415wt%
であった。
Table 1 Example 2゜The goethite wet cake obtained in the same manner as the knee of Example 1 (a) was mixed with the amount of water glass in the step (0) by 2.
331 Na1HPO, tos, p +:, gift PO
a wo 8111 E except for the following changes (b) and (c))
Ten types of iron powder were obtained by carrying out the process in the same manner as in Example 1'. The magnetic properties of this powder are shown in Table 2. 8101 is 415 wt% per iron content.
Met.

第  2  表 実施例3゜ 実施例1の(イ)の工程と同様(=シて得られたゲータ
イト湿潤ケーキを−の工!!(:おけろ水ガラスの量を
310 jl (:、、Na鵞HPO,を1441i礪
−賜PO,を1081(:変えたほかは以下tc1)(
ハ)に)(ホ))の工程を実施例1と同様仁実施して8
40m被覆が鉄含量当り6,35%の鉄粉10種類を得
た。この粉末磁気特性を第3表に示実施例4゜ 実施例1の(イ)の工程と同様にして得られたゲータイ
ト湿潤ケーキを実施例1の斡)の工程−二おける水ガラ
スの量を2209に、N町HPO,を102 # t:
K)(、P O,を76.5.9’ 4:変えた他は実
施例1のIp)と同様(:被覆工程を実施し81へが鉄
含量当り3.7wt%  被覆された被覆ゲータイトの
#1#lケーキを得た。
Table 2 Example 3゜The same process as in Example 1 (a) was carried out.鵞HPO, 1441i 礪-亪PO, 1081 (: Other than the changes, the following is tc1) (
Perform the steps (c), (e)) in the same manner as in Example 1.
Ten types of iron powder with a 40 m coating of 6.35% iron content were obtained. The magnetic properties of this powder are shown in Table 3. Example 4: The goethite wet cake obtained in the same manner as in step (a) of Example 1 was mixed with the amount of water glass in step (b) of Example 1. 2209, N Town HPO, 102 #t:
K) (, P O, was 76.5.9' 4: Same as Ip of Example 1 except that the coating step was carried out and 81 was coated with 3.7 wt% of iron content. A #1 #l cake was obtained.

このケーキの65部を130℃で乾燥し、これとのこり
の湿潤ケーキ35部を合してニーグーで練った。
65 parts of this cake was dried at 130° C. and mixed with 35 parts of the remaining wet cake and kneaded in a niegu.

線上り品の乾基準含有水分は1.61r#/4ゲータイ
トであった。これを不二パウダル社製のベレッターダブ
ル0.7m11ψスクリーンにより押し出し造粒し、熱
風温度130℃で流動乾燥し、太さ0.6■φ長さ1〜
3Bの造粒品を得た。これを800℃×1時間及び45
0℃×4時間の2水準で脱水焼成したところ焼成品のB
%E%T、法化表面積は各々39.1jlよび83.8
4僧であった。
The moisture content of the line product on a dry basis was 1.61 r#/4 goethite. This was extruded and granulated using a Beretta double 0.7 m 11 ψ screen manufactured by Fuji Paudal Co., Ltd., and fluidized and dried at a hot air temperature of 130°C.
A granulated product of 3B was obtained. This was heated at 800°C for 1 hour and at 45°C.
When dehydrated and fired at 0°C for 4 hours, the fired product B
%E%T, legalized surface area is 39.1jl and 83.8 respectively.
There were 4 monks.

これら欺各々Zoo lを、にガス流量4ONI1分で
温度450℃で2.7時間還元した鉄粉の磁気特性は次
の通りであった。
The magnetic properties of the iron powder obtained by reducing each of these ZOOI at a gas flow rate of 4 ONI for 1 minute at a temperature of 450° C. for 2.7 hours were as follows.

17− HC(エルステッド)  σs(aηu/11)  σ
r/(fm(−)800℃Xi時間脱水品  1680
    154.0   0.57450℃×4時間脱
水品  1480    156.0   0.53出
 願 人   日本曹達株式会社 代 瑯  人    伊  藤  晴  2横  山 
  吉  美  18−
17- HC (Oersted) σs (aηu/11) σ
r/(fm(-)800℃Xi hour dehydration product 1680
154.0 0.57 4-hour dehydration product at 450°C 1480 156.0 0.53 Applicant: Nippon Soda Co., Ltd. Haruto Ito 2 Yokoyama
Yoshimi 18-

Claims (1)

【特許請求の範囲】[Claims] 1、 ケイ酸塩で被覆された針状晶含水酸化鉄を加熱脱
水後還元する磁性鉄粉の製造方法(:おいて、含水ケイ
酸ゲルで被覆された針状晶含水酸化鉄を加熱脱水して得
たケイ酸被覆酸化第二鉄の250メツシエないし6メツ
V工に造粒された粒子を還元することを特徴とする針状
強磁性鉄粉の製造方法。
1. Method for producing magnetic iron powder by heating and dehydrating and reducing acicular hydrated iron oxide coated with silicate (: In this step, acicular hydrated iron oxide coated with hydrated silicate gel is heated and dehydrated. 1. A method for producing acicular ferromagnetic iron powder, which comprises reducing granulated particles of 250 mesh to 6 mesh V of silicate-coated ferric oxide.
JP57054975A 1982-04-02 1982-04-02 Preparation of spicular ferromagnetic iron powder Pending JPS58174509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57054975A JPS58174509A (en) 1982-04-02 1982-04-02 Preparation of spicular ferromagnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054975A JPS58174509A (en) 1982-04-02 1982-04-02 Preparation of spicular ferromagnetic iron powder

Publications (1)

Publication Number Publication Date
JPS58174509A true JPS58174509A (en) 1983-10-13

Family

ID=12985649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054975A Pending JPS58174509A (en) 1982-04-02 1982-04-02 Preparation of spicular ferromagnetic iron powder

Country Status (1)

Country Link
JP (1) JPS58174509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152307A (en) * 1984-08-22 1986-03-15 Daido Steel Co Ltd Method and device for producing pulverous metallic powder
JPH03175603A (en) * 1989-12-04 1991-07-30 Toda Kogyo Corp Magnetic particle powder of dendrite metal wherein iron is main component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152307A (en) * 1984-08-22 1986-03-15 Daido Steel Co Ltd Method and device for producing pulverous metallic powder
JPH0470362B2 (en) * 1984-08-22 1992-11-10 Daido Tokushuko Kk
JPH03175603A (en) * 1989-12-04 1991-07-30 Toda Kogyo Corp Magnetic particle powder of dendrite metal wherein iron is main component

Similar Documents

Publication Publication Date Title
JPS60137002A (en) Manufacture of tabular ba ferrite fine particle powder for magnetic recording
JPS58174509A (en) Preparation of spicular ferromagnetic iron powder
US6140001A (en) Iron oxide microparticles and a process for producing them
JPS6135135B2 (en)
JPS5841727A (en) Manufacture of fine ferrite powder
JPH0471012B2 (en)
JPS6334608B2 (en)
JPS62252324A (en) Production of fine barium ferrite powder
JPS60255629A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPS61219720A (en) Production of particulate magnet plumbite-type ferrite
JPS6251898B2 (en)
JPS6090829A (en) Treatment of barium ferrite
JPH09205012A (en) Method for manufacturing metal magnetic powder
JPS63116407A (en) Manufacture of magnetic fluid
JPS58164706A (en) Production of acicular ferromagnetic iron powder
JPH0142894B2 (en)
JPS6257577B2 (en)
JPS60122725A (en) Manufacture of finely-divided powder of lamellar barium ferrite for magnetic recording
JPS6246506A (en) Manufacture of magnetic powder
JPS62176920A (en) Preparation of powdery barium ferrite
JPH0462906A (en) Magnetic metal powder and manufacture thereof and coating film for magnetic recording medium containing same
JPH03265524A (en) Production of hexagonal sheet like barium ferrite
JPS60255627A (en) Prduction of ferromagnetic powder
JPS61159502A (en) Production of magnetic metallic powder
JPS6317223A (en) Spherical maghematite particle powder and production thereof