JPS63248104A - Manufacture of ferromagnetic fine powder for magnetic recording - Google Patents

Manufacture of ferromagnetic fine powder for magnetic recording

Info

Publication number
JPS63248104A
JPS63248104A JP62082545A JP8254587A JPS63248104A JP S63248104 A JPS63248104 A JP S63248104A JP 62082545 A JP62082545 A JP 62082545A JP 8254587 A JP8254587 A JP 8254587A JP S63248104 A JPS63248104 A JP S63248104A
Authority
JP
Japan
Prior art keywords
mol
barium ferrite
molar ratio
aqueous solution
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62082545A
Other languages
Japanese (ja)
Other versions
JPH0821493B2 (en
Inventor
Kazuo Nakada
中田 和男
Masaharu Hirai
平井 正治
Nobusuke Takumi
匠 伸祐
Saburou Katou
加藤 佐富郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP62082545A priority Critical patent/JPH0821493B2/en
Publication of JPS63248104A publication Critical patent/JPS63248104A/en
Publication of JPH0821493B2 publication Critical patent/JPH0821493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic powder having a designated coersive force, high degree of saturated magnetization and excellent vertically magnetized orientational property of high dispersibility by a method wherein the specific quantity of a bivalent metal element is allowed to be present when a sintering operation and a barium ferrite precursor growing process are performed. CONSTITUTION:A barium ferrite precursor is obtained by conducting a heat treatment at 60-250 deg.C on the alkaline suspension having pH of 11 or more and containing the metal element of the molar ratio of 1/6>=Ba/Fe+M1+ M2>=1/12 (M1 indicates a kind selected from a group of Co, Ni, Zn, Cu, Mg and Mn, and M2 indicates a kind selected from a group of Ti, Sn, Zr, Ge, Nb and V), the molar ratio of M2 is 0.01-0.2 against Fe of 1, and M2 is 0-0.5 against M1. The metal element compound M2 or M1 and M2 is added to said precursor in such a manner that the total amount of M1 and M2 becomes 0.3 mol or less against 1 mol of M2 or M1, M2 and Fe, then they are sintered at 650-1000 deg.C, and barium ferrite crystal grains are obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高密度記録、特に媒体の面に対して垂直方向
の残留磁化を用いる垂直磁気記録に好適なバリウムフェ
ライト結晶粒子よりなる磁気記録用強磁性微粉末の製造
方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a magnetic recording material made of barium ferrite crystal particles suitable for high-density recording, particularly perpendicular magnetic recording that uses residual magnetization perpendicular to the plane of the medium. This invention relates to a method for producing ferromagnetic fine powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録は、一般にγ−Fe20.、コバルト被着γ−
Fe、03、鉄系金属、CrO□などの針状晶磁性粉末
を、記録媒体の面内方向に配向させ、該方向の残留磁化
を利用する長手記録方式が最も多くとられている。しか
しながらこの方式による場合は、記録の高密度化を図ろ
うとすると媒体内の反磁界が増大し、特に短波長領域に
おける記録再生特性が低下し易く、十分な高密度記録を
達成し難い。しかして、前記のような長手記録方式に対
して記録媒体層の表面に垂直方向に磁化することによっ
て反磁界を減少させて高密度記録を図るいわゆる垂直磁
気記録方式が近年とみに注目されてきている。
Magnetic recording is generally performed using γ-Fe20. , cobalt deposited γ-
The most commonly used method is a longitudinal recording method in which acicular magnetic powder such as Fe, 03, iron-based metal, CrO□, etc. is oriented in the in-plane direction of the recording medium and residual magnetization in this direction is utilized. However, with this method, when attempting to achieve high recording density, the demagnetizing field within the medium increases, and the recording and reproducing characteristics, particularly in the short wavelength region, tend to deteriorate, making it difficult to achieve sufficiently high density recording. In contrast to the above-mentioned longitudinal recording method, the so-called perpendicular magnetic recording method, which aims at high-density recording by reducing the demagnetizing field by magnetizing the surface of the recording medium layer in a direction perpendicular to the surface, has recently been attracting attention. .

ところで、前記垂直En気記録媒体としては従来から実
用化が試みられてきているCo−Cr系などの合金膜法
によるもののほか、バリウムフェライトのような六方晶
フェライト結晶粒子粉末をバインダー樹脂に分散させた
ものをベースフィルム上に塗布するいわゆる塗布型記録
媒体が提案されている。前記塗布型の場合にあっては、
従来の長手記録方式の記録媒体の場合と同様に生産性よ
く経済的にも有利に製造し得るとともに記録媒体の耐久
性が優れており、その実用化が急がれている。
By the way, the perpendicular energy recording medium is not only based on an alloy film method such as a Co-Cr system, which has been attempted to be put to practical use, but also a method using a hexagonal ferrite crystal particle powder such as barium ferrite dispersed in a binder resin. A so-called coated recording medium has been proposed in which a base film is coated with a base film. In the case of the coating type,
As in the case of conventional longitudinal recording type recording media, this recording medium can be manufactured economically and with good productivity, and has excellent durability, so its practical application is urgently needed.

しかして前記垂直磁気記録媒体に使用されるバリウムフ
ェライト磁性粉末としては、通常六角板状の結晶粒子か
らなり、粒子板面に対して垂直方向に磁化容易軸をもつ
ものであって、大きな飽和磁化と記録、再生に使用する
磁気ヘッドの特性と整合し得るような磁気記録用に適し
た保磁力(通常200〜2,0000e)を有するもの
が望まれており、また粒子径は、記録媒体のノイズレベ
ルの低下や記録媒体の表面平滑性を高めて高S/N化を
図る上で微細な程有利であり、通常0.3μ以下、さら
には0.15μ以下のいわゆる超微粒子径のものが望ま
れるとともに、かつそのものが記録媒体中で高配向性、
高充填性を保持し得るべく分散性の良好なものであるこ
とが望まれている。
However, the barium ferrite magnetic powder used in the perpendicular magnetic recording medium usually consists of hexagonal plate-shaped crystal grains, has an axis of easy magnetization perpendicular to the particle plate surface, and has a large saturation magnetization. It is desired to have a coercive force suitable for magnetic recording (usually 200 to 2,0000e) that can match the characteristics of the magnetic head used for recording and reproduction, and the particle size should also be determined according to the recording medium. The finer the particle size, the more advantageous it is in reducing the noise level and increasing the surface smoothness of the recording medium to achieve a high S/N ratio. It is desired that the material itself has high orientation in the recording medium.
It is desired to have good dispersibility in order to maintain high filling properties.

従来から磁気記録媒体用のバリウムフェライト磁性粉末
の製造方法としては種々の方法が提案されているが、い
わゆる湿式法として、Ba及びFeの金属イオン化合物
と、さらに保磁力制御のためにGo、 Ni+ Zn、
 Ti+ Sn、 Zr、  V、 Inなどの金属イ
オン化合物を含む原料混合液にアルカリを加えて反応さ
せて共沈澱物を得、この沈澱物を900℃以上で焼成す
る方法(共沈−焼成法)、前記共沈澱物を含む懸濁液を
オートクレーブ中で250℃以上の高温、高圧下で水熱
合成する方法(水熱法)、さらに前記の共沈澱物の懸濁
液を250℃以下の比較的低温で水熱合成して微細なバ
リウムフェライト結晶前駆体物質(以下バリウムフェラ
イト前駆体という)を得、次いでこのものを650〜9
50℃で焼成する方法(水熱−焼成法)がよく知られて
いる。しかして前記の水熱−焼成法は、共沈−焼成法や
水熱法に比べて、粒子間焼結や飽和磁化の低下が少なく
、また分散性や充填性も比較的良好であり、さらに前記
した如く高温、高圧下での装置上、操作上の問題も少な
いところから、その実用化が急がれている。
Various methods have been proposed for producing barium ferrite magnetic powder for magnetic recording media, but the so-called wet method uses metal ion compounds of Ba and Fe, and Go and Ni+ for coercive force control. Zn,
A method in which an alkali is added to a raw material mixture containing metal ion compounds such as Ti+ Sn, Zr, V, and In, reacted to obtain a coprecipitate, and the precipitate is fired at 900°C or higher (coprecipitation-calcination method) , a method of hydrothermally synthesizing the suspension containing the coprecipitate in an autoclave at a high temperature of 250°C or higher and under high pressure (hydrothermal method), and a comparison of the suspension of the coprecipitate at 250°C or lower. A fine barium ferrite crystal precursor material (hereinafter referred to as barium ferrite precursor) is obtained by hydrothermal synthesis at a relatively low temperature.
A method of firing at 50°C (hydrothermal firing method) is well known. However, compared to the coprecipitation-calcination method and the hydrothermal method, the hydrothermal-calcination method described above has less interparticle sintering and a decrease in saturation magnetization, and has relatively good dispersibility and filling properties. As mentioned above, there are few problems in equipment and operation under high temperature and high pressure, so there is an urgent need to put it into practical use.

一方、近時、磁気記録媒体の高記録密度化、高S/N化
、高出力化の指向はますます増大しており、これとあい
まって、粒子径が0.15μ以下、特に0.1μ以下の
いわゆる超微粒子径を有する一層微細なバリウムフェラ
イト磁性粉末が強く求められてきているが、前記水熱−
焼成法の適用によっても、前記の所望粒子径を有する微
細なバリウムフェライ)l性粉末を再現性よく工業的有
利に製造し得るには、未だ解決を要する問題点が少なく
ない。特にバリウムフェライト前駆体を生成する過程で
保磁力制御のために添加されるいわゆる置換成分元素量
を調節して所望の保磁力低下を図ろうとすると、得られ
るバリウムフェライト粒子の微粒子化が困難であるなど
、前記微粒子化を図る上でその解決が希求されている。
On the other hand, in recent years, there has been an increasing trend toward higher recording densities, higher signal-to-noise ratios, and higher outputs for magnetic recording media. There has been a strong demand for even finer barium ferrite magnetic powder having the so-called ultrafine particle size below.
Even by applying the calcination method, there are still many problems that need to be solved in order to produce fine barium ferrite powder having the desired particle size with good reproducibility and industrial advantage. In particular, when attempting to reduce the desired coercive force by adjusting the amount of so-called substitutional elements added to control coercive force in the process of producing barium ferrite precursors, it is difficult to make the resulting barium ferrite particles fine. A solution to these problems is desired in order to achieve the above-mentioned fine particle size.

〔発明の目的〕[Purpose of the invention]

本発明は、所定の保磁力を有しかつ飽和磁化が十分高く
、いわゆる超微粒子径のものであってしかも高分散性の
垂直磁化配向性に優れたバリウムフェライト微粒子より
なる磁気記録媒体用に好適な磁性微粉末を、比較的簡潔
な手段でもって安定性よく容易に得られる方法を提供す
ることにある。
The present invention is suitable for magnetic recording media made of barium ferrite fine particles having a predetermined coercive force and sufficiently high saturation magnetization, having a so-called ultrafine particle size, and having high dispersibility and excellent perpendicular magnetization orientation. The object of the present invention is to provide a method for easily obtaining magnetic fine powder with good stability using relatively simple means.

〔発明の概要〕[Summary of the invention]

本発明者等は、かねてより、磁気記録媒体の高記録密度
化に好適な保磁力制御元素置換型であっていわゆる超微
粒子系のバリウムフェライト磁性粉末を、工業的に容易
に製造する上で前記水熱−焼成法の適用に着目し、さら
に前記問題点の解決をはかるべく種々検討を進めた結果
、バリウムフェライト前駆体を生成する過程では、2価
金属元素の保磁力制御成分を特定量存在させ、一方、高
原子価元素の保磁力制御成分を存在させないかあるいは
特定量以下にし、かつ該前駆体を焼成するに際し前記高
原子価元素と、さらに必要に応じ2価元素を特定量存在
させることによって、バリウムフェライト磁性粉末にお
ける所望の保磁力制御と微粒子化とがともになし得られ
ることの知見を得、それにもとづいて本発明を完成した
ものである。すなわち、金属元素のモル比が1/6≧B
a/Fe+M、+Mz≧1/12 (但し、M、はCo
、 Nil Zn、 Cu、 Mg及びMnの群から選
ばれた元素の少なくとも1種、MlはTi、 Sn、 
Zr、 Ge、 Nb及び■の群から選ばれた元素の少
なくとも1種〕であってかつMIがPe1モルに対して
0.01〜0.2モルでMlがM、に対して0〜0.5
モルの割合となるように選ばれた各金属元素を含みpt
+が11以上であるアルカリ性懸濁液を、60〜250
℃で加熱処理してバリウムフェライト前駆体を得、次い
で得られた前駆体にMlもしくはMl及びM、を、Fe
1モルに対してM、とMlの総和が0.3モル以下の割
合となるようにしてMlもしくはMlおよびMlの金属
元素化合物を添加処理し、しかる後このものを650〜
1ooo℃で焼成して、バリウムフェライト結晶粒子と
することを特徴とする磁気記録用強磁性微粉末の製造方
法である。
The inventors of the present invention have long discovered the above-mentioned method for industrially easily manufacturing so-called ultrafine particle-based barium ferrite magnetic powder, which is a coercive force control element substitution type suitable for increasing the recording density of magnetic recording media. Focusing on the application of the hydrothermal sintering method and conducting various studies to solve the above problems, we found that in the process of producing a barium ferrite precursor, a specific amount of a coercive force control component of a divalent metal element is present. On the other hand, the coercive force control component of the high valence element is not present or is kept below a specific amount, and when the precursor is fired, the high valence element and, if necessary, a divalent element are present in a specific amount. As a result, the present invention has been completed based on the knowledge that desired coercive force control and fine particle formation in barium ferrite magnetic powder can be achieved together. That is, the molar ratio of the metal element is 1/6≧B
a/Fe+M, +Mz≧1/12 (However, M is Co
, Nil, Zn, Cu, at least one element selected from the group of Mg and Mn, Ml is Ti, Sn,
at least one element selected from the group consisting of Zr, Ge, Nb and (2)], and MI is 0.01 to 0.2 mol per mol of Pe and Ml is 0 to 0. 5
Contains each metal element selected to have a molar ratio of pt
+ is 11 or more, the alkaline suspension is 60 to 250
A barium ferrite precursor is obtained by heat treatment at ℃, and then Ml or Ml and M is added to the obtained precursor, and Fe
Ml or a metal element compound of Ml and Ml is added so that the sum of M and Ml is 0.3 mol or less per 1 mol, and then this product is heated to 650~
This is a method for producing ferromagnetic fine powder for magnetic recording, which is characterized by firing at 100° C. to obtain barium ferrite crystal particles.

本発明方法において、まず、バリウム化合物と鉄化合物
及び置換成分用添加元素として、M、金属元素(CO’
l Nil Zn+ Cu+ MgまたはMn) 、M
z金属元素(Tt、 Sn+ Zr、 Ge、 Nbま
たは■)を含む化合物を、それぞれ所定量含有する水溶
液を作成する。これらの化合物は、種々の水溶性化合物
を使用し得るが、好ましくは塩化物、硝酸塩などである
。前記Ba化合物は、Baがモル比でPe+M++Mt
に対して176〜1/12、好ましくは177〜1/1
0である。該モル比が前記範囲より小さくなると得られ
るバリウムフェライト結晶粒子粉末は粗大化し易く、分
散性の低下、記録媒体における配向性、表面平滑性など
の特性の低下がさけられない。また該モル比が前記範囲
より大きくなるとマグネトブランバイト型結晶と異なる
結晶相が混在したりして飽和磁化の低下や形状の不均一
化がさけられなかったりして好ましくない。しかして置
換成分として添加する元素M1は、Fe1モルに対して
、0.01〜0.2モル、好ましくは0.03〜0.1
5モルであり、該モル数が前記範囲より小さい場合は、
バリウムフェライト前駆体の微細化が十分はかられず、
かつ粒度分布の広がりが避けられない。また該モル比が
前記範囲より大きい場合は、垂直磁化特性が損なわれ易
く垂直磁気記録媒体としての所望の性能を得ることが難
しくなる。さらに前記添加元素M2をM、と併用する場
合は、M、1モルに対して、Mlが0.5モル以下、好
ましくは0.3モル以下である。Mtのモル数が前記範
囲より大きい場合は、バリウムフェライト前駆体の所望
の微細化が十分はかれな(なる。前記のM、及びMlと
しては、特にGo及びTtであるのが好ましい。
In the method of the present invention, first, M, a metal element (CO'
l Nil Zn+ Cu+ Mg or Mn), M
An aqueous solution containing a predetermined amount of each compound containing a Z metal element (Tt, Sn+Zr, Ge, Nb or ■) is prepared. Various water-soluble compounds can be used as these compounds, but chlorides, nitrates, etc. are preferable. In the Ba compound, Ba has a molar ratio of Pe+M++Mt
176 to 1/12, preferably 177 to 1/1
It is 0. When the molar ratio is smaller than the above range, the obtained barium ferrite crystal particles tend to become coarse, and a decrease in dispersibility and properties such as orientation and surface smoothness in the recording medium are unavoidable. Moreover, if the molar ratio is larger than the above range, crystal phases different from the magnetoblanbite type crystals may coexist, making it undesirable to avoid a decrease in saturation magnetization and non-uniformity of the shape. Therefore, the element M1 added as a replacement component is 0.01 to 0.2 mol, preferably 0.03 to 0.1 mol, per 1 mol of Fe.
5 moles, and if the number of moles is smaller than the above range,
The barium ferrite precursor cannot be refined sufficiently,
Moreover, broadening of the particle size distribution is unavoidable. Furthermore, if the molar ratio is larger than the above range, the perpendicular magnetization characteristics are likely to be impaired, making it difficult to obtain the desired performance as a perpendicular magnetic recording medium. Further, when the additive element M2 is used in combination with M, Ml is 0.5 mol or less, preferably 0.3 mol or less per 1 mol of M. If the number of moles of Mt is larger than the above range, the desired refinement of the barium ferrite precursor will not be sufficiently achieved. As M and Ml, Go and Tt are particularly preferred.

本発明方法において、前記金属化合物のアルカリ性懸濁
液を調製するには、金属化合物水溶液に、例えばNaO
H,KOH,NHaO)1などの水溶液を接触、混合す
る。前記アルカリ性懸濁液のアルカリ濃度は′f1離O
H基準で1.5モル/It以上好ましくは2モル/e以
上であるのが生成粒子の微細化、分散性の向上を図る上
で一層好ましい。次にこのようにし得られたアルカリ性
懸濁液を加熱処理するには、該懸濁液を加熱装置付の反
応容器中あるいはオートクレーブなどの圧力容器中で6
0〜250℃、好ましくは100〜200℃で加熱反応
処理してバリウムフェライト前駆体を生成させる。前記
の加熱処理は、処理温度が前記範囲より低きにすぎると
反応の進行が遅く、また前記範囲より高きにすぎると、
粗大粒子形成、粒度分布の広がりが避けられなかったり
して好ましくない。
In the method of the present invention, to prepare the alkaline suspension of the metal compound, for example, NaO
Contact and mix aqueous solutions such as H, KOH, NHaO)1. The alkaline concentration of the alkaline suspension is 'f1 separation O
It is more preferable that the amount is 1.5 mol/It or more, preferably 2 mol/e or more, based on H, in order to make the produced particles finer and improve their dispersibility. Next, in order to heat-treat the alkaline suspension thus obtained, the suspension is heated in a reaction vessel equipped with a heating device or in a pressure vessel such as an autoclave for 6 hours.
A heating reaction treatment is performed at 0 to 250°C, preferably 100 to 200°C to produce a barium ferrite precursor. In the heat treatment, if the treatment temperature is too low than the above range, the reaction progresses slowly, and if the temperature is too high than the above range,
This is undesirable because formation of coarse particles and broadening of particle size distribution are unavoidable.

本発明方法において、前記のようにして得られたバリウ
ムフェライト前駆体を焼成する場合はこのままでは保磁
力の制御が不十分であったり、垂直磁化特性が損われ易
かったりするので、M2金属化合物もしくはMlとM、
の金属化合物を併用して添加処理する。添加処理は種々
の方法によっておこなうことができるが、例えば前記の
加熱処理して得られたバリウムフェライト前駆体含有ス
ラリーを濾過し、得られた濾過ケーキをリパルプして水
性スラリー化した後、このものに前記M2゜Mlの水溶
性金属化合物を添加し、次いでこのスラリーを1発乾固
して該前駆体粒子表面に前記金属化合物を処理せしめた
り、あるいは前記水溶性金属化合物を添加した前駆体水
性スラリーに例えばアルカリを添加してpHを調節して
該前駆体粒子表面に前記金属の水酸化物沈澱を析出せし
めて被着するなどによっておこなうことができる。なお
前記金属の水溶性化合物としては種々なるものを使用し
得るが、例えば塩化物、硝酸塩などを挙げることができ
る。前記M2金属化合物、もしくはM2とM、の金属化
合物を併用する場合のバリウムフェライト前駆体への添
加量は、Fe1モルに対してM、とM2の総和が0.3
モル以下、好ましくは 0.25モル以下の割合で処理
する、金属化合物の添加量が前記範囲より多きにすぎる
と飽和磁化が低下したり垂直磁化特性が損われ易かった
りして好ましくない。
In the method of the present invention, when the barium ferrite precursor obtained as described above is fired, the coercive force may not be sufficiently controlled or the perpendicular magnetization property may be easily damaged. Ml and M,
Addition treatment is carried out using a combination of metal compounds. The addition treatment can be carried out by various methods, but for example, after filtering the barium ferrite precursor-containing slurry obtained by the above-mentioned heat treatment and repulping the obtained filter cake to form an aqueous slurry. The water-soluble metal compound of M2°Ml is added to the slurry, and then this slurry is dried once to treat the surface of the precursor particles with the metal compound, or the aqueous precursor to which the water-soluble metal compound is added is This can be carried out by, for example, adding an alkali to the slurry to adjust the pH and depositing a hydroxide precipitate of the metal on the surface of the precursor particles. Various water-soluble compounds of the metals can be used, and examples include chlorides and nitrates. When using the M2 metal compound or a combination of M2 and M, the amount added to the barium ferrite precursor is such that the sum of M and M2 is 0.3 per mole of Fe.
If the amount of the metal compound added is too much above the above range, it is not preferable because the saturation magnetization is likely to decrease or the perpendicular magnetization characteristics are likely to be impaired.

本発明方法において、前記の前駆体にM2もしくはM2
とMlの金属化合物の添加処理をおこなった前駆体処理
物を、焼成処理して板状のバリウムフェライト結晶粒子
とするには、650〜1000℃、好ましくは700〜
900℃で焼成する。焼成温度が前記の範囲より低きに
すぎるとフェライト粒子の結晶化が十分進まず飽和磁化
が低かったりし、また前記範囲より高きにすぎるとフェ
ライト粒子相互の固着や粒子焼結が起り凝集塊が形成さ
れ塗料化での分散性が大幅に損なわれ易かったりする。
In the method of the present invention, the precursor is M2 or M2
In order to obtain plate-shaped barium ferrite crystal particles by firing the precursor treated product which has been subjected to the addition treatment of metal compounds of and Ml, the temperature is 650 to 1000°C, preferably 700 to
Fire at 900°C. If the firing temperature is too low than the above range, the crystallization of the ferrite particles will not proceed sufficiently and the saturation magnetization may be low, and if the firing temperature is too high than the above range, the ferrite particles will stick to each other and the particles will sinter, resulting in agglomerates. The dispersibility of paints is likely to be significantly impaired.

前記焼成は、回転炉、流動層炉などの種々の形式の装置
を使用することができる。また、粒子焼結の防止、形状
制御あるいは磁気特性の向上等をさらにはかるために、
前記焼成処理に先立って前記前駆体に、例えばケイ素化
合物やリン化合物を被着処理したり、あるいは例えばア
ルカリ金属のハロゲン化物や硫酸塩などを添加混合した
りして焼成してもよい。
For the calcination, various types of equipment such as a rotary furnace and a fluidized bed furnace can be used. In addition, in order to further prevent particle sintering, control shape, and improve magnetic properties,
Prior to the firing process, the precursor may be coated with, for example, a silicon compound or a phosphorus compound, or an alkali metal halide or sulfate may be added and mixed therein, followed by firing.

以下に実施例及び比較例を挙げて本発明をさらに説明す
る。
The present invention will be further explained by giving examples and comparative examples below.

〔実施例〕〔Example〕

実施例1 1モル/lのBaC1,水溶液150mj2.1モル/
2のFeC13水溶液1030 ml、 1モル/2の
CoC1t水溶液85n+6を混合し、次いでこの混合
液を10モル/1のNaOH水溶液197TmJ中に添
加して褐色沈澱を含むアルカリ性懸濁液を調製した(B
a/ (pe+M++Mg)モル比:1/7.43 、
M+/Feモル比:0.083、?h/M+モル比:0
〕ひきつづいて、該懸濁液をオートクレーブに入れ15
0℃で3時間加熱して前駆体を生成させた。
Example 1 1 mol/l BaCl, aqueous solution 150 mj 2.1 mol/l
1030 ml of a FeC13 aqueous solution of 2 and 85n+6 of a 1 mol/2 CoClt aqueous solution were mixed, and then this mixture was added to 197 TmJ of a 10 mol/1 NaOH aqueous solution to prepare an alkaline suspension containing a brown precipitate (B
a/ (pe+M++Mg) molar ratio: 1/7.43,
M+/Fe molar ratio: 0.083, ? h/M+molar ratio: 0
]Subsequently, put the suspension into an autoclave 15
The precursor was generated by heating at 0° C. for 3 hours.

次いで得られた該バリウムフェライト前駆体を濾過水洗
し水にてリパルプした。このスラリーに1モル/lのT
iC+l’a水溶液85mgと、1モル/lのNaOH
水溶液340ae1を添加して、バリウムフェライト前
駆体にTi化合物を処理した((L+Mt)/Feモル
比:0.165)。
Next, the obtained barium ferrite precursor was filtered, washed with water, and repulped with water. This slurry contains 1 mol/l of T.
85 mg of iC+l'a aqueous solution and 1 mol/l NaOH
Aqueous solution 340ae1 was added to treat the barium ferrite precursor with a Ti compound ((L+Mt)/Fe molar ratio: 0.165).

次にTiを処理したバリウムフェライト前駆物質を濾過
水洗して水でリパルプし、BaCAz水溶液をBaC1
g/バリウムフェライト前駆体が重量比で171になる
ように加えた後110℃で蒸発乾固した。
Next, the Ti-treated barium ferrite precursor was filtered, washed with water, and repulped with water, and the BaCAz aqueous solution was converted into BaC1
g/barium ferrite precursor was added at a weight ratio of 171 and then evaporated to dryness at 110°C.

しかる後、該前駆体粒子粉末を900℃で1時間焼成し
てバリウムフェライト結晶粒子粉末を得た。次いで得ら
れた該粉末を酢酸水溶液中に浸漬した後濾過水洗したも
のを乾燥して本発明の強磁性微粉末を得た。この試料を
(A)とする。
Thereafter, the precursor particles were fired at 900° C. for 1 hour to obtain barium ferrite crystal particles. Next, the obtained powder was immersed in an acetic acid aqueous solution, filtered, washed with water, and dried to obtain a ferromagnetic fine powder of the present invention. This sample is referred to as (A).

実施例2 1モル/1のBaC1z水溶液150m4.1モル/l
のPeCl!x水溶液1030 IIl 、 1モル/
lのCoCll z水溶液60m1!を混合し、次いで
この混合液を10モル/lのNa0)l水溶液1942
mj!中に添加して褐色沈澱を含むアルカリ性懸濁液を
調製した(Ba/ (Fe+Mt+Mz)モル比:1/
7.27 、M+/Feモル比:0.058、?b/M
+ モル比:0〕ひきつづいて、該懸濁液をオートクレ
ーブに入れ150℃で3時間加熱してバリウムフェライ
ト前駆体を生成させた。
Example 2 150 m of 1 mol/1 BaClz aqueous solution 4.1 mol/l
PeCl! x aqueous solution 1030 IIl, 1 mol/
1 of CoCll z aqueous solution 60ml! This mixture was then mixed with a 10 mol/l Na0)l aqueous solution 1942
mj! (Ba/(Fe+Mt+Mz) molar ratio: 1/
7.27, M+/Fe molar ratio: 0.058, ? b/M
+ Molar ratio: 0] Subsequently, the suspension was placed in an autoclave and heated at 150° C. for 3 hours to produce a barium ferrite precursor.

次いで得られた該バリウムフェライト前駆体を濾過水洗
し水にてリパルプした。このスラリーに、1モル/1の
TiC1,水溶液851I+1と、1モル/lのCoC
1,水溶液25nl及び1モル/lのNaOH水溶液水
溶液390査j!して、バリウムフェライト前駆体にC
O及びTi化合物を処理したDM1+M2)/Feモル
比:0.165)。
Next, the obtained barium ferrite precursor was filtered, washed with water, and repulped with water. To this slurry, 1 mol/l TiC1, aqueous solution 851I+1 and 1 mol/l CoC
1, 25 nl of aqueous solution and 390 investigations of 1 mol/l NaOH aqueous solution! Then, C was added to the barium ferrite precursor.
DM1+M2)/Fe molar ratio treated with O and Ti compounds: 0.165).

しかる後実施例1の場合と同様の方法により処理して本
発明の強磁性微粉末を得た。この試料を(B)  とす
る。
Thereafter, it was treated in the same manner as in Example 1 to obtain a ferromagnetic fine powder of the present invention. This sample is referred to as (B).

実施例3 実施例1と同様の方法により、アルカリ性懸濁液をオー
トクレーブに入れ加熱してバリウムフェライト前駆体を
得、次いで該前駆体にTiCj!、水′溶液の代りに1
モル/IlのSnCβ4水溶液85m (1を添加した
((Ml+Mz)/Feモル比:0.165)ことのほ
かは、実施例1の場合と同様の方法により処理して本発
明の強磁性微粉末を得た。この試料を(C)とする。
Example 3 In the same manner as in Example 1, an alkaline suspension was placed in an autoclave and heated to obtain a barium ferrite precursor, and then TiCj! , 1 instead of an aqueous solution
A ferromagnetic fine powder of the present invention was obtained by processing in the same manner as in Example 1, except that 85 m of SnCβ4 aqueous solution of mol/Il was added ((Ml+Mz)/Fe molar ratio: 0.165). This sample is designated as (C).

実施例4 実施例1と同様の方法により、アルカリ性懸濁液をオー
トクレーブに入れ加熱してバリウムフェライト前駆体を
得、次いで該前駆体にTiCl4の代りに1モル/1の
Zr0C1! 、水溶液85mJを添加した((M1+
M2)/Feモル比:0.165)ことのほかは、実施
例1の場合と同様の方法により処理して本発明の強磁性
微粉末を得た。この試料を(D)とする。
Example 4 In the same manner as in Example 1, a barium ferrite precursor was obtained by heating an alkaline suspension in an autoclave, and then adding 1 mol/1 Zr0C1! instead of TiCl4 to the precursor. , 85 mJ of aqueous solution was added ((M1+
The ferromagnetic fine powder of the present invention was obtained by the same method as in Example 1 except that M2)/Fe molar ratio: 0.165). This sample is designated as (D).

実施例5 1モル/lのBaCA、水溶液150mj!、1モル/
lのFeCl3水溶液10103O!、1モル/1のM
nCl を水溶130mAを混合し、次いでこの混合液
を10モル/lのNaOH水溶液1900mff中に添
加して褐色沈澱を含むアルカリ性!!!濁液を調製した
(Ba/ (Fe+M1+M2)モル比:1/7.07
 、M1/Feモル比:0.029、M2/M1モル比
二〇〕ひきつづいて該懸濁液をオートクレーブに入れ1
50℃で3時間加熱してバリウムフェライト前駆体を生
成させた。
Example 5 1 mol/l BaCA, aqueous solution 150 mj! , 1 mol/
l of FeCl3 aqueous solution 10103O! , 1 mol/1 M
nCl was mixed with 130 mA of an aqueous solution, and then this mixture was added to 1900 mff of a 10 mol/l NaOH aqueous solution to form an alkaline solution containing a brown precipitate! ! ! A suspension was prepared (Ba/(Fe+M1+M2) molar ratio: 1/7.07
, M1/Fe molar ratio: 0.029, M2/M1 molar ratio 20] Subsequently, the suspension was placed in an autoclave and 1
A barium ferrite precursor was produced by heating at 50° C. for 3 hours.

次いで該前駆体に、1モル/7!のTiCA’a水溶液
85I111と、1モル/1のCoCI!z水溶液85
m1及び1モル/1のNaOH水溶液510n+1!を
添加しく(M1+M2)/Feモル比:0.194’)
 、!、かる後実施例1の場合と同様の方法により処理
して本発明の強磁性微粉末を得た。この試料を(E)と
する。
Then add 1 mole/7! to the precursor. TiCA'a aqueous solution 85I111 and 1 mol/1 CoCI! z aqueous solution 85
m1 and 1 mol/1 NaOH aqueous solution 510n+1! (M1+M2)/Fe molar ratio: 0.194')
,! , and then treated in the same manner as in Example 1 to obtain a ferromagnetic fine powder of the present invention. This sample is designated as (E).

実施例6 1モル/1のBaCl 2水溶液150m1!、1モル
/lのFe(J、水溶液1030m/、1モル/lの(
:uCI! z水溶液60a+47を混合し、次いでこ
の混合液を10モル/lのNaOH水溶液水溶液194
2中j2中して褐色沈澱を含むアルカリ性懸濁液を調製
した。(Ba/(Fe+Mt+Mz)モル比:1/7.
27 、M1/Feモル比:0.058、Mt/M1モ
ル比二〇〕ひきつづいて該懸濁液をオートクレーブに入
れ150℃で3時間加熱してバリウムフェライト前駆体
を生成させた。
Example 6 150 ml of 1 mol/1 BaCl 2 aqueous solution! , 1 mol/l Fe (J, aqueous solution 1030 m/, 1 mol/l (
:uCI! z aqueous solution 60a+47, and then this mixture was mixed with 10 mol/l NaOH aqueous solution 194
An alkaline suspension containing a brown precipitate was prepared. (Ba/(Fe+Mt+Mz) molar ratio: 1/7.
27, M1/Fe molar ratio: 0.058, Mt/M1 molar ratio 20] Subsequently, the suspension was placed in an autoclave and heated at 150°C for 3 hours to produce a barium ferrite precursor.

次いで該前駆体に、1モル/2のTiC1,水溶液85
m1と、1モル/1のCoC&、水溶液85rnl及び
1モル/lのNaOH水溶液水溶液510壱j!しく(
M1+Mz)/Feモル比:0.223) 、Lかる後
実施例1の場合と同様の方法により処理して本発明の強
磁性微粉末を得た。この試料を(P)とする。
The precursor was then treated with 1 mol/2 TiCl, an aqueous solution of 85
ml, 1 mol/l of CoC&, 85 rnl of aqueous solution and 510 rnl of 1 mol/l of NaOH aqueous solution! Shikaku(
M1+Mz)/Fe molar ratio: 0.223), and then treated in the same manner as in Example 1 to obtain a ferromagnetic fine powder of the present invention. This sample is designated as (P).

実施例7 1モル/lのBaC1,水溶液150+ll、1モル/
lのFeCl 3水溶液10103O,1モル/l!の
CoCl 、水溶液85m1.1モル/lのTiCj!
a水溶液20II11を混合し、次いでこの混合液を1
0モル/1のNa0)1水溶液2013IIIl中に添
加して褐色の沈澱を含むアルカリ性懸濁液を調製した(
Ba/(Fe+M1+M2)モル比:1/7.57 、
Mt/Fe・モ/Lz比:0.083、Mz/?L モ
ル比:0.24 )。ひきつづいて該懸濁液をオートク
レーブに入れ、150℃で3時間加熱してバリウムフェ
ライト前駆体を生成させた。
Example 7 1 mol/l BaCl, 150+ll aqueous solution, 1 mol/l
l of FeCl 3 aqueous solution 10103O, 1 mol/l! of CoCl , aqueous solution 85 ml 1.1 mol/l of TiCj!
a Mix 20II11 of aqueous solution, then add 1
An alkaline suspension containing a brown precipitate was prepared by adding 0 mol/1 Na0)1 aqueous solution 2013III1 (
Ba/(Fe+M1+M2) molar ratio: 1/7.57,
Mt/Fe・Mo/Lz ratio: 0.083, Mz/? L molar ratio: 0.24). Subsequently, the suspension was placed in an autoclave and heated at 150° C. for 3 hours to produce a barium ferrite precursor.

次いで得られた該バリウムフェライト前駆体を、濾過水
洗し、水にてリパルプした。このスラリーに、1モル/
ItのTick<水溶液65n/!と、1モル/1のN
a011水溶液2601111を添加してバリウムフェ
ライト前駆体にTi化合物を処理した( (M I +
M2) /Feモル比:0.165)。
Next, the obtained barium ferrite precursor was filtered, washed with water, and repulped with water. In this slurry, 1 mol/
It's Tick<Aqueous solution 65n/! and 1 mol/1 N
The barium ferrite precursor was treated with a Ti compound by adding a011 aqueous solution 2601111 ((M I +
M2) /Fe molar ratio: 0.165).

しかる後、実施例1の場合と同様の方法により、処理し
て本発明の強磁性微粉末を得た。この試料を(G)  
とする。
Thereafter, it was treated in the same manner as in Example 1 to obtain the ferromagnetic fine powder of the present invention. This sample (G)
shall be.

比較例1 1モル/ItのBaC1、水溶液150nL7.1モル
/lのFeC1,水溶液1030 ml 、 1モル/
lのCoCl z水溶液85m1,1モル/lのTiC
jl!4水溶液8511/を混合し、次いでこの混合液
を10モル/lのN a 011水溶液2130nj!
中に添加して褐色沈澱を含むアルカリ性懸濁液を8因襲
した(Ba/ (Fe+M1+M2)モル比=l/8、
M、/Feモル比:0.083、M2/M、モル比:1
.0) 、ひきつづいて該懸濁液をオートクレーブに入
れ、150℃で3時間加熱してバリウムフェライト前駆
体を生成させた。
Comparative Example 1 1 mol/It BaCl, 150 nL aqueous solution 7.1 mol/l FeCl, 1030 ml aqueous solution, 1 mol/l
85 ml of CoCl z aqueous solution, 1 mol/l of TiC
jl! 4 aqueous solution 8511/l, and then this mixture was mixed with a 10 mol/l Na 011 aqueous solution 2130nj!
(Ba/(Fe+M1+M2) molar ratio = l/8,
M, /Fe molar ratio: 0.083, M2/M, molar ratio: 1
.. 0) Subsequently, the suspension was placed in an autoclave and heated at 150° C. for 3 hours to produce a barium ferrite precursor.

次いで実施例1において該バリウムフェライト前駆体に
Ti化合物を処理しなかったことのほかは、実施例1と
同様の方法により処理して((MI+M2)/Feモル
比:0.165)比較試料(H)を得た。
Next, a comparative sample ((MI+M2)/Fe molar ratio: 0.165) was obtained by processing in the same manner as in Example 1, except that the barium ferrite precursor was not treated with a Ti compound in Example 1. H) was obtained.

比較例2 比較例1において、1モル/7!のTiCl4の代りに
1モル/1のZr0Cj2z 85 mlを(Ba/(
Fe+M1+Mz)モル比=l/8、M+/Feモル比
:0.083、M27MIモル比:1.O)ことのほか
は比較例1の場合と同様に処理して比較試料(J)を得
た。((M++M□)/Peモル比:0.165) 比較例3 比較例1において、1モル/lのBaC#z水溶液、F
eCj!3水溶液、CoC1,水溶液及びTic 1 
Comparative Example 2 In Comparative Example 1, 1 mol/7! 85 ml of 1 mol/1 Zr0Cj2z instead of TiCl4 (Ba/(
Fe+M1+Mz) molar ratio = l/8, M+/Fe molar ratio: 0.083, M27MI molar ratio: 1. O) A comparative sample (J) was obtained in the same manner as in Comparative Example 1 except for the above. ((M++M□)/Pe molar ratio: 0.165) Comparative Example 3 In Comparative Example 1, 1 mol/l BaC#z aqueous solution, F
eCj! 3 aqueous solution, CoC1, aqueous solution and Tic 1
.

水溶液の所定量添加に加え、さらに1モル/l!のMn
Cj! 、水溶液30m1を混合し、次いでこの混合液
を10モル/iのNaOH水溶液2172++4!中に
添加して褐色沈澱を含むアルカリ性懸濁液を調製した(
Ba/(Fe+M1+M2)モル比:1/8.2、M 
、 /Feモル比: 0.11SMz/L モル比:0
.74 、(M1+M2)/Feモル比:0.194)
ことのほかは、比較例1の場合と同様に処理して比較試
料(K)を得た。
In addition to adding a predetermined amount of aqueous solution, an additional 1 mol/l! Mn of
Cj! , 30 ml of aqueous solution, and then this mixture was mixed with 10 mol/i NaOH aqueous solution 2172++4! An alkaline suspension containing a brown precipitate was prepared by adding
Ba/(Fe+M1+M2) molar ratio: 1/8.2, M
, /Fe molar ratio: 0.11SMz/L molar ratio: 0
.. 74, (M1+M2)/Fe molar ratio: 0.194)
Other than that, the same treatment as in Comparative Example 1 was carried out to obtain a comparative sample (K).

比較例4 比較例1において、1モル/lのBaC1z 水?S液
、FeC13水溶液、CoCl 2水溶液及びTiCl
4水溶液の所定量添加に加え、さらに1モル/1のCu
Cl 2水溶液60mj+を混合し、次いでこの混合液
を10モル/lのNaOH水溶液水溶液2214中j2
中して褐色沈澱を含むアルカリ性懸濁液を調製した(B
a/(Fe十M+十Mg)モル比:1/8.4、M+/
Feモル比: 0.140 、M2/Ml モル比:0
.586、(M1+M2)/Feモル比: 0.223
 )ことのほかは、比較例1の場合と同様に処理して比
較試料(L)を得た。
Comparative Example 4 In Comparative Example 1, 1 mol/l of BaClz water? S liquid, FeC13 aqueous solution, CoCl2 aqueous solution and TiCl
In addition to adding a predetermined amount of 4 aqueous solution, 1 mol/1 Cu
Mix 60 mj+ of aqueous Cl2 solution and then add this mixture to 2214 mj+ of 10 mol/l aqueous NaOH solution.
An alkaline suspension containing a brown precipitate was prepared (B
a/(10M Fe+10Mg) molar ratio: 1/8.4, M+/
Fe molar ratio: 0.140, M2/Ml molar ratio: 0
.. 586, (M1+M2)/Fe molar ratio: 0.223
) Except for this, a comparative sample (L) was obtained by processing in the same manner as in Comparative Example 1.

前記試料(八)〜(H)及び(J)〜(L)について常
法により平均粒径(Dp :電子顕微鏡法)、保磁力(
!lc)、飽和磁化(σS)をそれぞれ測定し、これら
の結果を表1に示した。
The average particle diameter (Dp: electron microscopy), coercive force (
! lc) and saturation magnetization (σS) were measured, and the results are shown in Table 1.

また本発明の試料(八)及び比較試料(1()の電子w
A微鏡写真をそれぞれ図1及び図2に示した。
In addition, the electron w of the sample (8) of the present invention and the comparative sample (1 ())
Microscopic photographs of A are shown in FIGS. 1 and 2, respectively.

なお、前記実施例及び比較例で得られた各試料は、X線
回折の結果、いづれもマグネトブランバイト型バリウム
フェライトであった。また前記各試料を電子顕微鏡で観
察すると、粒子形状は板状のものであった。
As a result of X-ray diffraction, the samples obtained in the Examples and Comparative Examples were all magnetobrambite barium ferrite. Further, when each of the samples was observed using an electron microscope, the particle shape was plate-like.

表1の結果および図1,2の電子顕微鏡写真から明らか
なようにバリウムフェライト結晶粒子の構成元素を含む
アルカリ性懸濁液の加熱あるいは水熱処理時にM5元素
を存在させ、M2元素についてはこれを存在させないか
あるいは特定の範囲に制御することによりバリウムフェ
ライト結晶粒子が著しく微細化され粒度分布がよく磁気
記録用に適した保磁力と高い飽和磁化を持つ強磁性微粉
末が得られることがわかる。
As is clear from the results in Table 1 and the electron micrographs in Figures 1 and 2, the M5 element is present during heating or hydrothermal treatment of the alkaline suspension containing the constituent elements of barium ferrite crystal particles, and the M2 element is not present. It can be seen that by not allowing or controlling the barium ferrite crystal grains within a specific range, it is possible to obtain fine ferromagnetic powder with a good particle size distribution, a coercive force suitable for magnetic recording, and a high saturation magnetization.

なお、前記の実施例及び比較例の各試料を、塩ビル酢ビ
共重合体樹脂を主体とするバインダーに分散させ磁性塗
料を調製し、常法によりポリエステルフィルム上に塗布
配向させて磁気記録媒体を作成し緒特性をみたところ、
本発明のものは、配向性及び表面平滑性に優れるもので
あった。
A magnetic coating material was prepared by dispersing each sample of the above-mentioned Examples and Comparative Examples in a binder mainly composed of vinyl chloride-vinyl acetate copolymer resin, and the magnetic coating material was coated and oriented on a polyester film by a conventional method to form a magnetic recording medium. I created it and looked at its characteristics,
The product of the present invention was excellent in orientation and surface smoothness.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、所定の保磁力を有しか゛つ飽和磁化が
十分高く、いわゆる超微粒径のものであってしもか高分
散性の垂直位化配向性に優れたバリウムフェライト微粒
子よりなる磁気記録媒体用に好適な磁性粉末を得ること
ができるものである。
According to the present invention, the barium ferrite fine particles have a predetermined coercive force, have a sufficiently high saturation magnetization, have a so-called ultra-fine particle size, and are highly dispersible and have excellent vertical orientation. This makes it possible to obtain magnetic powder suitable for magnetic recording media.

また本発明方法は、バリウムフェライ) 653性粉末
の基本成分のうちFeの一部を特定の元素で置換して所
望の保磁力制御とかつ微粒子化とを、比較的Wi潔な手
段でもって安定性よくともになし得られるものであり、
甚だ工業的実施上有利な方法である。
In addition, the method of the present invention replaces a part of Fe among the basic components of the barium ferrite (653) powder with a specific element to achieve stable coercive force control and fine particle formation using a relatively clean means. It is something that can be achieved together harmoniously,
This is a very advantageous method for industrial implementation.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明における試料(A)の結晶構造を示す図面
に代える電子w4ait鏡写真(60,000倍)、図
2は比較例における比較試料(11)の結晶構造を示す
図面に代える電子顕微鏡写真(60,000倍)であし
FIG. 1 is an electron w4ait mirror photograph (60,000x) showing the crystal structure of sample (A) in the present invention, and FIG. 2 is an electron microscope showing the crystal structure of comparative sample (11) in the comparative example. Photo (60,000x)

Claims (1)

【特許請求の範囲】 金属元素のモル比が1/6≧Ba/Fe+M_1+M_
2≧1/12〔但し、M_1、はCo、Ni、Zn、C
u、Mg及びMnの群から選ばれた元素の少なくとも1
種、M_2はTi、Sn、Zr、Ge、Nb及びVの群
から選ばれた元素の少なくとも1種〕であってかつM_
1、がFe1モルに対して0.01〜0.2モルでM_
2がM_1に対して0〜0.5モルの割合となるように
選ばれた各金属元素を含みpHが11以上であるアルカ
リ性懸濁液を、60〜250℃で加熱処理してバリウム
フェライト前駆体を得、次いで得られた前駆体にM_2
、もしくはM_2及びM_1を、Fe1モルに対してM
_1とM_2の総和が0.3モル以下の割合となるよう
にしてM_2もしくはM_2およびM_1の金属元素化
合物を添加処理し、しかる後このものを650〜100
0℃で焼成して、バリウムフェライト結晶粒子とするこ
とを特徴とする磁気記録用強磁性微粉末の製造方法。
[Claims] The molar ratio of the metal elements is 1/6≧Ba/Fe+M_1+M_
2≧1/12 [However, M_1 is Co, Ni, Zn, C
At least one element selected from the group of u, Mg and Mn
species, M_2 is at least one element selected from the group of Ti, Sn, Zr, Ge, Nb and V] and M_
1 is 0.01 to 0.2 mol per mol of Fe, and M_
An alkaline suspension having a pH of 11 or higher and containing metal elements selected such that 2 is 0 to 0.5 mole relative to M_1 is heated at 60 to 250°C to form a barium ferrite precursor. M_2 to the obtained precursor
, or M_2 and M_1 are M for 1 mole of Fe.
M_2 or the metal element compound of M_2 and M_1 is added so that the sum of _1 and M_2 is 0.3 mol or less, and then this product is
A method for producing ferromagnetic fine powder for magnetic recording, which comprises firing at 0°C to obtain barium ferrite crystal particles.
JP62082545A 1987-04-03 1987-04-03 Method for producing ferromagnetic fine powder for magnetic recording Expired - Lifetime JPH0821493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082545A JPH0821493B2 (en) 1987-04-03 1987-04-03 Method for producing ferromagnetic fine powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082545A JPH0821493B2 (en) 1987-04-03 1987-04-03 Method for producing ferromagnetic fine powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS63248104A true JPS63248104A (en) 1988-10-14
JPH0821493B2 JPH0821493B2 (en) 1996-03-04

Family

ID=13777470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082545A Expired - Lifetime JPH0821493B2 (en) 1987-04-03 1987-04-03 Method for producing ferromagnetic fine powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0821493B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369717A (en) * 1986-09-12 1988-03-29 Toda Kogyo Corp Plate ba ferrite particulate powder for magnetic recording and its production
JPS63139018A (en) * 1986-11-27 1988-06-10 Toda Kogyo Corp Production of fine platy ba ferrite powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369717A (en) * 1986-09-12 1988-03-29 Toda Kogyo Corp Plate ba ferrite particulate powder for magnetic recording and its production
JPS63139018A (en) * 1986-11-27 1988-06-10 Toda Kogyo Corp Production of fine platy ba ferrite powder

Also Published As

Publication number Publication date
JPH0821493B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP5403278B2 (en) Hexagonal ferrite particle powder and magnetic recording medium
KR900007482B1 (en) Plate-like barium ferrite particles for magnetic recording and process for producing the same
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
US4529524A (en) Process for producing plate-like barium ferrite particles for magnetic recording
EP0124953B1 (en) Acicular ferromagnetic alloy particles for use in magnetic recording media
JPH033361B2 (en)
KR100445590B1 (en) Cobalt-coated needle iron magnetic iron oxide particles
JPS63248104A (en) Manufacture of ferromagnetic fine powder for magnetic recording
JP3576332B2 (en) Magnetic powder for magnetic recording
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JP5403242B2 (en) Hexagonal ferrite particles for magnetic recording media
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JP2796189B2 (en) Manufacturing method of acicular barium ferrite magnetic powder
JPH0130884B2 (en)
JPS62260724A (en) Production of ferromagnetic fine powder for magnetic recording
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
JPS63225534A (en) Production of hexagonal plate-shaped barium ferrite
JPH06104575B2 (en) Method for producing tabular Ba ferrite fine particle powder
JPH07254506A (en) Magnetic powder and its production
JPS60112626A (en) Manufacture of dense rod-shaped iron oxyhydroxide
JPS627635A (en) Cobalt modified ferric oxide particle