JPH011207A - Method for producing α-Fe00H for magnetic recording materials - Google Patents

Method for producing α-Fe00H for magnetic recording materials

Info

Publication number
JPH011207A
JPH011207A JP62-156239A JP15623987A JPH011207A JP H011207 A JPH011207 A JP H011207A JP 15623987 A JP15623987 A JP 15623987A JP H011207 A JPH011207 A JP H011207A
Authority
JP
Japan
Prior art keywords
feooh
amount
salt
nucleus
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-156239A
Other languages
Japanese (ja)
Other versions
JPS641207A (en
Inventor
中田 和男
誠 小笠原
河村 俊彦
Original Assignee
石原産業株式会社
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to JP62156239A priority Critical patent/JPS641207A/en
Priority claimed from JP62156239A external-priority patent/JPS641207A/en
Publication of JPH011207A publication Critical patent/JPH011207A/en
Publication of JPS641207A publication Critical patent/JPS641207A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録用磁性粉末、特にオーディオテープ
、ビデオテープ、フロッピーディスク用に好適な強磁性
粉末を製造するにあたってその出発原料となるα−Fe
OOII粒子粉末の製造方法であって、軸比(長軸/短
軸)が比較的小さく、樹枝状粒子がなく、粒度分布が良
好なα−FeOOH粒子粉末の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to α, which is a starting material for producing magnetic powder for magnetic recording, particularly ferromagnetic powder suitable for audio tapes, video tapes, and floppy disks. -Fe
The present invention relates to a method for producing OOII particles, which has a relatively small axial ratio (major axis/minor axis), no dendritic particles, and a good particle size distribution.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、オーディオ、ビデオ、フロッピーディスク等の磁
気記録媒体に対し高密度記録化、高性能化の要求が高ま
っている。
In recent years, there has been an increasing demand for higher recording density and higher performance for magnetic recording media such as audio, video, and floppy disks.

その要求は、記録波長を短かくする(高密度記録)こと
に伴なう出力低下の抑制、さらに出力の増大とノイズ低
下させることによるSZN比の向上や記録感度の向上な
どである。
The requirements include suppressing the decrease in output due to shortening the recording wavelength (high-density recording), and improving the SZN ratio and recording sensitivity by increasing the output and reducing noise.

このため、磁性塗膜にあっては保磁力(Ilc)や残留
磁束密度(Br)の向上、SFDの改良、薄層化、表面
の平滑化などにより短波長記録での出力損失の低減を図
る必要がある。
For this reason, efforts are being made to reduce output loss during short wavelength recording by improving coercive force (Ilc) and residual magnetic flux density (Br), improving SFD, thinning the layer, and smoothing the surface of magnetic coatings. There is a need.

残留磁束密度(Br)は、磁性粉末の分11に性、配向
性さらに磁性塗膜中への高密度光てん化に依存   −
するが、充てん性を高くすることは塗膜の単位体積中の
磁性粉末粒子の個数を多くすることであり、これはノイ
ズの低下にもつながり、この場合磁性粉粒子の大きさは
小さいものが良い。
The residual magnetic flux density (Br) depends on the magnetic powder's properties, orientation, and high-density phototransferization into the magnetic coating.
However, increasing the filling property means increasing the number of magnetic powder particles in the unit volume of the coating, which also leads to a reduction in noise. good.

前記要求に対して磁性粉末の出発原料となるα−FeO
OH粒子粉末に望まれる緒特性は、以下のようである。
α-FeO, which is the starting material for magnetic powder, meets the above requirements.
The desired properties of the OH particles are as follows.

α−FeOOH粒子粉末としては粒子径が小さ(、樹枝
状粒子がな(、粒度の均一なものが良(、これから得ら
れる磁性粉末は分散性、配向性、充てん性等の向上、S
FDの改良、さらには塗膜表面の高平滑化をもたらす。
As α-FeOOH particle powder, it is better to have a small particle size (, no dendritic particles (, uniform particle size), magnetic powder obtained from this powder has improved dispersibility, orientation, filling property, etc.
It improves FD and also makes the coating surface highly smooth.

軸比(長軸/短軸)は小さいhR磁性粉末方がカサ密度
が高く、吸油量も小さくなって、充てん性が向上し、分
散性もよ(なって塗膜の薄膜化、表面の平滑化に対して
も好ましく、従ってその出発原料であるα−FeOOH
粒子の軸比も小さい方が良い。
hR magnetic powder with a smaller axis ratio (major axis/minor axis) has a higher bulk density, less oil absorption, improved filling ability, and better dispersibility (thinner coating and smoother surface). Therefore, the starting material α-FeOOH
The smaller the axial ratio of the particles, the better.

ところで、現在磁性粉末の出発原料としては主に第1鉄
塩水溶液をNa011と反応させつ\第1鉄塩を酸化す
ることにより針状晶α−FeOOHが得られている。上
記針状晶α−FeOOIIの生成反応においては、pH
11以上のアルカリ性領域で生成せしめるアルカリ法と
弱酸性領域で生成させる酸性法がある。しかしながら、
これらの方法によって得られるα−F e OOHは、
樹枝状粒子が混在し粒度も均一ではない。これらの改良
のため、第1鉄塩水溶液にリン酸あるいはその塩、ケイ
素化合物などの媒晶剤が添加されるが、軸比(長軸/短
軸)についてはアルカリ法のもので1071以上、酸性
法においても1071前後である。
Incidentally, at present, as a starting material for magnetic powder, acicular α-FeOOH is obtained mainly by reacting an aqueous solution of a ferrous salt with Na011 and oxidizing the ferrous salt. In the reaction for producing the above needle-like α-FeOOII, the pH
There are an alkaline method in which the product is generated in an alkaline range of 11 or more, and an acidic method in which the product is produced in a weakly acidic region. however,
α-F e OOH obtained by these methods is
Dendritic particles are mixed and the particle size is not uniform. For these improvements, modifiers such as phosphoric acid or its salts and silicon compounds are added to the ferrous salt aqueous solution, but the axial ratio (major axis/minor axis) is 1071 or more in the alkaline method. Even in the acid method, it is around 1071.

軸比を低下させる方法として、例えば酸性法においては
オルトリン酸を核晶生成時に存在させる方法があるが、
この場合オルトリン酸を多量に添加する必要があって、
得られる軸比は671〜871程度であり、更に軸比の
低下を図ろうとすれば更に多量の添加を必要とする。し
かしながら、オルトリン酸の多量の添加は、昇磁性分の
増加をもたらし、(n性粉末の飽和磁化(δ、)を低下
させるので好ましくない。
As a method for reducing the axial ratio, for example, in the acid method, there is a method in which orthophosphoric acid is present at the time of nucleic crystal formation.
In this case, it is necessary to add a large amount of orthophosphoric acid,
The resulting axial ratio is about 671 to 871, and if it is attempted to further reduce the axial ratio, it is necessary to add a larger amount. However, addition of a large amount of orthophosphoric acid is not preferable because it increases the magnetizing component and lowers the saturation magnetization (δ,) of the n-type powder.

一方、NazCO3等の炭酸アルカリを用いて第1鉄塩
を中和、酸化して軸比(長軸/短軸)371以下の紡錘
状のα−FeOOHを生成させる方法がある。
On the other hand, there is a method of neutralizing and oxidizing a ferrous salt using an alkali carbonate such as NazCO3 to generate spindle-shaped α-FeOOH having an axial ratio (major axis/minor axis) of 371 or less.

しかし、これから誘導される6ff性粉末を用いた記録
媒体は、磁気ヘッドのギャップl】を狭くした場合の塗
膜表面に対して垂直方向の磁束成分を利用する場合には
有利であるが、従来の水平方向の成分を利用する系にお
いては軸比が小さきに過ぎるため、充てん性は高まるも
のの配向性が低下してかえって残留磁束密度(Br)の
低下をきたし、また形状異方性に基づ(保磁力(Ilc
)も低くなるので好ましくない。
However, the recording medium using the 6ff powder derived from this is advantageous when utilizing the magnetic flux component in the direction perpendicular to the coating surface when the gap l of the magnetic head is narrowed. In a system that utilizes the horizontal component of (Coercive force (Ilc
) is also low, which is not preferable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、出力が高く、ノイズの低いかり高密度
記録特性にも優れるiff気記録媒体用に好適な磁性粉
末の出発原料であるα−FeOOHとして、微細でかつ
樹枝状粒子が混在せず、粒度分布が狭く、軸比(長軸/
短軸)が471〜771程度のものを製造することにあ
る。
The purpose of the present invention is to use α-FeOOH, which is a starting material for magnetic powder suitable for use in magnetic recording media that has high output, low noise, and excellent high-density recording characteristics, as a material containing fine and dendritic particles. The particle size distribution is narrow, and the axial ratio (long axis/
The goal is to manufacture products with a short axis of about 471 to 771.

〔発明の概要〕[Summary of the invention]

本発明は、酸性法でα−FeOOHを生成させるにあた
り、媒晶剤として特定量のリン化合物の存在下で中和剤
としてアンモニアを用いかつ一定量以上の第一鉄イオン
濃度の存在下で反応させる場合には、従来主に用いられ
ているN a OIIなどの苛性アルカリを用いる場合
に比し、生成するα−FeOOHの軸比が低下するとと
もに粒度分布が良好となることの知見を得、さらに種々
検S4の結果、媒晶剤の添加を少量に抑えながら高密度
磁気記録媒体用磁性粉末の原料として有用なα−Fe0
01が得られることを見出し完成したものである。
In producing α-FeOOH by an acidic method, the present invention uses ammonia as a neutralizing agent in the presence of a specific amount of phosphorous compound as a modifier, and reacts in the presence of a ferrous ion concentration of a certain amount or more. It was found that when using a caustic alkali such as NaOII, which has been mainly used in the past, the axial ratio of the α-FeOOH produced is lower and the particle size distribution is better. Furthermore, as a result of various tests S4, it was found that α-Fe0 is useful as a raw material for magnetic powder for high-density magnetic recording media while suppressing the addition of a crystallizing agent to a small amount.
This was completed after discovering that 01 could be obtained.

即ち本発明は、第1鉄塩水溶液を少■のリン酸またはそ
の塩の存在下に部分中和、酸化してα−FeOOH核晶
を生成させ、次いで咳液を中和剤で中和しつ\酸化して
該核晶を成長させてα−FeOOII粒子を製造する方
法において、前記リン酸またはその塩の量は生成するα
−FeOO11核晶沈殿物に対してP換算量で0.05
〜0.6重量%であり、前記中和剤としてアンモニアを
用い、かつα−FeOOH核晶沈殿物の生成終了時の該
液中の溶存Fe量が該核晶中のFe1lに対して1.7
倍以上となるようにすることを特徴とする磁気記録材料
用α−FeOOHの製造方法である。
That is, the present invention partially neutralizes and oxidizes an aqueous ferrous salt solution in the presence of a small amount of phosphoric acid or its salt to generate α-FeOOH nucleus crystals, and then neutralizes cough fluid with a neutralizing agent. In the method of producing α-FeOOII particles by oxidizing the phosphoric acid and growing the nucleus crystals, the amount of the phosphoric acid or its salt is determined by the amount of α produced.
-0.05 in P equivalent amount for FeOO11 nuclear crystal precipitate
~0.6% by weight, ammonia is used as the neutralizing agent, and the amount of dissolved Fe in the solution at the end of the generation of the α-FeOOH nucleus crystal precipitate is 1.6% by weight per 1L of Fe in the nucleus crystal. 7
This is a method for producing α-FeOOH for magnetic recording materials, which is characterized by making the amount more than double.

使用する第1鉄塩としては、硫酸第1鉄、硝酸第1鉄、
塩化第1鉄などの鉱酸の第1鉄塩溶液などがあり、工業
的には硫酸第1鉄が好ましい。中和剤としては、アンモ
ニアを用い、例えばNl+4011水溶液、N113ガ
スとして用いることができる。中和剤がN a Off
 、 K Otlなどのアルカリ金属水酸化物では、得
られるα−Fe001の軸比(長軸/短軸)が大きくな
り過ぎ、粒度分布がアンモニアに比べ広くなり、また、
Na2CO,、K2CO3などのアルカリ合圧の炭酸塩
では、逆に軸比が小さくなり過き゛て好ましくない。リ
ン酸あるいはその塩としてはオルトリン酸あるいはその
塩又はヘキサメタリン酸、ピロリン酸などのポリリン酸
あるいはその塩が用いられる。酸化剤としては、空気、
酸素、その他の酸化剤などを用いることができるが、空
気が好適である。
The ferrous salts used include ferrous sulfate, ferrous nitrate,
Examples include ferrous salt solutions of mineral acids such as ferrous chloride, and ferrous sulfate is preferred industrially. As the neutralizing agent, ammonia can be used, for example, as an Nl+4011 aqueous solution or N113 gas. Neutralizing agent is Na Off
With alkali metal hydroxides such as KOtl, the axial ratio (major axis/minor axis) of the obtained α-Fe001 becomes too large, the particle size distribution becomes wider than that of ammonia, and
On the other hand, carbonates with alkali combined pressure such as Na2CO, K2CO3, etc. are not preferred because the axial ratio becomes too small. As the phosphoric acid or its salt, orthophosphoric acid or its salt, or polyphosphoric acid such as hexametaphosphoric acid or pyrophosphoric acid or its salt is used. As an oxidizing agent, air,
Although oxygen, other oxidizing agents, etc. can be used, air is preferred.

本発明においては、先ず第1鉄塩水溶液をアンモニアで
部分中和し、酸化して、液中のFe分の一部をα−Fe
OOHの核晶にするが、その際第1鉄塩水溶液中、ある
いはアンモニア添加後のグリーンラストが生成している
液中にリン酸またはその塩を存在させる。第1鉄塩水溶
液のFe?a度は普通30〜100g/j2であり、添
加するリン酸またはその塩の量は、生成するα−FeO
OH核晶沈殿物に対してP換算量で0.05〜0.6重
量%、好ましくは0.1〜0.5重量%とする。このP
の量が上記範囲より少なすぎると樹枝状粒子が混在した
り、十分な微細化が図られなかったりする。一方、多ず
ぎると微細化し過ぎ、また昇磁性分の増加をきたして磁
気記録材料用α−FeOOHとしては好ましくないもの
となる。
In the present invention, first, a ferrous salt aqueous solution is partially neutralized with ammonia and oxidized to convert a part of the Fe content in the solution into α-Fe.
To form OOH nucleus crystals, phosphoric acid or its salt is made to exist in the ferrous salt aqueous solution or in the liquid in which green rust is generated after addition of ammonia. Fe in ferrous salt aqueous solution? The degree of a is usually 30 to 100 g/j2, and the amount of phosphoric acid or its salt to be added is determined by the amount of α-FeO produced.
The amount in terms of P is 0.05 to 0.6% by weight, preferably 0.1 to 0.5% by weight, based on the OH nuclear crystal precipitate. This P
If the amount is too small than the above range, dendritic particles may be present or sufficient refinement may not be achieved. On the other hand, if it is too large, it becomes too fine and the magnetizing property increases, making it undesirable as α-FeOOH for magnetic recording materials.

部分中和におけるアンモニアの添加墳は、第1鉄塩水溶
液中の溶存Feイオンを5〜25g//!望ましくは1
0〜20g/lだけ沈殿させるに必要な量である。この
生成核晶濃度が上記範囲より低すぎるとイガグリ状の好
ましくない形状のα−FeOOHが生成し、一方高すぎ
るとスラリーの粘度が高くなり、均一な酸化反応を妨げ
、粒度が不均一となりやすい。
Addition of ammonia in partial neutralization adds 5 to 25 g of dissolved Fe ions in the ferrous salt aqueous solution! Preferably 1
This is the amount necessary to precipitate 0 to 20 g/l. If the concentration of the generated nuclei crystals is too low than the above range, α-FeOOH with an undesirable burr-like shape will be generated, while if it is too high, the viscosity of the slurry will increase, hindering a uniform oxidation reaction, and making the particle size non-uniform. .

α−FeOOH核晶生成反応の終了時、該核晶沈殿物ス
ラリーにおいて、溶存Feイオンが該核晶中のFeに対
して重量比で1,7倍以上望ましくは2〜lO倍程度に
する。溶存Feイオンが前記比率以下であると粒度分布
は広くなり、軸比も大きくなって、また微細化も不十分
となる。この事は溶存Feイオンが、核晶生成に対し媒
晶効果をもつためとみられることから、前記比率に調整
することがリン酸またはその塩の添加を少なくし得るも
のとみられる。
At the end of the α-FeOOH nucleation reaction, the dissolved Fe ions in the nucleus precipitate slurry have a weight ratio of 1.7 times or more, preferably about 2 to 10 times, relative to Fe in the nucleus crystals. If the dissolved Fe ions are below the above ratio, the particle size distribution will be wide, the axial ratio will also be large, and refinement will be insufficient. This appears to be because dissolved Fe ions have a moderating effect on nucleation, and it appears that adjusting the ratio to the above range can reduce the amount of phosphoric acid or its salt added.

この核晶生成段階では、反応温度はα−FeOOHが生
成する温度であればよく、通常40〜70℃で行なわれ
る。またこの生成反応時間は、比較的短時間例えば10
〜100分程度に調節するのが良く、長きにすぎると粒
径、軸比とも大きくなり、また粒度分布も広くなって好
ましくない。
In this nucleation stage, the reaction temperature may be any temperature at which α-FeOOH is produced, and is usually carried out at a temperature of 40 to 70°C. Further, this generation reaction time is relatively short, for example, 10
It is best to adjust the time to about 100 minutes; if it is too long, the particle size and axial ratio will increase, and the particle size distribution will also become wider, which is not preferable.

前記の核晶生成反応の終った液は、α−FeOOII核
晶を懸濁した第1鉄塩溶液であり、添加したリン酸また
はその塩は核晶に含有され、遊離した状態では液中には
残存しないのが普通である。本発明の方法では、次いで
アンモニアを添加しながら酸化して核晶を成長させ、所
望のα−FeOOH粒子を得る。この反応も前記核晶生
成時と同様マグネタイトなどが混在せず、α−FeOO
Hが生成する温度、pHで行なえばよく、温度は通常4
0°C以上であり、pl+は3〜6のほぼ一定の値に維
持するようにアンモニアを加えながら酸化するのがよい
The liquid after the above-mentioned nucleation crystal generation reaction is a ferrous salt solution in which α-FeOOII nucleus crystals are suspended. Usually no remains. In the method of the present invention, the material is then oxidized while adding ammonia to grow nucleus crystals, thereby obtaining desired α-FeOOH particles. This reaction also does not contain magnetite, etc., as in the case of nucleation, and α-FeOO
It can be carried out at a temperature and pH at which H is generated, and the temperature is usually 4.
It is preferable to oxidize while adding ammonia so that the temperature is 0°C or higher and pl+ is maintained at a substantially constant value of 3 to 6.

この成長反応においては予め母液の濃度、核晶の生成量
を調節するか、核生成後に第1鉄塩を補給するかして成
長させるが、その成長倍率ずなわち核晶α−FeOOH
の重量に対する成長後の生成α−FeOOIlの重量の
比(倍率)を適宜選ぶことによって所望の大きさのα−
FeOOHに成長させる。この成長倍率は1.2〜3.
5の範囲で選択するのがよく、目標とするα−Fe00
Hの大きさ、核晶の大きさ、成長反応条件に応じて前記
範囲から決めればよい。この倍率が上記範囲より大きす
ぎると粒度分布巾が広くなって好ましくない。
In this growth reaction, the concentration of the mother liquor and the amount of nucleus crystals produced are adjusted in advance, or ferrous salt is supplied after nucleation to achieve growth.
By appropriately selecting the ratio (magnification) of the weight of α-FeOOIl produced after growth to the weight of
Grow to FeOOH. This growth rate is 1.2 to 3.
It is best to select within the range of 5, and the target α-Fe00
It may be determined from the above range depending on the size of H, the size of the nucleus crystal, and the growth reaction conditions. If this magnification is too large than the above range, the particle size distribution will become wider, which is not preferable.

本発明によって得られるα−FeOOHは、樹枝状粒子
がなく、中和剤として従来主に用いられているNa01
1等の苛性アルカリや炭酸アルカリの代りにアンモニア
を用いることによって少量のリン酸またはその塩の添加
で軸比の小さい、粒度分布の良好なものとなり、さらに
これより誘導されるT−Fe、03、コバルト被着磁性
酸化鉄などの磁性粉末から製作した磁気テープなどの記
録媒体は良好な磁気特性を有するものである。なお、磁
性粉末にLi Rするにあたってα−FeOOH粒子に
形状保持、粒子間焼結防止等のため、リン酸やその塩、
ケイ素化合物などを処理するのが望ましい。
α-FeOOH obtained by the present invention has no dendritic particles, and Na01, which is conventionally mainly used as a neutralizing agent, has no dendritic particles.
By using ammonia instead of No. 1 caustic alkali or alkali carbonate, the addition of a small amount of phosphoric acid or its salt can result in a small axial ratio and a good particle size distribution. Recording media such as magnetic tapes manufactured from magnetic powders such as cobalt-coated iron oxide have good magnetic properties. In order to maintain the shape of the α-FeOOH particles and prevent interparticle sintering, phosphoric acid, its salt,
It is desirable to treat silicon compounds and the like.

実施例1 空気吹き込み管と攪拌機をOlnえた反応器に1.25
モル/1  (Fe70 g/ jDの硫酸第一鉄水溶
液21を入れ、50℃に昇温し、この温度を維持しなが
ら撹拌下にピロリン酸ナトリウムをP換算でα−FeO
OH核晶沈殿物に対して0.2重量%及びN114.O
llとして5モル/lのアンモニア水を0.21当量加
えた。この中へ空気を吹き込み酸化反応を行なわせてα
−Fe00H核晶沈殿物を生成させた。(α−FeOO
H核晶沈殿物の生成終了時該液中に溶存するFefil
は該核晶中のFeiに対して3.67倍であった。)得
られた核晶について電子顕微鏡観察により軸比(L /
W)を求め、またN2ガスによるBET法比法面表面積
G)を測定した。
Example 1 A reactor equipped with an air blowing tube and a stirrer was charged with 1.25 liters of water.
Pour ferrous sulfate aqueous solution 21 of mol/1 (70 g/jD of Fe, raise the temperature to 50°C, and while maintaining this temperature, convert sodium pyrophosphate into α-FeO in terms of P.
0.2% by weight based on the OH nucleus precipitate and N114. O
0.21 equivalent of 5 mol/l aqueous ammonia was added. Air is blown into this to cause an oxidation reaction.α
-Fe00H nucleus crystal precipitate was generated. (α-FeOO
Fefil dissolved in the solution at the end of generation of H nucleus crystal precipitate
was 3.67 times as large as Fei in the nuclear crystal. ) The obtained nuclear crystals were observed with an electron microscope to determine the axial ratio (L/
W) was determined, and the BET specific slope surface area G) using N2 gas was also measured.

前記核晶生成反応終了移用きつづき50°Cに保持した
まま空気を吹き込みながら上記アンモニア水を徐々に加
えて該核晶が2倍(重量基単)に成長するまで反応を続
けた。得られたα−FeOOHについて核晶の場合と同
様にして軸比(L/W)及び比表面積(SG)を測定し
、第1表の結果を得た。
After the completion of the nucleation crystal formation reaction, the ammonia water was gradually added while blowing air while maintaining the temperature at 50°C, and the reaction was continued until the nucleation crystals grew twice (by weight). The axial ratio (L/W) and specific surface area (SG) of the obtained α-FeOOH were measured in the same manner as in the case of the nucleus crystal, and the results shown in Table 1 were obtained.

実施例2 実施例1において、ピロリン酸ナトリウムの添加量をP
換算でα−FeOOH核晶沈殿物に対して0.4重量%
用いた他は同様に行ない第1表の結果を得た。
Example 2 In Example 1, the amount of sodium pyrophosphate added was
Converted to 0.4% by weight based on α-FeOOH nucleus precipitate
The results shown in Table 1 were obtained by carrying out the same procedure except for using the same method.

実、施例3 実施例1において、ピロリン酸ナトリウムの代りにオル
トリン酸をPEA算でα−FeOOH核晶沈殿物に対し
て0.2%加えた他は同様に行ない第1表の結果を得た
Example 3 The same procedure as in Example 1 was carried out except that 0.2% orthophosphoric acid was added to the α-FeOOH nucleus precipitate as calculated by PEA in place of sodium pyrophosphate, and the results shown in Table 1 were obtained. Ta.

比較例1 実施例1において、中和剤としてアンモニア水の代りに
Na0II水溶液(5モル/Z)を用いた他は同様にし
て行ない第1表の結果を得た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that an aqueous Na0II solution (5 mol/Z) was used instead of aqueous ammonia as the neutralizing agent, and the results shown in Table 1 were obtained.

比較例2 実施例2において、中和剤としてアンモニア水の代りに
N a ’OII水溶液(5モル/6)を用いた他は同
様にして行ない第1表の結果を得た。
Comparative Example 2 The same procedure as in Example 2 was carried out except that an aqueous Na'OII solution (5 mol/6) was used instead of aqueous ammonia as the neutralizing agent, and the results shown in Table 1 were obtained.

比較例3 実施例3において、中和剤としてアンモニア水の代りに
Na011水溶液(5モル/りを用いた他は同様に行な
い第1表の結果を得た。
Comparative Example 3 The same procedure as in Example 3 was repeated except that an aqueous solution of Na011 (5 mol/liter) was used instead of aqueous ammonia as the neutralizing agent, and the results shown in Table 1 were obtained.

前記実施例1及び比較例1で得られたα−FeOOH粒
子について更過、水洗後オルトリン酸をα−FeOOH
に対して0.6重量%(P換算)被着した後、空気中に
て680℃で脱水加熱した。その後水蒸気を含む水素中
にて400℃で還元及び空気中にて280°Cで再酸化
してγ−F+g03を得た。各々のγ−Fe203サン
プルについてα−FeOOHの場合と同様にして軸比(
L/W)及び比表面積(SG)を求め、さらに通常の方
法により保磁力(llc)を測定した。
After the α-FeOOH particles obtained in Example 1 and Comparative Example 1 were washed with water, orthophosphoric acid was added to α-FeOOH.
After adhering 0.6% by weight (in terms of P) to the total amount of water, it was dehydrated and heated at 680° C. in air. Thereafter, it was reduced in hydrogen containing water vapor at 400°C and reoxidized in air at 280°C to obtain γ-F+g03. For each γ-Fe203 sample, the axial ratio (
L/W) and specific surface area (SG) were determined, and coercive force (llc) was also measured by a conventional method.

さらに、各々のγ−p ez 03について下記の配合
割合に従って配合物を調整し、ペイントシェーカーで分
散して磁性塗料を製造した。
Further, for each γ-pez 03, a formulation was adjusted according to the following formulation ratio and dispersed in a paint shaker to produce a magnetic paint.

(llr −FezO1100重量部 (2)大豆レシチン         1.64(3)
界面活性剤           4 ・・(4)酢ビ
ー塩ビ共重合樹脂    10.5  〃(5)ジオク
チルフタレート       4 〃(6)メチルエチ
ルケトン      84 〃(7)トルエン    
       93 〃次いで、各々の磁性塗料をポリ
エステルフィルムに通常の方法により、塗布、配向した
後乾燥して約10μ厚の磁性塗膜を有する磁気記録媒体
を作製した。これらの磁気記録媒体について通常の方法
により保磁力(llc) 、飽和磁化(Bm) 、残留
磁化(Br) 、角形比(Br/8m)及び反転6〃界
分布(SFD)を測定し第2表の結果を得た。
(llr-FezO 1100 parts by weight (2) Soybean lecithin 1.64 (3)
Surfactant 4...(4) Vinyl acetate vinyl chloride copolymer resin 10.5 (5) Dioctyl phthalate 4 (6) Methyl ethyl ketone 84 (7) Toluene
93 Next, each magnetic coating material was coated and oriented on a polyester film by a conventional method, and then dried to produce a magnetic recording medium having a magnetic coating film with a thickness of about 10 μm. The coercive force (llc), saturation magnetization (Bm), remanent magnetization (Br), squareness ratio (Br/8m), and inverted 6 field distribution (SFD) of these magnetic recording media were measured using conventional methods and are shown in Table 2. I got the result.

〔発明の効果〕〔Effect of the invention〕

本発明では、軸比の比較的小さい、樹枝状粒子の混在の
みられない、そして粒度分布の良好なα−FeOOHを
、比較的簡潔な手段でもって安定性よく製造することが
できる。
According to the present invention, α-FeOOH having a relatively small axial ratio, no dendritic particles mixed therein, and a good particle size distribution can be produced stably using relatively simple means.

また、本発明によって得られるα−FeOOHは、磁気
記録媒体中での分散性、配向性が良好であり、高充填性
の磁性粉末に誘導し得ることが容易なものであって、高
出力、低ノイズの高磁気記録密度媒体用磁性粉末の原料
としてきわめて有用なものである。
Further, the α-FeOOH obtained by the present invention has good dispersibility and orientation in a magnetic recording medium, and can be easily induced into a highly packed magnetic powder, with high output and It is extremely useful as a raw material for magnetic powder for low noise, high magnetic recording density media.

手 続 主甫 正 書帽発) 1、事件の表示  昭和62年特許願第156239号
2、発明の名称  磁気記録材料用α−Fe00Hの製
造方法3、補正をする者 事件との関係   特許出願人 4、補正の対象 ゝ\/′°゛ 5、補正の内容 (1) 特許請求の範囲の欄を別紙(1)のとおり補正
する。
1. Indication of the case Patent Application No. 156239 of 1988 2. Title of the invention Method for producing α-Fe00H for magnetic recording materials 3. Person making the amendment Relationship with the case Patent applicant 4. Subject of amendmentゝ\/'°゛5. Contents of amendment (1) The scope of claims is amended as shown in Attachment (1).

(2) 明細書第4頁第17行の「飽和磁化(δs)J
を[飽和磁化(σs)Jと訂正する。
(2) “Saturation magnetization (δs) J” on page 4, line 17 of the specification
is corrected as [saturation magnetization (σs) J].

(3) 同第5頁第16行の「4/1〜7/l」を「4
/1〜8/1」と訂正する。
(3) Change “4/1~7/l” to “4/1” on page 5, line 16.
/1~8/1''.

(4)  同第6頁第12行の「中和剤で」を削除する
(4) Delete "with a neutralizing agent" on page 6, line 12.

(5)  同第6頁第16行の「前記」を「該」と訂正
する。
(5) On page 6, line 16, "said" is corrected to "said."

(6) 同第13頁最下行に「同様に行い第1表の結果
を得た。」とある次に改行して次の比較例を加入する。
(6) In the bottom line of page 13, there is a line that says ``Similarly, the results shown in Table 1 were obtained.'' Next, add the following comparative example on a new line.

[比較例4 実施例3において、硫酸第1鉄水溶液のFe (旧濃度
を0.67モル/ 1 (Fe37.5g/jlりとし
酸化反応前のアンモニア水による中和を0.4当量(α
−Fe00H核晶沈澱物の生成終了時、液中に溶存する
Fe量は該核晶中のF4に対して1.5倍)としたこと
のほかは、実施例3と同様にして行い第1表の結果をえ
た。     」(7) 同第14頁第1表を別紙(2
)のとおり補正する。
[Comparative Example 4 In Example 3, Fe in the ferrous sulfate aqueous solution (the original concentration was set to 0.67 mol/1 (Fe37.5 g/jl), and the neutralization with aqueous ammonia before the oxidation reaction was adjusted to 0.4 equivalent (α
-The same procedure as in Example 3 was carried out except that the amount of Fe dissolved in the solution was 1.5 times the amount of F4 in the nucleus crystals at the end of the generation of the Fe00H nuclei crystal precipitate. I got the results in the table. (7) Table 1 on page 14 of the same document is attached (2
).

以上 別紙(1) 〔特許請求の範囲〕 「 第1鉄塩水溶液をリン酸またはその塩の存在下に部
分中和、酸化してα−Fe00H核晶を生成させ、次い
で該液峯史担しつ\酸化して該核晶を成長させてα−F
e00)1粒子を製造する方法において、前記リン酸ま
たはその塩の量は生成するα−Fe00H核晶沈澱物に
対してP換算量で0.05〜0.6重量%であり、蓬中
和剤としてアンモニアを用いかつα−Fe00H核晶沈
澱物の生成終了時の咳液中の溶存Fe量が該核晶中のF
e量に対して1゜7倍以上となるようにすることを特徴
とする磁気記録材料用α−Fe00t(の製造方法。 
    」別紙(2)
Attachment (1) [Claims] "A ferrous salt aqueous solution is partially neutralized and oxidized in the presence of phosphoric acid or its salt to generate α-Fe00H nucleus crystals, and then the liquid α-F is oxidized to grow the nucleus crystal.
e00) In the method for producing 1 particle, the amount of the phosphoric acid or its salt is 0.05 to 0.6% by weight in terms of P based on the α-Fe00H nucleus precipitate to be produced, and Using ammonia as the agent, the amount of dissolved Fe in the cough fluid at the end of the generation of α-Fe00H nuclei crystal precipitates is
A method for producing α-Fe00t for magnetic recording materials, characterized in that the amount of α-Fe00t is 1°7 times or more the amount of e.
” Attachment (2)

Claims (1)

【特許請求の範囲】[Claims]  第1鉄塩水溶液をリン酸またはその塩の存在下に部分
中和、酸化してα−FeOOH核晶を生成させ、次いで
該液を中和剤で中和しつゝ酸化して該核晶を成長させて
α−FeOOH粒子を製造する方法において、前記リン
酸またはその塩の量は生成するα−FeOOH核晶沈殿
物に対してP換算量で0.05〜0.6重量%であり、
前記中和剤としてアンモニアを用いかつα−FeOOH
核晶沈殿物の生成終了時の該液中の溶存Fe量が該核晶
中のFe量に対して1.7倍以上となるようにすること
を特徴とする磁気記録材料用α−FeOOHの製造方法
A ferrous salt aqueous solution is partially neutralized and oxidized in the presence of phosphoric acid or its salt to generate α-FeOOH nucleus crystals, and then the solution is neutralized with a neutralizing agent and oxidized to generate the nuclei crystals. In the method for producing α-FeOOH particles by growing phosphoric acid or its salt, the amount of the phosphoric acid or its salt is 0.05 to 0.6% by weight in terms of P based on the α-FeOOH nucleus precipitate produced. ,
Using ammonia as the neutralizing agent and α-FeOOH
α-FeOOH for magnetic recording materials, characterized in that the amount of Fe dissolved in the liquid at the end of the generation of the nuclei crystal precipitate is 1.7 times or more the amount of Fe in the nuclei crystals. Production method.
JP62156239A 1987-06-23 1987-06-23 Manufacture of alpha-feooh for magnetic recording material Pending JPS641207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62156239A JPS641207A (en) 1987-06-23 1987-06-23 Manufacture of alpha-feooh for magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62156239A JPS641207A (en) 1987-06-23 1987-06-23 Manufacture of alpha-feooh for magnetic recording material

Publications (2)

Publication Number Publication Date
JPH011207A true JPH011207A (en) 1989-01-05
JPS641207A JPS641207A (en) 1989-01-05

Family

ID=15623413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62156239A Pending JPS641207A (en) 1987-06-23 1987-06-23 Manufacture of alpha-feooh for magnetic recording material

Country Status (1)

Country Link
JP (1) JPS641207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139783A1 (en) * 2007-05-01 2008-11-20 Maika Co., Ltd. Fastening tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916027A (en) * 2019-12-06 2021-06-08 四川大学 Method for preparing iron phosphide/carbon composite material by using yeast biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139783A1 (en) * 2007-05-01 2008-11-20 Maika Co., Ltd. Fastening tool

Similar Documents

Publication Publication Date Title
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
JPH011207A (en) Method for producing α-Fe00H for magnetic recording materials
US4560544A (en) Process for the preparation of acicular α-FeOOH for magnetic recording materials
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
JPH0948619A (en) Preparation of goethite particle
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
US4748017A (en) Method for manufacturing lepidocrocite
JPS639735B2 (en)
JPS6334608B2 (en)
JP3087778B2 (en) Method for producing acicular goethite particle powder
JP2931182B2 (en) Method for producing acicular γ-FeOOH
JP3011221B2 (en) Method for producing acicular goethite particle powder
JP2700828B2 (en) Method for producing α-iron oxyhydroxide
JP3036553B2 (en) Method for producing acicular goethite particle powder
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP3087779B2 (en) Method for producing acicular goethite particle powder
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JP3087780B2 (en) Method for producing acicular goethite particle powder
JPS63162535A (en) Production of powdery acicular hematite particle
JP3166780B2 (en) Method for producing spindle-shaped goethite particles
JP3087777B2 (en) Method for producing acicular goethite particle powder
JP2935291B2 (en) Method for producing acicular goethite particle powder
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPS6332243B2 (en)