JPS6369717A - Plate ba ferrite particulate powder for magnetic recording and its production - Google Patents

Plate ba ferrite particulate powder for magnetic recording and its production

Info

Publication number
JPS6369717A
JPS6369717A JP21678286A JP21678286A JPS6369717A JP S6369717 A JPS6369717 A JP S6369717A JP 21678286 A JP21678286 A JP 21678286A JP 21678286 A JP21678286 A JP 21678286A JP S6369717 A JPS6369717 A JP S6369717A
Authority
JP
Japan
Prior art keywords
plate
ferrite
particles
shaped
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21678286A
Other languages
Japanese (ja)
Other versions
JPH0761874B2 (en
Inventor
Norimichi Nagai
規道 永井
Tsutomu Katamoto
勉 片元
Akihiko Hirayama
平山 彰彦
Masao Kiyama
木山 雅雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP61216782A priority Critical patent/JPH0761874B2/en
Publication of JPS6369717A publication Critical patent/JPS6369717A/en
Publication of JPH0761874B2 publication Critical patent/JPH0761874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title particulate powder having a high magnetization value and appropriate coercive force and having a low content of water-soluble Ba, by heating and baking plate Ba ferrite particles deposited with Zr hydroxide to dissolve the Zr into the particles. CONSTITUTION:Plate Ba ferrite particles are suspended in an aq. soln. of Zr hydroxide to obtain the plate Ba ferrite particles deposited with Zr hydroxide on their surfaces. The particles are separated by filtration, dried, and then heated and baked at 600-1,000 deg.C to dissolve zirconium in the vicinity of the surfaces of the plate Ba ferrite particles. The amt. of the Zr hydroxide to be deposited is controlled to 0.01-10.0wt%, based on the plate Ba ferrite particulate powder and expressed in terms of Zr. At <0.01wt%, the desired plate Ba ferrite particles cannot be obtained. At >10.0wt%, the magnetization value is reduced, and the obtained powder is not preferable as the magnetic particulate powder for magnetic recording.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒子表面近傍にジルコニウムが固溶している
板状Baフェライト微粒子からなる磁気記録用板状Ba
フェライト微粒子粉末及びその製造法である。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a magnetic recording plate-shaped Ba ferrite particle comprising plate-shaped Ba ferrite particles in which zirconium is solidly dissolved near the particle surface.
A ferrite fine particle powder and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年、例えば、特開昭55−861.03号公報にも述
べられている通り、大きな磁化値と適当な抗磁力とを有
し、且つ、適当な平均粒度を有する強磁性の非針状粒子
が記録用磁性材料、特に垂直磁気記録用磁性材料として
要望されつつある。
In recent years, for example, as described in JP-A-55-861.03, ferromagnetic non-acicular particles having a large magnetization value, an appropriate coercive force, and an appropriate average particle size have been developed. There is an increasing demand for magnetic materials for recording, especially magnetic materials for perpendicular magnetic recording.

一般に、強磁性の非針状粒子としてはBaフェライト粒
子がよく知られている。
Generally, Ba ferrite particles are well known as ferromagnetic non-acicular particles.

従来から板状Baフェライトの製造法の一つとして、B
aイオンとFeQIDとが含まれたアルカリ性懸濁液を
反応装置としてオートクレーブを用いて水熱処理する方
法(以下、これを単に水熱合成法という。)が知られて
いる。
Conventionally, one of the manufacturing methods of plate-shaped Ba ferrite is B
A method is known in which an alkaline suspension containing a ions and FeQID is hydrothermally treated using an autoclave as a reaction device (hereinafter, this is simply referred to as a hydrothermal synthesis method).

先ず、磁気特性について言えば、磁気記録用板状Baフ
ェライト粒子粉末の磁化値は、出来るだけ大きいことが
必要であり、この事実は、例えば特開昭56−1.49
328号公報の[・・・・磁気記録媒体祠料に使われる
マグネトブランバイトフェライトについては可能な限り
大きな飽和磁化・・・・が要求される。」と記載されて
いる通りである。
First, regarding magnetic properties, it is necessary that the magnetization value of plate-shaped Ba ferrite particles for magnetic recording be as large as possible.
No. 328 [...] Magnetobrambite ferrite used as a magnetic recording medium abrasive is required to have as large a saturation magnetization as possible. ” as stated.

また、抗磁力は、一般に300〜15000e程度のも
のが要求されており、上記水熱合成法において生成りa
フェライトm粒子粉末の抗磁力を低減させ適当な抗磁力
とする為にフェライト中のPe(2)の一部をTi(I
V及びGo(10又はCo(III並びにMn、 Zn
、 Ni等の2価の金属イオンM(IQで置換すること
が提案されている。
In addition, a coercive force of about 300 to 15,000 e is generally required, and the a
In order to reduce the coercive force of the ferrite M particles and obtain an appropriate coercive force, some of the Pe(2) in the ferrite is replaced with Ti(I).
V and Go(10 or Co(III and Mn, Zn
, It has been proposed to substitute divalent metal ions M (IQ) such as Ni.

次に、粉体特性について言えば、磁気記録用板状Baフ
ェライト微粒子粉末の粒度は、出来るだけ微細な粒子、
殊に、0.3μm以下であることが要求されている。
Next, regarding powder characteristics, the particle size of the plate-shaped Ba ferrite fine particle powder for magnetic recording is as fine as possible.
In particular, it is required that the thickness be 0.3 μm or less.

この事実は、例えば、特開昭56−125219号公報
の「・・・・垂直磁化記録が面内記録に対して、その有
為性が明らかとなるのは、記録波長が1μm以下の領域
である。しかしてこの波長領域で十分な記録・再生を行
うためには、上記フェライトの結晶粒径は、略0.3μ
m以下が望ましい。しかし、0.01μm程度となると
、所望の強磁性を呈しないため、適切な結晶粒径として
は0.01〜0.3μm程度が要求される。」なる記載
等の通りである。
This fact can be seen, for example, in JP-A-56-125219, which states, However, in order to perform sufficient recording and reproduction in this wavelength range, the crystal grain size of the ferrite must be approximately 0.3μ.
m or less is desirable. However, if it is about 0.01 μm, it will not exhibit the desired ferromagnetism, so a suitable crystal grain size is required to be about 0.01 to 0.3 μm. ” is as stated.

また、比表面積は、磁気記録媒体の低ノイズ化の為には
、出来るだけ大きいことが必要であり、殊に、3(Jr
d/g以上の粒子が要求されている。
In addition, the specific surface area needs to be as large as possible in order to reduce the noise of the magnetic recording medium, especially 3 (Jr
Particles of d/g or higher are required.

この現象は、例えば、電子通信学会技術研究報告MR8
1−11第27頁23〜9のrFig、3J等に示され
ている。rFig、 3 JはCo被着針状晶マグヘマ
イト粒子粉末における粒子の比表面積とノイズレヘルと
の関係を示す図であり、粒子の比表面積が大きくなる程
ノイズレベルは直線的に低下している。
This phenomenon can be seen, for example, in the Technical Research Report MR8 of the Institute of Electronics and Communication Engineers.
1-11, p. 27, 23-9, rFig, 3J, etc. rFig. 3J is a diagram showing the relationship between the specific surface area of the particles and the noise level in Co-coated acicular maghemite particle powder, and the noise level decreases linearly as the specific surface area of the particles increases.

この関係は板状Baフェライト粒子粉末についても同様
に言えることである。
This relationship holds true for the plate-shaped Ba ferrite particles as well.

ところで、前述した水熱合成法により得られた板状Ba
フェライト粒子粉末は、板状Baフェライト粒子の生成
に寄与しない過剰のBa分を水可溶性分として含有して
おり、この水可溶性Ba分を含むBaフェライト粒子粉
末を磁性粒子粉末として用い、磁気テープを製造した場
合には、磁気ヘットの腐蝕等に起因して、磁気テープの
走行性が悪くなることが知られている。この現象は、例
えば、特公昭60−15576号公報の「・・・・オー
トクレーブ法(水熱合成法)で製造されたBa−フェラ
イト・・・・について、・・・・過剰に存在するBa分
を抽出除去し、・・・・」なる記載及び特公昭4B−2
7118号公報の[・・・・磁気記録媒体は磁気ヘッド
又はガイドボールと常に接触した状態で使用されるので
ある。・・・・接触によって磁性層が摩耗し、この摩耗
片は粉になって飛散し、この粉末はガイドボール、磁気
ヘット等に付着集積し、この結果、磁気記録体の記録を
再生するときに信号の読み出し不能又はドロップアウト
の現象としてあられれる・・・・」、「・・・・ヘッド
腐蝕の原因はNa25O,やNaClのみでなく、電解
質的なものであれば、はぼ、同一の腐蝕が認められた。
By the way, the plate-like Ba obtained by the above-mentioned hydrothermal synthesis method
The ferrite particles contain excess Ba as a water-soluble component that does not contribute to the production of plate-shaped Ba ferrite particles, and the Ba ferrite particles containing this water-soluble Ba are used as magnetic particles to form a magnetic tape. It is known that when manufactured, the running properties of the magnetic tape deteriorate due to corrosion of the magnetic head and the like. This phenomenon is explained, for example, in Japanese Patent Publication No. Sho 60-15576, "... Regarding Ba-ferrite produced by an autoclave method (hydrothermal synthesis method)... Extracting and removing...''
No. 7118 [...A magnetic recording medium is used in a state where it is always in contact with a magnetic head or a guide ball. ...The magnetic layer is worn out by contact, and the worn pieces become powder and scatter. This powder adheres and accumulates on the guide ball, magnetic head, etc., and as a result, when reproducing the recorded information on the magnetic recording medium, This can occur as signal readout or dropout phenomena...", "...The cause of head corrosion is not only Na25O and NaCl, but if it is caused by electrolytes, it is likely that the same corrosion will occur. was recognized.

・・・・従って本発明では・・・・水性溶媒を適宜用い
、・・・・水溶性・・・・の不純物をも洗浄しようとす
るものである。」なる記載から明らかである。
Therefore, in the present invention, an aqueous solvent is appropriately used to wash away water-soluble impurities. It is clear from the statement ``.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

大きな磁化値と適当な抗磁力とを有し、且つ、適当な平
均粒度と大きな比表面積とを有する水可溶性Ba分の少
ない板状Baフェライト粒子粉末は、現在量も要求され
ているところであるが、上述した通りの水熱合成法にお
いては、反応条件を選ぶことによって各種のBaフェラ
イト粒子が沈澱してくる。この沈澱粒子は通常六角板状
を呈しており、生成条件によって磁気特性及び粒度分布
や平均径が相違し、また、その生成機構に起因して、水
可溶性Ba分が多く、例えば、500ppm以上も含有
している場合がある。
There is currently a demand for plate-shaped Ba ferrite particles having a large magnetization value, appropriate coercive force, appropriate average particle size and large specific surface area, and a low content of water-soluble Ba. In the hydrothermal synthesis method as described above, various Ba ferrite particles are precipitated by selecting reaction conditions. These precipitated particles usually have a hexagonal plate shape, and have different magnetic properties, particle size distribution, and average diameter depending on the generation conditions.Due to the generation mechanism, they contain a large amount of water-soluble Ba, for example, 500 ppm or more. It may contain.

本発明者は、永年に亘り、水熱合成法による板状Baフ
ェライト粒子の研究及び開発に携わっているものである
が、その過程において反応条件によって平均径0.05
〜0.3μmを有する板状Baフェライト微粒子が得ら
れるという知見を得ている。
The present inventor has been involved in the research and development of plate-shaped Ba ferrite particles using a hydrothermal synthesis method for many years.
It has been found that plate-shaped Ba ferrite fine particles having a diameter of ~0.3 μm can be obtained.

しかしながら、上記平均径0.05〜0.3μmを有す
る板状Baフェライト粒子は、抗磁力を15000e以
下に制御しようとする場合には、磁化値を50emu/
g以上に維持することが困姐なものである。
However, when trying to control the coercive force to 15000e or less, the plate-shaped Ba ferrite particles having the average diameter of 0.05 to 0.3 μm have a magnetization value of 50 emu/
It is difficult to maintain it above g.

また、従来、水熱合成法により水溶液中から生成した板
状Baフェライト微粒子を800℃以上の温度で加熱焼
成して磁化値を向上させる方法が知られている (特公
昭60−12973号公@)公報かしながら、この方法
による場合、磁化値が50emu/g以上の板状Baフ
ェライト微粒子粉末を得ようとすれば600℃以上の高
温が必要であり、この場合には、粒子及び粒子相互間に
おける焼結が顕著となって塊状粒子となってしまい、そ
の結果、比表面積が小さく、殊に、20rr+/g以下
となり、低ノイズ用の磁気記録用磁性粒子粉末として好
ましくない。
Furthermore, a method is known in which the magnetization value is improved by heating and firing plate-shaped Ba ferrite fine particles produced from an aqueous solution by a hydrothermal synthesis method at a temperature of 800°C or higher (Japanese Patent Publication No. 12973/1983) ) However, when using this method, a high temperature of 600°C or higher is required in order to obtain a plate-shaped Ba ferrite fine particle powder with a magnetization value of 50 emu/g or higher, and in this case, the particles and the particles mutually interact with each other. The sintering between the particles becomes significant, resulting in lumpy particles, and as a result, the specific surface area becomes small, especially less than 20 rr+/g, which is not preferable as a magnetic particle powder for low-noise magnetic recording.

また、加熱焼成して得られた板状Baフェライト微粒子
の抗磁力を15000e以下に制御する為には、前述し
た抗磁力低減剤を多量に添加しなければならず、このこ
とは磁化値を低下させる原因となり、大きな磁化値、殊
に、50emu/g以上を維持しながら抗磁力を300
〜15000eの範囲に制御することは困難であった。
In addition, in order to control the coercive force of the plate-shaped Ba ferrite fine particles obtained by heating and firing to 15,000e or less, it is necessary to add a large amount of the above-mentioned coercive force reducing agent, which reduces the magnetization value. This may cause the coercive force to increase to 300 emu/g while maintaining a large magnetization value, especially 50 emu/g or more.
It was difficult to control the temperature within the range of ~15,000e.

そこで、大きな磁化値と適当な抗磁力とを有し、且つ、
適当な平均粒度と大きな比表面積とを有する水可溶性B
a分の少ない板状Baフェライト粒子を得る方法の確立
が強く要望されている。
Therefore, it has a large magnetization value and an appropriate coercive force, and
Water-soluble B with suitable average particle size and large specific surface area
There is a strong desire to establish a method for obtaining plate-like Ba ferrite particles with a small a content.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者は、大きな磁化値と適当な抗磁力とを有し、且
つ、適当な平均粒度と大きな比表面積とを有する水可溶
性Ba分の少ない板状Baフェライト粒子を得るべく種
々研究を重ねた結果、本発明に到達したものである。
The present inventor has conducted various studies in order to obtain plate-shaped Ba ferrite particles having a large magnetization value, appropriate coercive force, appropriate average particle size, large specific surface area, and low content of water-soluble Ba. As a result, we have arrived at the present invention.

即ち、本発明は、粒子表面近傍にジルコニウムが固溶し
ている板状Baフェライト微粒子からなる磁気記録用板
状Baフェライ1粒子粉末及び板状Baフェライト微粒
子をジルコニウムの水酸化物を含む水溶液中に懸濁させ
、粒子表面にジルコニウムの水酸化物が沈着している板
状Baフェライトa粒子を得、該粒子をろ別、乾燥し、
次いで、600〜1000℃の温度範囲で加熱焼成する
ことにより、前記板状Baフェライトat粒子の粒子表
面近傍にジルコニウムを固溶させることからなる磁気記
録用板状Baフェライト微粒子粉末の製造法である。
That is, the present invention provides a magnetic recording plate-shaped Ba ferrite particle powder consisting of plate-shaped Ba ferrite particles in which zirconium is solidly dissolved near the particle surface, and plate-shaped Ba ferrite particles in an aqueous solution containing zirconium hydroxide. to obtain plate-shaped Ba ferrite a particles with zirconium hydroxide deposited on the particle surface, filter the particles, dry them,
Next, the method for producing plate-shaped Ba ferrite fine particles for magnetic recording comprises dissolving zirconium in the vicinity of the particle surface of the plate-shaped Ba ferrite at particles by heating and firing at a temperature range of 600 to 1000 ° C. .

〔作  用〕[For production]

先ず、本発明において最も重要な点は、板状Baフェラ
イト粒子をジルコニウムの水酸化物を含む水溶液中に懸
濁させ、粒子表面にジルコニウムの水酸化物が沈着して
いる板状Baフェライト微粒子を得、該粒子をp別、乾
燥し、次いで、600〜1000℃の温度範囲で加熱焼
成した場合には、前記板状Baフェライト微粒子の粒子
表面近傍にジルコニウムを固溶させることができること
に起因して、粒子及び粒子相互間の焼結を防止し、その
結果、比表面積の大きい、殊に、30%/g以上を有す
る板状BaフェライHk粒子粉末を得ることができ、し
かも、抗磁力を低下させる効果を有することに起因して
、磁化値を低下させる原因となる抗磁力低減剤の添加量
を少なくすることができる為、大きな磁化値を維持しな
がら効果的に抗磁力を300〜15000eの範囲に制
御することができるという点である。
First, the most important point in the present invention is that plate-shaped Ba ferrite particles are suspended in an aqueous solution containing zirconium hydroxide, and the plate-shaped Ba ferrite fine particles with zirconium hydroxide deposited on the particle surface are suspended in an aqueous solution containing zirconium hydroxide. This is due to the fact that when the particles are separated by p, dried, and then heated and fired at a temperature range of 600 to 1000 ° C., zirconium can be solid-dissolved in the vicinity of the particle surface of the plate-shaped Ba ferrite fine particles. As a result, it is possible to obtain plate-shaped Ba ferrite Hk particles having a large specific surface area, especially 30%/g or more, and also having a high coercive force. Because it has the effect of reducing the coercive force, it is possible to reduce the amount of the coercive force reducer that causes the decrease in the magnetization value, so it can effectively reduce the coercive force by 300 to 15,000 e while maintaining a large magnetization value. The point is that it can be controlled within the range of .

また、本発明において他の重要な点は、後出の実施例に
示される通り、板状Baフェライト微粒子中の過剰の水
可溶性Ba分が添加したジルコニウムの一部と反応して
水不溶性のBa3Znz03等の微粒子が微量生成され
ることに起因して、水可溶性Ha分の少ない板状Baフ
ェライト微粒子粉末が得られる点である。
Another important point in the present invention is that, as shown in the Examples below, the excess water-soluble Ba content in the plate-shaped Ba ferrite fine particles reacts with a part of the added zirconium to form water-insoluble Ba3Znz03. Because a small amount of fine particles such as the following are produced, a plate-shaped Ba ferrite fine particle powder with a low water-soluble Ha content can be obtained.

本発明において、大きな比表面積を有する板状Baフェ
ライト微粒子を得ることができ、しかも、大きな磁化値
を維持しながら抗磁力を制御することができる理由につ
いて、本発明者は、後述する比較例に示される通り、水
熱処理法において板状Baフェライト微粒子の生成反応
にあたりジルコニウムを添加する(例えば特開昭58−
56302号公報、特開昭61−40823号公報)場
合、及び板状Baフェライト微粒子の粒子表面をジルコ
ニウムの水酸化物及び/又は酸化物で被覆するいずれの
場合にも本発明の効果が得られないことから、板状Ba
フェライHit粒子の粒子表面近傍にジルコニウムが固
溶していることによるものと考えている。
In the present invention, the reason why plate-shaped Ba ferrite fine particles having a large specific surface area can be obtained and the coercive force can be controlled while maintaining a large magnetization value is explained by the following comparative example. As shown, zirconium is added during the formation reaction of plate-shaped Ba ferrite fine particles in the hydrothermal treatment method (for example, in JP-A-58-1999).
No. 56302, JP-A No. 61-40823), and when the particle surface of plate-shaped Ba ferrite fine particles is coated with zirconium hydroxide and/or oxide, the effects of the present invention can be obtained. Since there is no plate-like Ba
It is believed that this is due to the solid solution of zirconium near the particle surface of the Ferrai Hit particles.

尚、本発明者は、後出の比較例2に示す通り、Baイオ
ンを含むアルカリ性水酸化鉄(2)懸濁液を水熱処理す
るにあたり、ジルコニウムを添加する方法による場合に
は、ジルコニウムとBa分との反応が生起して、Ba3
ZrzO:+微粒子が生成され、一方、Fe成分は、B
a分と反応することなくヘマタイトとして生成されるこ
とをVf1認している。
In addition, as shown in Comparative Example 2 below, the present inventor has discovered that when using a method of adding zirconium when hydrothermally treating an alkaline iron hydroxide (2) suspension containing Ba ions, zirconium and Ba A reaction occurs with Ba3
ZrzO: + fine particles are generated, while the Fe component is B
Vf1 has confirmed that it is produced as hematite without reacting with a component.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明における出発原料としての板状8aフ工ライト微
粒子とは、板状Ba(1・nFezos (4≦n≦8
)微粒子及びこれらに前述した周知の抗磁力低減剤を添
加したものをいい、水熱合成法により水溶液中から生成
した板状Baフェライト微粒子はもちろん、これを加熱
焼成したもの、水溶液中からBaイオンとFeイオンと
を沈澱させ、該沈澱物を加熱焼成する所謂共沈法により
得られた板状Baフェライl−微粒子及びBaフェライ
トの成分原料とガラス形成物質とを混合、溶融した後、
該溶融物を急速冷却する所謂ガラス溶融法により得られ
た板状Baフェライト微粒子のいずれをも用いることが
できる。
The plate-shaped 8a fluorite fine particles as the starting material in the present invention are plate-shaped Ba(1·nFezos (4≦n≦8
) fine particles and those to which the well-known coercive force reducing agent mentioned above is added.In addition to plate-shaped Ba ferrite fine particles produced from an aqueous solution by hydrothermal synthesis, Ba ferrite particles produced by heating and calcining these, and Ba ions from an aqueous solution. After mixing and melting plate-shaped Ba ferrite fine particles obtained by a so-called co-precipitation method in which Fe ions and Fe ions are precipitated and the precipitate is heated and calcined, a component raw material of Ba ferrite and a glass forming substance are mixed and melted.
Any plate-shaped Ba ferrite fine particles obtained by the so-called glass melting method in which the melt is rapidly cooled can be used.

本発明におけるジルコニウムの水酸化物の沈着は、板状
Baフェライト微粒子をジルコニウムの水酸化物を含む
水溶液中に懸濁させればよい。
In the present invention, zirconium hydroxide can be deposited by suspending plate-shaped Ba ferrite fine particles in an aqueous solution containing zirconium hydroxide.

本発明におけるジルコニウムの水酸化物の沈着量は、板
状Baフェライト微粒子粉末に対しZr換算で0.01
〜10.0重量%である。0.01重量%以下である場
合には、本発明の目的とする板状Baフェライトa粒子
粉末を得ることができない。10.0重量%以上である
場合には、磁化値が小さくなり、磁気記録用磁性粒子粉
末として好ましくない。得られる板状Baフェライト微
粒子粉末の磁化値を考慮すれば0.01〜6.0重量%
が好ましい。
The amount of zirconium hydroxide deposited in the present invention is 0.01 in terms of Zr relative to the plate-shaped Ba ferrite fine particle powder.
~10.0% by weight. If the amount is 0.01% by weight or less, it is impossible to obtain the plate-shaped Ba ferrite a particle powder which is the object of the present invention. If it is 10.0% by weight or more, the magnetization value becomes small, which is not preferable as magnetic particles for magnetic recording. Considering the magnetization value of the obtained plate-shaped Ba ferrite fine particle powder, it is 0.01 to 6.0% by weight.
is preferred.

本発明における加熱焼成温度は、600〜1000℃で
ある。600℃以下である場合には、板状Baフェライ
ト粒子の粒子表面近傍へのジルコニウムの固溶が十分で
はない。1000′cJN上である場合には、粒子及び
粒子相互間の焼結が顕著となり、比表面積の大きい板状
Baフェライト微粒子を得ることができない。
The heating and firing temperature in the present invention is 600 to 1000°C. If the temperature is 600° C. or lower, zirconium is not sufficiently dissolved in the vicinity of the particle surface of the plate-shaped Ba ferrite particles. If it is above 1000'cJN, sintering between particles and particles becomes significant, making it impossible to obtain plate-shaped Ba ferrite fine particles with a large specific surface area.

本発明における加熱焼成時には、必要により周知の融剤
を存在させることができ、この場合には、より好ましい
磁気特性及び粉体特性を有する板状Baフェライト微粒
子粉末を得ることができる。融剤としては、例えば、ア
ルカリ金属、アルカリ土類金属のハロゲン化物及び硫酸
塩等の一種又は二種以上を用いることができる。
During heating and firing in the present invention, a well-known fluxing agent may be present if necessary, and in this case, a plate-shaped Ba ferrite fine particle powder having more preferable magnetic properties and powder properties can be obtained. As the flux, for example, one or more of halides and sulfates of alkali metals and alkaline earth metals can be used.

本発明における加熱焼成物中のジルコニウム量は、Zr
換算で0.01〜10.0重量%である。0.01重量
%以下である場合には、本発明の目的を十分達成するこ
とができない。10.0重量%以上である場合には、磁
化値が小さくなり、磁気記録用磁性粒子粉末として好ま
しくない。
The amount of zirconium in the heated and fired product in the present invention is Zr
It is 0.01 to 10.0% by weight in terms of weight. If it is less than 0.01% by weight, the object of the present invention cannot be fully achieved. If it is 10.0% by weight or more, the magnetization value becomes small, which is not preferable as magnetic particles for magnetic recording.

尚、本発明においては、前述した通り、微量のBa3Z
rzOJ粒子が分離生成されるが、これらは、後出の実
施例に示される通り、得られる板状Baフェライト微粒
子粉末の磁気特性、粉体特性に何ら悪影響を及ぼずもの
ではない。
In addition, in the present invention, as mentioned above, a trace amount of Ba3Z
Although rzOJ particles are separated and produced, these do not have any adverse effect on the magnetic properties and powder properties of the obtained plate-shaped Ba ferrite fine particle powder, as shown in the examples below.

〔実施例〕〔Example〕

次に、実施例及び比較例により本発明を説明する。 Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における粒子の平均径は
、電子顕微鏡写真により測定した値であり、比表面積は
、BET法により測定した値である。また、磁化値及び
抗磁力は粉末状態で1.0 KOeの磁場において測定
したものである。
In addition, the average diameter of particles in the following Examples and Comparative Examples is a value measured by electron micrograph, and the specific surface area is a value measured by BET method. Further, the magnetization value and coercive force were measured in a powder state in a magnetic field of 1.0 KOe.

実施例1 水熱合成法により、Feに対し9.52モル%のBa、
8.57モル%のCo及び2.86モル%のTiを含有
する板状Baフェライト微粒子を得た。
Example 1 By a hydrothermal synthesis method, 9.52 mol% of Ba, based on Fe,
Platy Ba ferrite fine particles containing 8.57 mol% Co and 2.86 mol% Ti were obtained.

得られた微粒子100gを0.002 molのZr0
CIz水溶液中に分散混合し、p114において粒子表
面にジルコニウムの水酸化物(Zr換算で0.2重量%
に該当する。)を沈澱させた後、F別、乾燥した。
100 g of the obtained fine particles were mixed with 0.002 mol of Zr0.
Dispersed and mixed in a CIz aqueous solution, and in p114, zirconium hydroxide (0.2% by weight in terms of Zr) was added to the particle surface.
Applies to. ) was precipitated, separated by F and dried.

次いで、この乾燥粒子粉末50gとNa1l 50gと
を混合した後、800℃において1.5時間加熱焼成し
た。
Next, 50 g of this dry particle powder and 50 g of Na1 were mixed and then heated and calcined at 800° C. for 1.5 hours.

加熱焼成して得られた微粒子は、平均径0.08μmで
あって、比表面積が48m/gであり、磁性は抗磁ノ月
1cが9700e、磁化値が55.8emu/gであっ
た。
The fine particles obtained by heating and firing had an average diameter of 0.08 μm, a specific surface area of 48 m/g, a magnetism of 9700e for antimagnetic magnet 1c, and a magnetization value of 55.8 emu/g.

また、ジルコニウム量は、螢光X線分析の結果、0.2
重量%であって、水可溶性Ba分は化学分析の結果、8
0pplnであった。
In addition, the amount of zirconium was determined to be 0.2 as a result of fluorescent X-ray analysis.
As a result of chemical analysis, the water-soluble Ba content is 8% by weight.
It was 0 ppln.

この微粒子粉末は、図1に示すX線回折に示す通り、板
状8aフ工ライト微粒子粉末中に微量のBaJrzO3
が混在していた。図1中、ピークAはBaフェライI・
、ビークBはBa3Zr203である。
As shown in the X-ray diffraction diagram shown in FIG.
were mixed. In Figure 1, peak A is Ba ferrite I.
, beak B is Ba3Zr203.

尚、ジルコニウムの水酸化物を沈着させなかった以外は
、上記と同様にして得られたCO及びTiを含有した板
状Baフェライト微粒子は、平均径が0.15μmであ
って、比表面積が18nr/gであり、磁性は、抗磁力
が121.00e 、磁化値が54.4emu/gであ
った。
Incidentally, the plate-shaped Ba ferrite fine particles containing CO and Ti obtained in the same manner as above except that zirconium hydroxide was not deposited had an average diameter of 0.15 μm and a specific surface area of 18 nr. /g, and the coercive force was 121.00e and the magnetization value was 54.4 emu/g.

実施例2 水熱合成法により、Feに対し10.0モル%のBaを
含有する板状Baフェライ)1粒子を得た。
Example 2 One plate-shaped Ba ferrite containing 10.0 mol % of Ba based on Fe was obtained by a hydrothermal synthesis method.

得られた微粒子100gを0.004molのZrO3
O4水溶液中に分散混合し、pl+ 6.0において粒
子表面にジルコニウムの水酸化物(Zr換算で0.4重
量%に該当する。)を沈澱させた後、炉別、乾燥し、次
いで750℃において1.5時間加熱焼成した。
0.004 mol of ZrO3 was added to 100 g of the obtained fine particles.
After dispersing and mixing in an O4 aqueous solution and precipitating zirconium hydroxide (corresponding to 0.4% by weight in terms of Zr) on the particle surface at pl+ 6.0, it was separated in an oven, dried, and then heated at 750°C. It was heated and baked for 1.5 hours.

加熱焼成して得られた微粒子は、平均径0.2μmであ
って比表面積が38%/gで、磁性は抗磁力Heが11
500e 、磁化値が53.2emu/gであった。ま
た、ジルコニウム固溶量は、螢光X線分析の結果、0.
495ppmであった。この微粒子粉末は、X線回折の
結果、板状Baフェライト微粒子粉末中に微量のBaJ
rz(hが混在していた。
The fine particles obtained by heating and firing have an average diameter of 0.2 μm, a specific surface area of 38%/g, and a coercive force He of 11%.
500e, and the magnetization value was 53.2 emu/g. Furthermore, the amount of zirconium in solid solution was determined to be 0.0 as a result of fluorescent X-ray analysis.
It was 495 ppm. As a result of X-ray diffraction, it was found that this fine particle powder contained a trace amount of BaJ in the plate-shaped Ba ferrite fine particle powder.
rz(h was mixed.

尚、ジルコニウムの水酸化物を沈着させなかった以外は
、上記と同様にして得られた板状Baフェライト微粒子
は、平均径0.2μmであって、比表面積17rrf/
gであり、磁性は、抗磁力が19800e、磁化値が5
3.Oemu/gであった・実施例3 実施例1と同様にして水熱合成法により得られたFeに
対し9.52モル%のBa、 9.1モル%のCOを含
有する板状Baフェライトa粒子100gを0.16m
olのZr0(NO3)z水溶液中に分散混合し、95
℃において1時間加水分解することにより粒子表面にジ
ルコニウムの水酸化物を沈着させた後、炉別、乾燥し、
次いで、800℃において1.0時間加熱焼成した。
Incidentally, the plate-shaped Ba ferrite fine particles obtained in the same manner as above except that zirconium hydroxide was not deposited had an average diameter of 0.2 μm and a specific surface area of 17rrf/
g, and the magnetism has a coercive force of 19800e and a magnetization value of 5.
3. Oemu/g.Example 3 Platy Ba ferrite containing 9.52 mol% Ba and 9.1 mol% CO based on Fe obtained by the hydrothermal synthesis method in the same manner as in Example 1. 100g of a particles 0.16m
Disperse and mix in Zr0(NO3)z aqueous solution of 95
After depositing zirconium hydroxide on the particle surface by hydrolysis at ℃ for 1 hour, it was separated in an oven and dried.
Then, it was heated and baked at 800° C. for 1.0 hour.

加熱焼成して得られた微粒子は、平均径0.05μmで
あって、比表面積67rrf/gであり、磁性は、抗磁
ノ月1cが5950e、磁化値が54.5emu/gで
あった。また、ジルコニウム固溶量は、螢光X線分析の
結果、1.4重量%であって、水可溶性Ba分は化学分
析の結果、85ppmであった。この微粒子粉末は、X
線回折の結果、板状Baフェライト微粒子粉末中に微量
のBa3Zr203が混在していた。
The fine particles obtained by heating and firing had an average diameter of 0.05 μm, a specific surface area of 67 rrf/g, and a magnetism of 5950e and a magnetization value of 54.5 emu/g. Further, the amount of solid solution of zirconium was 1.4% by weight as a result of fluorescent X-ray analysis, and the water-soluble Ba content was 85 ppm as a result of chemical analysis. This fine particle powder is
As a result of line diffraction, a trace amount of Ba3Zr203 was found to be mixed in the plate-shaped Ba ferrite fine particle powder.

尚、ジルコニウムの水酸化物を沈着させなかった以外は
、上記と同様にして得られた板状BaフェライHk粒子
は、平均径0.08μmであって、比表面積19イ/g
であり、磁性は、抗磁力が15800e、磁化値が54
.Oemu/gであった。
The plate-shaped Ba ferrite Hk particles obtained in the same manner as above except that zirconium hydroxide was not deposited had an average diameter of 0.08 μm and a specific surface area of 19 i/g.
As for magnetism, the coercive force is 15800e and the magnetization value is 54.
.. It was Oemu/g.

実施例4 水熱合成法により、Feに対し10.0モル%のBa。Example 4 10.0 mol% Ba based on Fe by hydrothermal synthesis.

9モル%のCo及び2モル%のTiを含有する板状Ba
フェライト微粒子を得た。
Platy Ba containing 9 mol% Co and 2 mol% Ti
Ferrite fine particles were obtained.

得られた微粒子100gを0.04molのZrOCl
2水溶液中に分散混合し、pH4において粒子表面にジ
ルコニウムの水酸化物(Zr換算で4重量%に該当する
。)を沈澱させた後、炉別、乾燥した。
100 g of the obtained fine particles were mixed with 0.04 mol of ZrOCl.
After dispersing and mixing in an aqueous solution of zirconium hydroxide (corresponding to 4% by weight in terms of Zr) on the particle surface at pH 4, the particles were separated in an oven and dried.

次いで、この乾燥粒子粉末を800℃において1.5時
間加熱焼成した。
Next, this dry particle powder was heated and calcined at 800° C. for 1.5 hours.

加熱焼成して得られた微粒子は、平均径0.08μmで
あって比表面積が65d/gであり、磁性は抗磁力He
が7300e、磁化値が50.3emu/gであった。
The fine particles obtained by heating and firing have an average diameter of 0.08 μm, a specific surface area of 65 d/g, and magnetism due to the coercive force of He.
was 7300e, and the magnetization value was 50.3 emu/g.

また、ジルコニウム固溶量は、螢光X線分析の結果、4
.1重量%であって、水可溶性Ba分は化学分析の結果
、58ppmであった。
In addition, the amount of zirconium solid solution was determined by fluorescent X-ray analysis to be 4.
.. 1% by weight, and the water-soluble Ba content was 58 ppm as a result of chemical analysis.

尚、ジルコニウムの水酸化物を沈着させなかった以外は
、上記と同様にして得られたCo及びTiを含有した板
状Baフェライト微粒子は、平均径が0.15μmであ
って、比表面積がLM/gであり、磁性は、抗磁力が1
1300e、磁化値が53.5emu/gであった。
Incidentally, the plate-shaped Ba ferrite fine particles containing Co and Ti obtained in the same manner as above except that zirconium hydroxide was not deposited had an average diameter of 0.15 μm and a specific surface area of LM. /g, and the magnetism is such that the coercive force is 1
1300e, and the magnetization value was 53.5 emu/g.

比較例I Go及びTiを含有する板状Baフェライト微粒子にジ
ルコニウムの水酸化物を沈着させず、且つ、加熱焼成温
度を920℃とした以外は実施例1と同様にして板状B
aフェライト微粒子を得た。
Comparative Example I Platy B was prepared in the same manner as in Example 1, except that zirconium hydroxide was not deposited on the plate-shaped Ba ferrite fine particles containing Go and Ti, and the firing temperature was 920°C.
a. Ferrite fine particles were obtained.

得られた板状Baフェライト微粒子のBET比表面積は
18n?/gであり、加熱焼成前の板状BaフェライH
k粒子のBET比表面積85 m /Hに比べ大幅に低
下しており、粒子及び粒子相互間で焼結が生起したもの
であった。
The BET specific surface area of the obtained plate-shaped Ba ferrite particles is 18n? /g, and the plate-shaped Ba ferrite H before heating and firing
This was significantly lower than the BET specific surface area of the k particles, 85 m 2 /H, indicating that sintering had occurred between the particles and between the particles.

また、磁性は、抗磁力Heが13500e 、磁化値が
56、Oemu/gであった。
Regarding magnetism, the coercive force He was 13500e, the magnetization value was 56, and Oemu/g.

比較例2 Fe(NOs)30.7mol 、Co(NO3)z 
0.05mol、Zr(NO+)zO,05mol及び
Ba(OH) z  ・811zO0,078mol 
とNa0tl 8.4mol とのアルカリ性懸濁液を
オートクレーブ中で250℃まで加熱し、機械的に攪拌
しつつこの温度に3時間保持し、沈澱物を生成させた。
Comparative example 2 Fe(NOs) 30.7 mol, Co(NO3)z
0.05mol, Zr(NO+)zO,05mol and Ba(OH)z・811zO0,078mol
An alkaline suspension of 8.4 mol of Na0tl was heated in an autoclave to 250°C and maintained at this temperature for 3 hours with mechanical stirring to form a precipitate.

室温にまで冷却後、沈澱をろ別し、十分水洗した後、乾
燥した。
After cooling to room temperature, the precipitate was filtered off, thoroughly washed with water, and then dried.

得られた粒子粉末は、図2に示すX線回折の結果、主と
してRa3Zrzo、及びα−PezOiが生成混在し
ており、Baフェライトのピークは認められなかった。
As a result of the X-ray diffraction shown in FIG. 2, the obtained particles were mainly composed of Ra3Zrzo and α-PezOi, and no Ba ferrite peak was observed.

図2中、ピークAは[1azZrzOt、ピークBはα
−Fe203であった。
In FIG. 2, peak A is [1azZrzOt, peak B is α
-Fe203.

比較例3 ジルコニウムの水酸化物を沈着させなかった以外は、実
施例2と同様にして得られた板状Baフェライト微粒子
100gを0.004molのZr05O4を含む水溶
液中に分散混合し、1116.0において粒子表面にジ
ルコニウムの水酸化物を沈着させた後、炉別し、150
℃で乾燥した。
Comparative Example 3 100 g of plate-shaped Ba ferrite fine particles obtained in the same manner as in Example 2, except that zirconium hydroxide was not deposited, were dispersed and mixed in an aqueous solution containing 0.004 mol of Zr05O4. After depositing zirconium hydroxide on the particle surface, it was separated in a furnace and heated at 150
Dry at °C.

得られた板状Baフェライ+−m粒子は、平均径0.0
2μmであり、磁性は、抗磁力Hcが20200e 、
磁化値が52.Oemu/gであった。
The obtained plate-shaped Ba ferrite +-m particles have an average diameter of 0.0
2 μm, and the magnetism has a coercive force Hc of 20200e,
The magnetization value is 52. It was Oemu/g.

比較例4 150℃で乾燥する代わりに500℃で焼成した以外は
、比較例3と同様にして板状Baフェライトを得た。
Comparative Example 4 A plate-shaped Ba ferrite was obtained in the same manner as Comparative Example 3, except that it was fired at 500°C instead of drying at 150°C.

得られた板状Baフェライト微粒子は、平均径0.2μ
mであって比表面積が18rrr/gであり、磁性は、
抗磁力Heが19500e 、磁化値が53.Oemu
/gであった。
The obtained plate-shaped Ba ferrite fine particles have an average diameter of 0.2μ
m, the specific surface area is 18rrr/g, and the magnetism is
Coercive force He is 19500e, magnetization value is 53. Oemu
/g.

〔効  果〕〔effect〕

本発明に係る板状Baフェライト粒子粉末は、前出実施
例に示した通り、粒子表面にジルコニウムが固溶してい
る平均径0.05〜0.3μm、比表面積が30 rd
 /g以上を有する板状微粒子であり、10KOeの磁
場における磁化値が大きく、抗磁力Hcが300〜15
000eであって、しかも水可溶性Ba分の含有量が可
及的に少ないものであるから、磁気記録用磁性材料、特
に、垂直磁気記録用材料として最適である。
As shown in the previous example, the plate-shaped Ba ferrite particles according to the present invention have an average diameter of 0.05 to 0.3 μm and a specific surface area of 30 rd, with zirconium solidly dissolved on the particle surface.
/g or more, has a large magnetization value in a magnetic field of 10 KOe, and has a coercive force Hc of 300 to 15
000e and the content of water-soluble Ba is as small as possible, so it is optimal as a magnetic material for magnetic recording, particularly as a material for perpendicular magnetic recording.

【図面の簡単な説明】[Brief explanation of the drawing]

図1及び図2は、いずれもX線回折図であり、図1は実
施例1において得られた粒子粉末、図2は比較例2にお
いて得られた粒子粉末である。 図1中、ピークAはBaフェライト、ピークBはBaa
Zr207である。図2中、ピークAはBaJr207
、ピークBはα−Fe203である。
1 and 2 are X-ray diffraction diagrams, FIG. 1 shows the powder particles obtained in Example 1, and FIG. 2 shows the powder particles obtained in Comparative Example 2. In Figure 1, peak A is Ba ferrite and peak B is Ba ferrite.
It is Zr207. In Figure 2, peak A is BaJr207
, peak B is α-Fe203.

Claims (2)

【特許請求の範囲】[Claims] (1)粒子表面近傍にジルコニウムが固溶している板状
Baフェライト微粒子からなる磁気記録用板状Baフェ
ライト微粒子粉末。
(1) A plate-shaped Ba ferrite fine particle powder for magnetic recording comprising plate-shaped Ba ferrite fine particles in which zirconium is solidly dissolved near the particle surface.
(2)板状Baフェライト微粒子をジルコニウムの水酸
化物を含む水溶液中に懸濁させ、粒子表面にジルコニウ
ムの水酸化物が沈着している板状Baフェライト微粒子
を得、該粒子をろ別、乾燥し、次いで、600〜100
0℃の温度範囲で加熱焼成することにより、前記板状B
aフェライト微粒子の粒子表面近傍にジルコニウムを固
溶させることを特徴とする磁気記録用板状Baフェライ
ト微粒子粉末の製造法。
(2) Platy Ba ferrite fine particles are suspended in an aqueous solution containing zirconium hydroxide to obtain plate-like Ba ferrite fine particles having zirconium hydroxide deposited on the particle surface, and the particles are filtered. Dry, then 600-100
By heating and firing in a temperature range of 0°C, the plate-like B
A method for producing a plate-shaped Ba ferrite fine particle powder for magnetic recording, characterized by dissolving zirconium in the vicinity of the particle surface of the ferrite fine particles.
JP61216782A 1986-09-12 1986-09-12 Plate-shaped Ba ferrite fine particle powder for magnetic recording and method for producing the same Expired - Fee Related JPH0761874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216782A JPH0761874B2 (en) 1986-09-12 1986-09-12 Plate-shaped Ba ferrite fine particle powder for magnetic recording and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216782A JPH0761874B2 (en) 1986-09-12 1986-09-12 Plate-shaped Ba ferrite fine particle powder for magnetic recording and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6369717A true JPS6369717A (en) 1988-03-29
JPH0761874B2 JPH0761874B2 (en) 1995-07-05

Family

ID=16693803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216782A Expired - Fee Related JPH0761874B2 (en) 1986-09-12 1986-09-12 Plate-shaped Ba ferrite fine particle powder for magnetic recording and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0761874B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248104A (en) * 1987-04-03 1988-10-14 Ishihara Sangyo Kaisha Ltd Manufacture of ferromagnetic fine powder for magnetic recording
JPH02116633A (en) * 1988-10-24 1990-05-01 Toda Kogyo Corp Powder of plate-shaped fine particle of oxide containing ba and fe as primary component and preparation of the powder
WO2020175326A1 (en) * 2019-02-25 2020-09-03 パウダーテック株式会社 Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856302A (en) * 1981-09-30 1983-04-04 Toshiba Corp Manufacture of magnetic powder used for high density magnetic recording
JPS5860506A (en) * 1981-10-07 1983-04-11 Ishihara Sangyo Kaisha Ltd Magnetic powder with improved dispersibility
JPS6163531A (en) * 1984-09-04 1986-04-01 Agency Of Ind Science & Technol Iron oxide pigment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856302A (en) * 1981-09-30 1983-04-04 Toshiba Corp Manufacture of magnetic powder used for high density magnetic recording
JPS5860506A (en) * 1981-10-07 1983-04-11 Ishihara Sangyo Kaisha Ltd Magnetic powder with improved dispersibility
JPS6163531A (en) * 1984-09-04 1986-04-01 Agency Of Ind Science & Technol Iron oxide pigment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248104A (en) * 1987-04-03 1988-10-14 Ishihara Sangyo Kaisha Ltd Manufacture of ferromagnetic fine powder for magnetic recording
JPH02116633A (en) * 1988-10-24 1990-05-01 Toda Kogyo Corp Powder of plate-shaped fine particle of oxide containing ba and fe as primary component and preparation of the powder
WO2020175326A1 (en) * 2019-02-25 2020-09-03 パウダーテック株式会社 Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
WO2020175336A1 (en) * 2019-02-25 2020-09-03 パウダーテック株式会社 Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP6757872B1 (en) * 2019-02-25 2020-09-23 パウダーテック株式会社 Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP6766310B1 (en) * 2019-02-25 2020-10-14 パウダーテック株式会社 Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer

Also Published As

Publication number Publication date
JPH0761874B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US4202871A (en) Production of acicular ferric oxide
JPS6113362B2 (en)
KR900000429B1 (en) Barium ferrite particles for magnetic recording media
EP0377933B1 (en) Magnetic iron oxide particles and method of producing the same
KR900002818B1 (en) Process for production of plate-like barium fenite pasticles for magnetic recording
EP0150580A1 (en) Production of barium ferrite particles
JPS6369717A (en) Plate ba ferrite particulate powder for magnetic recording and its production
JPH0359007B2 (en)
JPH01274403A (en) Fine magnetic hexaferrite pigment of precipitated magnetite containing potassiom, its manufacture and its application
EP0515748B1 (en) Process for producing acicular goethite particles and acicular magnetic iron oxide particles
JP3087778B2 (en) Method for producing acicular goethite particle powder
JPS6313934B2 (en)
JPS62176918A (en) Fine platy barium ferrite powder for magnetic recording and its preparation
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JPS6334608B2 (en)
JPS632813A (en) Production of particulate powder of lamellate ba ferrite for magnetic recording
JP2945460B2 (en) Manufacturing method of granular magnetite particle powder
JPH0524869B2 (en)
JPH0524868B2 (en)
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPS6310094B2 (en)
JPH0142894B2 (en)
JPH0471014B2 (en)
JPS63156303A (en) Manufacture of planar magnetoplumbite type ferrite fine powder for magnetic recording
JPS61295236A (en) Production of particular magnet plumbite-type ferrite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees