JPS6334608B2 - - Google Patents

Info

Publication number
JPS6334608B2
JPS6334608B2 JP56114107A JP11410781A JPS6334608B2 JP S6334608 B2 JPS6334608 B2 JP S6334608B2 JP 56114107 A JP56114107 A JP 56114107A JP 11410781 A JP11410781 A JP 11410781A JP S6334608 B2 JPS6334608 B2 JP S6334608B2
Authority
JP
Japan
Prior art keywords
feooh
reaction
crystals
alkali
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56114107A
Other languages
Japanese (ja)
Other versions
JPS5825202A (en
Inventor
Kazuo Nakada
Tsuneo Ishikawa
Taro Amamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP56114107A priority Critical patent/JPS5825202A/en
Publication of JPS5825202A publication Critical patent/JPS5825202A/en
Publication of JPS6334608B2 publication Critical patent/JPS6334608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70652Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3
    • G11B5/70663Preparation processes specially adapted therefor, e.g. using stabilising agents

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された針状α−FeOOHの製造方
法に関する。本方法により得られるものは、粒度
分布がシヤープで、粒子形状は枝分れが少なくか
つ良好な軸比を有する針状α−FeOOHであり、
このα−FeOOHより誘導したγ−Fe2O3、すな
わち、このα−FeOOHを通常の方法により脱
水、還元、酸化して得られるγ−Fe2O3は、良好
な磁気特性、例えば高い保磁力、良好な飽和磁
化、角形比を有し、これを用いて製作した磁気テ
ープは良好は保磁力、角形比、残留磁束密度、配
向性、反転磁界分布、電磁変換特性などを有す
る。 α−FeOOHの製法の一つとして、第1鉄塩溶
液の一部をアルカリなどで中和した後酸化する方
法がよく知られていおり、その際、リン酸イオン
を存在させることも試みられてきている。例え
ば、特公昭39−25546号公報には、水酸化第1鉄
の沈澱とその酸化をリン酸塩イオンの存在下に50
℃までで行なつて核晶を生成させ、この核晶懸濁
液中に金属鉄と酸化剤を添加して核晶粒子をその
全重量の6〜30倍に達するまで成長させ、ややず
んぐりした短柱状のα−FeOOHを得ることが記
載され、また、特公昭55−3295号公報には、リン
酸又はその水溶性塩、α−FeOOHの核晶、塩基
性凝析剤又はプロトン受容体の存在下に、第1鉄
塩溶液を酸化することによりα−FeOOHを得る
ことが記載されている。 しかしながら、前記の方法で得られたα−
FeOOHは、粒度分布の幅が広かつたり、形状性
のよいものが得にくかつたりして、これにより誘
導したγ−Fe2O3及びこれより製作した磁気テー
プは磁気特性において必ずしも満足すべきもので
ない。 本発明の方法は、前記の従来技術と比べ(1)核晶
生成反応は、一定のリン酸イオンの存在下、アル
カリをFe5〜20g/沈澱させる量加え、一定の
反応温度、反応時間で行い、(2)核晶成長反応は、
反応液のPHを3〜6に保ち、核の成長を1.5〜3.5
倍に制御する、ことにおいて異なつている。得ら
れるα−FeOOHは粒度分布幅が小さく、枝分れ
が少くて軸比の大きい針状の粒子であり、これよ
り誘導したγ−Fe2O3は良好な磁気特性を備えて
いる。 本発明は、第1鉄塩水溶液をアルカリで部分中
和してFe分の一部を沈澱させた後酸化してα−
FeOOH核晶を生成させ、次いで該液をアルカリ
で中和しつつ酸化して該核晶を成長させ針状α−
FeOOHを製造する方法であつて、前記核晶生成
反応は、生成核晶量に対しP換算で0.05〜0.6重
量%のリン酸又はリン酸塩の存在下に、アルカリ
としてFe5〜20g/を沈澱させる量のアルカリ
金属又はアルカリ土類金属の水酸化物、酸化物又
は炭酸塩を用い、反応温度50〜70℃、反応時間10
〜100分で行い、前記核晶成長反応は、反応液の
PHを3〜6に保ち、該核晶が重量比で1.5〜3.5倍
に成長するように行なうことを特徴とする、磁気
記録材料用針状α−FeOOHの製造方法である。 使用する第1鉄塩溶液としては、硫酸第1鉄、
硝酸第1鉄、塩化第1鉄などの鉱酸の第1鉄塩溶
液などがあり、工業的には硫酸第1鉄が好まし
い。アルカリ金属或はアルカリ土類金属の水酸化
物、酸化物又は炭酸塩としては、水酸化ナトリウ
ム、水酸化カリウム、酸化ナトリウム、炭酸カル
シウムなどが挙げられ、工業的には水酸化ナトリ
ウム、水酸化カリウムが好ましい。リン酸又はリ
ン酸塩としては、オルトリン酸、メタリン酸、ポ
リリン酸、などのリン酸或はこれらとアルカリ金
属、アンモニウムなどとの水溶性塩などがあり、
普通はオルトリン酸又はその塩が用いられる。酸
化剤は、空気、酸素、その他の酸化剤などが挙げ
られるが一般に空気が好適である。 本発明方法においては、先づ第1鉄塩溶液をア
ルカリで部分中和し、酸化して、液中のFe分の
一部をα−FeOOHの核晶にするが、その際母液
中にリン酸又はリン酸塩を存在させる。第1鉄塩
溶液の濃度は普通30g/〜100g/であり、
添加するリン酸の量は生成するα−FeOOH核晶
沈澱物に対してP換算量で0.05〜0.6重量%、望
ましくは0.1〜0.4重量%とする。このPの量が上
記範囲より少なすぎると添加効果が発現せず粒度
分布が広くなつたり枝分れが生じたりし、一方多
すぎると針状粒子の軸比が低下して短柱状とな
る。 アルカリの添加量は、母液中のFeイオンを5
〜25g/望ましくは10〜15g/だけ沈澱させ
るに必要な量である。この生成核晶濃度が上記範
囲より低すぎると製造能率が低下して工業的(経
済的)実施に適さなくなり、かつまたイガ栗状の
好しくない形状のα−FeOOHが生成し、一方高
すぎると母液粘度が高くなり、均一な酸化反応を
妨げ、粒度分布がシヤープでなくなり、ひいては
これから誘導されるγ−Fe2O3の磁気特性の低下
につながる。 この核晶生成段階では反応温度を50℃以上にす
ることも重要である。通常水系で反応が行なわれ
るので、50〜100℃、望ましくは55〜70℃とする。
この温度が上記範囲より低すぎると反応時間が長
くなり、粒度分布幅がシヤープでなくなる。もつ
とも、50℃以上の反応温度においては、粒状のマ
グネタイトが生成しやすいことが知られている
が、本方法では前述のようにリン酸イオンが存在
しているため、マグネタイトの生成は恐れはな
く、高純度のα−FeOOHを得ることができる。
PHは、普通3〜8の間に保たれる。 この核晶生成において、γ−FeOOHの混入を
防止する上からも中和沈澱率を70%以下とするの
がよい。また、この生成反応は、なるべく短時間
に終らせるのがよく、例えば10〜80分程度になる
ように調節するのがよい。得られる核晶は、
BET比表面積50〜70m2/g程度のものであるこ
とが望ましい。 上述の核晶生成反応の終つた液は、α−
FeOOH核晶の懸濁した第1鉄塩溶液であり、添
加されたリン酸又はリン酸塩は、核晶中に取りこ
まれたり、その表面に強く吸着されたりして、遊
離した状態では液中に残存しないのが普通であ
る。本発明方法では、次いでこの液をそのまま
で、すなわち遊離のリン酸又はリン酸塩が実質的
に存在しない条件下で、アルカリを添加しながら
酸化して、核晶を成長させ、所望のα−FeOOH
を得る。 この場合に、ごく微量の遊離リン酸が存在する
ことは許容されるが、その量は生成するα−
FeOOH全量基準P換算量で0.045重量%以下に制
限される。このPの量が上記範囲を超えると軸比
が大きくならず、所望の針状α−FeOOHが得ら
れなくなる。 この反応も、前記核晶生成時と同様に50℃以上
の温度で行なうのがよく、PHを3〜6のほぼ一定
の値に維持するように前記と同様のアルカリを加
えながら、酸化する。核晶の成長速度は、製品の
粒度分布の幅を小さくし、かつ枝分れの少い針状
粒子を得るために、5〜15g//時程度に調節
するのが望ましい。また、予め母液の濃度、核晶
の生成量を調節するか、核晶生成後に第1鉄塩を
補給してから成長反応を行なうか、成長反応を適
当に打ち切るかして、α−FeOOH核晶を該核晶
の重量による成長倍率が1.5〜3.5、望ましくは2
〜3になるようにする。この倍率が上記範囲より
低すぎると軸比が大きくならず、良好な針状のα
−FeOOHが得られなくなり、一方高すぎると粒
度分布幅が大きくなり、かつ粒子の枝分れも多く
なる。この工程では、生成するα−FeOOHの
BET比表面積が、例えば35〜45m2/gになるよ
うにするのが好ましい。 本発明方法によつて得られるα−FeOOHは、
粒度分布がシヤープで、枝分れが少なくかつ良好
な軸比を有するものであり、さらにこれにより誘
導されるγ−Fe2O3及びこれより製作した磁気テ
ープは良好な磁気特性を有するものである。 α−FeOOHは、通常の過、水洗、乾燥及び
粉砕を経て、α−FeOOH粉末として得られる。
このα−FeOOH粉末から通常の方法によりγ−
Fe2O3を得ることができる。すなわち、まず300
〜700℃の温度において空気中で脱水し、次いで
この脱水化物を300〜500℃の温度において水素又
は水蒸気を含む水素で還元してFe2O4を得、さら
にこのFe2O4を200〜400℃の温度において酸素又
は空気で酸化することによりγ−Fe2O3とするこ
とができる。γ−Fe2O3の磁気特性をさらに高め
る有効な手段として、例えば本発明方法によつて
得られたα−FeOOHに対して、脱水処理の前に
リン酸、リン酸塩、ケイ酸塩などを処理すること
が挙げられる。 以下実施例及び比較例によつて本発明を説明す
る。 実施例1〜2及び比較例1〜2 空気吹き込み管と撹拌器を備えた反応器に、
3800gのFeSO4を含む水溶液20を入れ、60℃に
昇温し、この温度を維持しながら、所定量のオル
トリン酸及びNaOH水溶液(濃度200g/)
2.15を撹拌下に加え(沈澱Fe15g/)、この
中へ100〜60/時間の速度で空気を吹き込み、
60℃で70分間反応させてα−FeOOH核晶を得
た。さらに120/時間の速度で空気を吹き込み
ながら、200g/の濃度のNaOH水溶液4.2を
徐々に加えてPH3.5〜5.5に維持、60℃で72時間反
応させ、核晶を約3倍に成長させた。 上記反応で得られたα−FeOOHについて、通
常の方法により軸比(L/w)を測定し、さらに
下記の方法により粒度分布(σL/)及び枝分
れ発生率について測定し、第1表の結果を得た。 粒度分布(σL/)の測定方法 よく分散させたα−FeOOHを試料とし、電子
顕微鏡により3000個以上の粒子の長軸粒子径を読
みとり、その算術平均軸長(μ)と標準偏差
σL(μ)を決め、下記の式に従つて粒度分布を求
める。 粒度分布=σL/ 枝分れの測定方法 粒度分布測定と同様な方法で、粒子の中に枝状
晶のあるものの個数ndと、総個数nを決め、下
記の式に従つて枝分れ率を求める。 枝分れ率(%)=nd/n×100
The present invention relates to an improved method for producing acicular α-FeOOH. The product obtained by this method is acicular α-FeOOH with a sharp particle size distribution, less branching, and a good axial ratio.
γ-Fe 2 O 3 derived from this α-FeOOH, that is, γ-Fe 2 O 3 obtained by dehydrating, reducing, and oxidizing this α-FeOOH by a conventional method, has good magnetic properties, such as high retention. It has good magnetic force, saturation magnetization, and squareness ratio, and magnetic tapes manufactured using it have good coercive force, squareness ratio, residual magnetic flux density, orientation, reversal magnetic field distribution, electromagnetic conversion characteristics, etc. One well-known method for producing α-FeOOH is to neutralize a portion of a ferrous salt solution with an alkali and then oxidize it. At that time, attempts have also been made to include phosphate ions. ing. For example, Japanese Patent Publication No. 39-25546 describes the precipitation of ferrous hydroxide and its oxidation in the presence of phosphate ions.
℃ to generate nucleated crystals, and add metallic iron and an oxidizing agent to this nucleic crystal suspension to grow the nucleated particles until they reach 6 to 30 times their total weight, producing slightly stubby particles. It is described that short columnar α-FeOOH can be obtained, and Japanese Patent Publication No. 55-3295 describes the use of phosphoric acid or its water-soluble salt, α-FeOOH nucleus crystals, basic coagulants, or proton acceptors. It is described that α-FeOOH is obtained by oxidizing a ferrous salt solution in the presence of ferrous salts. However, the α-
FeOOH has a wide particle size distribution and is difficult to obtain with good shape, so γ-Fe 2 O 3 derived from FeOOH and magnetic tapes made from it do not necessarily have satisfactory magnetic properties. Not a kimono. The method of the present invention is different from the prior art described above. (1) The nucleation reaction is carried out in the presence of a certain phosphate ion, by adding an alkali in an amount of Fe5 to 20 g/precipitate, and at a certain reaction temperature and reaction time. , (2) Nucleus crystal growth reaction is
Keep the PH of the reaction solution between 3 and 6 to prevent the growth of nuclei from 1.5 to 3.5.
They are different in that they have twice the control. The obtained α-FeOOH is acicular particles with a narrow particle size distribution, little branching, and a high axial ratio, and the γ-Fe 2 O 3 derived from this has good magnetic properties. In the present invention, a ferrous salt aqueous solution is partially neutralized with an alkali to precipitate a part of the Fe content, and then oxidized to form α-
FeOOH nucleus crystals are generated, and then the liquid is neutralized with alkali and oxidized to grow the nucleus crystals and form acicular α-
A method for producing FeOOH, wherein the nucleation reaction involves precipitating 5 to 20 g of Fe as an alkali in the presence of 0.05 to 0.6% by weight of phosphoric acid or phosphate salt in terms of P based on the amount of generated nucleic crystals. using an amount of alkali metal or alkaline earth metal hydroxide, oxide or carbonate, reaction temperature 50-70℃, reaction time 10
The nucleus crystal growth reaction is carried out for ~100 minutes, and the reaction solution is
This is a method for producing acicular α-FeOOH for magnetic recording materials, which is characterized in that the pH is maintained at 3 to 6, and the process is carried out so that the nucleus crystals grow 1.5 to 3.5 times in terms of weight ratio. The ferrous salt solutions used include ferrous sulfate,
Examples include ferrous salt solutions of mineral acids such as ferrous nitrate and ferrous chloride, and ferrous sulfate is preferred industrially. Examples of hydroxides, oxides or carbonates of alkali metals or alkaline earth metals include sodium hydroxide, potassium hydroxide, sodium oxide, calcium carbonate, etc. Industrially, sodium hydroxide, potassium hydroxide is preferred. Phosphoric acids or phosphates include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, and water-soluble salts of these with alkali metals, ammonium, etc.
Orthophosphoric acid or its salts are usually used. Examples of the oxidizing agent include air, oxygen, and other oxidizing agents, but air is generally preferred. In the method of the present invention, first, a ferrous salt solution is partially neutralized with an alkali and oxidized to convert a part of the Fe content in the solution into α-FeOOH nucleus crystals. An acid or phosphate is present. The concentration of ferrous salt solution is usually 30g/~100g/,
The amount of phosphoric acid added is 0.05 to 0.6% by weight, preferably 0.1 to 0.4% by weight in terms of P, based on the α-FeOOH nucleus precipitate produced. If the amount of P is too small than the above range, the addition effect will not be exhibited and the particle size distribution will become wide or branching will occur, while if it is too large, the axial ratio of the acicular particles will decrease and they will become short columnar. The amount of alkali added is approximately 5% Fe ion in the mother liquor.
The amount necessary to precipitate ~25g/preferably 10-15g/. If the concentration of the generated nuclei crystals is too low than the above range, the production efficiency will decrease and it will become unsuitable for industrial (economic) implementation, and α-FeOOH with an unfavorable burr-chestnut shape will be produced, and on the other hand, if it is too high. This increases the viscosity of the mother liquor, which prevents a uniform oxidation reaction and causes the particle size distribution to become unsharp, which in turn leads to a decrease in the magnetic properties of the γ-Fe 2 O 3 derived therefrom. In this nucleation stage, it is also important to keep the reaction temperature at 50°C or higher. Since the reaction is usually carried out in an aqueous system, the temperature is 50 to 100°C, preferably 55 to 70°C.
If this temperature is too lower than the above range, the reaction time will be long and the particle size distribution will not be sharp. However, it is known that granular magnetite is likely to be produced at reaction temperatures of 50°C or higher, but in this method, as mentioned above, there is no fear of magnetite being produced because phosphate ions are present. , high purity α-FeOOH can be obtained.
PH is usually kept between 3 and 8. In this nucleation, the neutralization precipitation rate is preferably 70% or less in order to prevent γ-FeOOH from being mixed. Further, this production reaction is preferably completed in as short a time as possible, for example, adjusted to about 10 to 80 minutes. The obtained nuclear crystal is
It is desirable that the BET specific surface area is about 50 to 70 m 2 /g. The liquid after the above-mentioned nucleation reaction is α-
It is a ferrous salt solution in which FeOOH nucleus crystals are suspended, and the added phosphoric acid or phosphate is incorporated into the nucleus crystals or strongly adsorbed to the surface of the nuclei crystals, and in the free state, it becomes liquid. It is normal that no residue remains inside. In the method of the present invention, this solution is then oxidized as it is, that is, under conditions in which free phosphoric acid or phosphate is substantially absent, while adding an alkali to grow nucleus crystals and obtain the desired α- FeOOH
get. In this case, the presence of very small amounts of free phosphoric acid is acceptable, but the amount is
It is limited to 0.045% by weight or less in terms of P based on the total amount of FeOOH. If the amount of P exceeds the above range, the axial ratio will not be large and the desired acicular α-FeOOH will not be obtained. This reaction is also preferably carried out at a temperature of 50° C. or higher, as in the case of nucleation crystal formation, and oxidation is carried out while adding the same alkali as above so as to maintain the pH at a substantially constant value of 3 to 6. The growth rate of the nucleus crystals is desirably adjusted to about 5 to 15 g/hour in order to narrow the width of the particle size distribution of the product and obtain acicular particles with less branching. In addition, α-FeOOH nuclei can be generated by adjusting the concentration of the mother liquor and the amount of nuclei crystals produced in advance, by replenishing ferrous salt after nucleation crystal formation, and then carrying out the growth reaction, or by appropriately aborting the growth reaction. The growth rate based on the weight of the nucleus crystal is 1.5 to 3.5, preferably 2.
~3. If this magnification is too low than the above range, the axial ratio will not be large and a good needle-like α
-FeOOH cannot be obtained; on the other hand, if it is too high, the particle size distribution width becomes large and the particles become branched. In this process, the generated α-FeOOH
It is preferable that the BET specific surface area is, for example, 35 to 45 m 2 /g. α-FeOOH obtained by the method of the present invention is
It has a sharp particle size distribution, less branching, and a good axial ratio, and furthermore, the γ-Fe 2 O 3 induced by this and the magnetic tape made from it have good magnetic properties. be. α-FeOOH is obtained as α-FeOOH powder through conventional filtering, water washing, drying and pulverization.
From this α-FeOOH powder, γ-
Fe 2 O 3 can be obtained. i.e. first 300
Dehydration in air at a temperature of ~700°C, then reduction of this dehydrate with hydrogen or hydrogen containing water vapor at a temperature of 300-500°C to obtain Fe 2 O 4 , and further reduction of this Fe 2 O 4 to 200 ~ γ-Fe 2 O 3 can be obtained by oxidation with oxygen or air at a temperature of 400°C. As an effective means to further enhance the magnetic properties of γ-Fe 2 O 3 , for example, α-FeOOH obtained by the method of the present invention may be treated with phosphoric acid, phosphate, silicate, etc. before dehydration treatment. One example is the processing of The present invention will be explained below with reference to Examples and Comparative Examples. Examples 1-2 and Comparative Examples 1-2 In a reactor equipped with an air blowing pipe and a stirrer,
Pour aqueous solution 20 containing 3800g of FeSO 4 and raise the temperature to 60℃, and while maintaining this temperature, add a predetermined amount of orthophosphoric acid and NaOH aqueous solution (concentration 200g/).
2.15 was added under stirring (precipitated Fe 15 g/hour), and air was blown into the mixture at a rate of 100 to 60 minutes per hour.
The reaction was carried out at 60°C for 70 minutes to obtain α-FeOOH nucleus crystals. Furthermore, while blowing air at a rate of 120 g/hour, a NaOH aqueous solution 4.2 with a concentration of 200 g/hour was gradually added to maintain the pH between 3.5 and 5.5, and the reaction was carried out at 60°C for 72 hours to grow the nucleus crystals approximately three times as much. Ta. The axial ratio (L/w) of the α-FeOOH obtained in the above reaction was measured by the usual method, and the particle size distribution (σL/) and branching incidence were also measured by the following method. The results were obtained. Method for measuring particle size distribution (σL/) Using well-dispersed α-FeOOH as a sample, read the major axis particle diameter of more than 3000 particles using an electron microscope, and calculate the arithmetic mean axial length (μ) and standard deviation σL (μ ) and calculate the particle size distribution according to the formula below. Particle size distribution = σL / Method for measuring branching Using the same method as for measuring particle size distribution, determine the number nd of branched crystals in the particles and the total number n, and calculate the branching rate according to the formula below. seek. Branching rate (%) = nd/n×100

【表】 実施例3〜4及び比較例3 空気吹込み管と撹拌器を備えた反応器に、5165
gのFeSO4を含む水溶液20を入れ、60℃に昇温
し、この温度を維持しながら、生成α−FeOOH
核晶量に対しP換算で0.2重量%のオルトリン酸
及び所定量のNaOH水溶液(濃度200g/)を
撹拌下に加え、空気を吹き込みながら、60℃で70
〜100分間反応させてα−FeOOH核晶を得た。
さらに、およそ600/時空気を吹き込みながら、
NaOH水溶液を反応液のPHが3.5〜5.5を保つよう
徐々に加えて、核晶が3倍に成長するまで反応さ
せた。 上記反応で得られたα−FeOOHについて、前
記実施例1の場合と同様にして粒度分布(σL/
L)及び枝分れを測定し、下記の第2表の結果を
得た。
[Table] Examples 3 to 4 and Comparative Example 3 In a reactor equipped with an air blowing pipe and a stirrer, 5165
Add 20 g of an aqueous solution containing FeSO 4 and raise the temperature to 60°C, and while maintaining this temperature, generate α-FeOOH.
Add 0.2% by weight of orthophosphoric acid (calculated as P based on the amount of nuclear crystals) and a predetermined amount of NaOH aqueous solution (concentration 200g/) with stirring, and heat at 60℃ for 70 minutes while blowing air.
After reacting for ~100 minutes, α-FeOOH nucleus crystals were obtained.
Furthermore, while blowing air approximately 600/hour,
An aqueous NaOH solution was gradually added to the reaction solution to maintain a pH of 3.5 to 5.5, and the reaction was allowed to occur until the nucleus crystals grew three times as much. The particle size distribution (σL/
L) and branching were measured and the results in Table 2 below were obtained.

【表】 実施例5及び比較例4 α−FeOOHの核晶の生成時及び成長時におけ
る反応温度と反応時間を下表に示すように代える
以外は実施例1の場合と同様にして、α−
FeOOHを得、前記実施例1の場合と同様にして
粒度分布(σL/)及び枝分れを測定し、下記
の第3表の結果を得た。
[Table] Example 5 and Comparative Example 4 α-
FeOOH was obtained, and the particle size distribution (σL/) and branching were measured in the same manner as in Example 1, and the results shown in Table 3 below were obtained.

【表】 実施例6及び比較例5 α−FeOOHの核晶の成長時において、母液中
に遊離のオルトリン酸を存在させること以外は実
施例1の場合と同様にして、α−FeOOHを得
た。これらについて通常の方法により軸比(L/
W)を測定し、前記実施例1の場合と同様にして
粒度分布(σL/)及び枝分れを測定し、下記
の第4表の結果を得た。
[Table] Example 6 and Comparative Example 5 α-FeOOH was obtained in the same manner as in Example 1 except that free orthophosphoric acid was present in the mother liquor during the growth of α-FeOOH nucleus crystals. . The axial ratio (L/
W) was measured, and the particle size distribution (σL/) and branching were measured in the same manner as in Example 1, and the results shown in Table 4 below were obtained.

【表】 実施例7、8及び比較例6、7 空気吹込み管と撹拌器を備えた反応器に、3800
gのFeSO4を含む水溶液20を入れ、60℃に昇温
し、この温度を維持しながら、オルトリン酸(生
成α−FeOOH核晶沈澱物に対してP換算として
0.3重量%)及びNaOH水溶液(200g/)2.14
を撹拌下に加え、60/時間の速度で空気を吹
き込み、60℃で70分間反応させてα−FeOOH核
晶(Fe換算15g/)を得た。さらに120/時
の速度で空気を吹き込みながら、所定量の
NaOH水溶液(200g/)を徐々に加え、80℃
で4.5時間反応させた。 上記反応で得られたα−FeOOHについて、通
常の方法により軸比(L/W)を測定し、前記実
施例1の場合と同様にして粒度分布(σL/)
及び枝分れを測定し、下記の第5表の結果を得
た。
[Table] Examples 7 and 8 and Comparative Examples 6 and 7 In a reactor equipped with an air blowing pipe and a stirrer, 3800
Add 20 g of an aqueous solution containing 20 g of FeSO 4 and raise the temperature to 60°C. While maintaining this temperature, add orthophosphoric acid (in terms of P to the α-FeOOH nucleus precipitate formed).
0.3% by weight) and NaOH aqueous solution (200g/) 2.14
was added under stirring, air was blown at a rate of 60°C/hour, and the reaction was carried out at 60°C for 70 minutes to obtain α-FeOOH nucleus crystals (15g/hour in terms of Fe). While blowing air at a speed of 120/hour, the specified amount of
Gradually add NaOH aqueous solution (200g/) to 80°C.
The reaction was carried out for 4.5 hours. For α-FeOOH obtained in the above reaction, the axial ratio (L/W) was measured by a normal method, and the particle size distribution (σL/) was determined in the same manner as in Example 1.
and branching were measured and the results shown in Table 5 below were obtained.

【表】 前記実施例及び比較例で得られた各々のサンプ
ルについて、過、水洗後、オルトリン酸を
FeOOHに対して0.2重量%(P換算量)被着した
後、通常の方法により脱水(空気中、650℃)、還
元(水蒸気を含む水素中420℃)及び再酸化(空
気中280℃)を行い、γ−Fe2O3を得た。各々の
γ−Fe2O3について、通常の方法により保磁力
(Hc)を測定し、さらに各々のγ−Fe2O3につい
て、下記の配合割合に従つて、配合物を調製し、
ボールミルで混練して、磁性塗料を製造した。 (1)γ−Fe2O3粉末 100重量部 (2)大豆レシチン 1.6 〃 (3)界面活性剤 4 〃 (4)酢ビー塩ビ共重合樹脂 10.5 〃 (5)ジオクチルフタレート 4 〃 (6)メチルエチルケトン 84 〃 (7)トルエン 93 〃 次いで、各々の磁性塗料をポリエステルフイル
ムに通常の方法により塗布、配向した後乾燥し
て、約7μ厚の磁性塗膜を有する磁気記録体を作
成した。これら磁気記録体について、通常の方法
により、保磁力(Hc)、飽和磁化(Bm)、角形
比(Br/Bm)及び反転磁界分布(SFD)を測定
し、第6表の結果を得た。
[Table] For each sample obtained in the above examples and comparative examples, orthophosphoric acid was added after filtering and washing with water.
After depositing 0.2% by weight (P equivalent amount) on FeOOH, dehydration (in air at 650℃), reduction (in hydrogen containing water vapor at 420℃), and reoxidation (in air at 280℃) are carried out using the usual methods. γ-Fe 2 O 3 was obtained. For each γ-Fe 2 O 3 , the coercive force (Hc) was measured by a normal method, and for each γ-Fe 2 O 3 , a mixture was prepared according to the following blending ratio,
A magnetic paint was produced by kneading in a ball mill. (1) γ-Fe 2 O 3 powder 100 parts by weight (2) Soy lecithin 1.6 〃 (3) Surfactant 4 〃 (4) Vinegar vinyl chloride copolymer resin 10.5 〃 (5) Dioctyl phthalate 4 〃 (6) Methyl ethyl ketone 84 〃 (7) Toluene 93 〃 Next, each magnetic coating material was applied to a polyester film using a conventional method, oriented and dried, thereby producing a magnetic recording medium having a magnetic coating film with a thickness of about 7 μm. The coercive force (Hc), saturation magnetization (Bm), squareness ratio (Br/Bm), and switching field distribution (SFD) of these magnetic recording bodies were measured by conventional methods, and the results shown in Table 6 were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 第1鉄塩水溶液をアルカリで部分中和して
Fe分の一部を沈澱させた後酸化してα−FeOOH
核晶を生成させ、次いで該液をアルカリで中和し
つつ酸化して該核晶を成長させ針状α−FeOOH
を製造する方法であつて、前記核晶生成反応は、
生成核晶量に対しP換算で0.05〜0.6重量%のリ
ン酸又はリン酸塩の存在下に、アルカリとして
Fe5〜20g/を沈澱させる量のアルカリ金属又
はアルカリ土類金属の水酸化物、酸化物又は炭酸
塩を用い、反応温度50〜70℃、反応時間10〜100
分で行い、前記核晶成長反応は、反応液のPHを3
〜6に保ち、該核晶が重量比で1.5〜3.5倍に成長
するように行うことを特徴とする、磁気記録材料
用針状α−FeOOHの製造方法。
1 Partially neutralize the ferrous salt aqueous solution with an alkali.
After precipitating a part of the Fe content, it is oxidized to form α-FeOOH.
Nucleic crystals are generated, and then the solution is neutralized with an alkali and oxidized to grow the nuclear crystals and form acicular α-FeOOH.
A method for producing, the nucleation reaction comprising:
As an alkali in the presence of 0.05 to 0.6% by weight of phosphoric acid or phosphate salt in terms of P based on the amount of generated nucleus crystals.
Using an amount of alkali metal or alkaline earth metal hydroxide, oxide or carbonate to precipitate Fe5~20g/, reaction temperature 50~70℃, reaction time 10~100℃.
The nucleic crystal growth reaction was carried out for 3 minutes, and the PH of the reaction solution was 3 minutes.
6. A method for producing acicular α-FeOOH for magnetic recording materials, characterized in that the process is carried out so that the nucleus crystals grow by 1.5 to 3.5 times in terms of weight ratio.
JP56114107A 1981-07-21 1981-07-21 Manufacture of needle-shaped alpha-feooh for magnetic recording material Granted JPS5825202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114107A JPS5825202A (en) 1981-07-21 1981-07-21 Manufacture of needle-shaped alpha-feooh for magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114107A JPS5825202A (en) 1981-07-21 1981-07-21 Manufacture of needle-shaped alpha-feooh for magnetic recording material

Publications (2)

Publication Number Publication Date
JPS5825202A JPS5825202A (en) 1983-02-15
JPS6334608B2 true JPS6334608B2 (en) 1988-07-11

Family

ID=14629291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114107A Granted JPS5825202A (en) 1981-07-21 1981-07-21 Manufacture of needle-shaped alpha-feooh for magnetic recording material

Country Status (1)

Country Link
JP (1) JPS5825202A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090831A (en) * 1983-10-25 1985-05-22 Toyo Soda Mfg Co Ltd Manufacture of alpha-iron oxyhydroxide
JP2937211B2 (en) * 1991-05-31 1999-08-23 戸田工業株式会社 Method for producing acicular magnetic iron oxide particles
US5641470A (en) * 1995-07-17 1997-06-24 Minnesota Mining And Manufacturing Company Process for making goethite
JPH10101339A (en) * 1996-09-27 1998-04-21 Titan Kogyo Kk Magnetite particulate powder, its production and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422437A (en) * 1977-07-22 1979-02-20 Ugine Kuhlmann Novel disperse dyestuff * production thereof and coloring method of artificial and synthetic material
JPS553295A (en) * 1978-06-20 1980-01-11 Cselt Centro Studi Lab Telecom Wavelength dividing transmitter
JPS558461A (en) * 1978-07-05 1980-01-22 Nachi Fujikoshi Corp Alloy steel tool for cutting
JPS5523217A (en) * 1978-08-03 1980-02-19 Paramount Glass Mfg Co Ltd Method of insulating heat on top of ceiling
JPS55104922A (en) * 1979-01-31 1980-08-11 Bayer Ag Cobalt compounded ferrimagnetic iron oxide and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422437A (en) * 1977-07-22 1979-02-20 Ugine Kuhlmann Novel disperse dyestuff * production thereof and coloring method of artificial and synthetic material
JPS553295A (en) * 1978-06-20 1980-01-11 Cselt Centro Studi Lab Telecom Wavelength dividing transmitter
JPS558461A (en) * 1978-07-05 1980-01-22 Nachi Fujikoshi Corp Alloy steel tool for cutting
JPS5523217A (en) * 1978-08-03 1980-02-19 Paramount Glass Mfg Co Ltd Method of insulating heat on top of ceiling
JPS55104922A (en) * 1979-01-31 1980-08-11 Bayer Ag Cobalt compounded ferrimagnetic iron oxide and its manufacture

Also Published As

Publication number Publication date
JPS5825202A (en) 1983-02-15

Similar Documents

Publication Publication Date Title
JPS6311763B2 (en)
JPS6334608B2 (en)
JPS6135135B2 (en)
US6140001A (en) Iron oxide microparticles and a process for producing them
KR890003881B1 (en) Process for production of cobalt-and-ferrous iron comtaining ferromagnetic iron oxide
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPS639735B2 (en)
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP3087778B2 (en) Method for producing acicular goethite particle powder
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JPS6332243B2 (en)
JPH0518766B2 (en)
JPH0415601B2 (en)
JP3087777B2 (en) Method for producing acicular goethite particle powder
JPS63162535A (en) Production of powdery acicular hematite particle
JPH0160923B2 (en)
JPH0692641A (en) Production of needle gamma-feooh
JPS6149252B2 (en)
JP3087780B2 (en) Method for producing acicular goethite particle powder
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JPH043902A (en) Needle-like magnetic iron oxide powder for magnetic recording and manufacture thereof
JPH011207A (en) Method for producing α-Fe00H for magnetic recording materials
JPS59562B2 (en) Ferromagnetic metal powder and its manufacturing method
JPS61186224A (en) Acicular goethite and production thereof
JPH0725619A (en) Production of fusiform magnetic iron oxide particle powder