JPH033361B2 - - Google Patents

Info

Publication number
JPH033361B2
JPH033361B2 JP56153753A JP15375381A JPH033361B2 JP H033361 B2 JPH033361 B2 JP H033361B2 JP 56153753 A JP56153753 A JP 56153753A JP 15375381 A JP15375381 A JP 15375381A JP H033361 B2 JPH033361 B2 JP H033361B2
Authority
JP
Japan
Prior art keywords
magnetic
temperature
powder
precipitate
hexagonal ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56153753A
Other languages
Japanese (ja)
Other versions
JPS5856302A (en
Inventor
Takashi Anami
Tatsumi Maeda
Tadashi Ido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56153753A priority Critical patent/JPS5856302A/en
Publication of JPS5856302A publication Critical patent/JPS5856302A/en
Publication of JPH033361B2 publication Critical patent/JPH033361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites

Landscapes

  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は高密度磁気記録体特に垂直磁化記録媒
体に用いる磁性粉の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic powder used in high-density magnetic recording media, particularly perpendicular magnetization recording media.

従来磁気記録、再生にはγ−Fe2O3、CrO2
Co被着γ−Fe2O3などの針状結晶からなる磁性粉
末を記録媒体の面内長手方向に配向させ、面内長
手方向の残留磁化を利用する方式が一般的であ
る。しかしこの記録媒体では記録の高密度化に伴
つて磁気記録媒体内の反磁界が増加する性質があ
り、特に短波長領域における記録再生特性が悪い
欠点がある。この反磁界に打ち勝つて高密度記録
を行なうには記録媒体の保磁力を高める一方磁気
記録層を薄くする必要があるが現状では磁気記録
層の高保磁力化は困難であり、また磁気記録層を
薄くすることは再生信号の特性低下を招くなどの
問題点がある。結局、従来よりの針状磁性粉を面
内長手方向に配向させ、該方向の残留磁化を利用
する方式によつては、磁気記録の高密度化は困難
である。そこで、磁気記録媒体の面に対して垂直
方向の残留磁化を用いる方式が提案されている。
この垂直磁気記録方式では、記録密度が高まる
程、記録媒体中の減磁界が減少するので、本質的
に高密度記録に適した記録方式といえる。ここで
記録媒体の面に対して垂直方向の残留磁化は、記
録媒体の全体にわたつて磁性粉を配向させ残留磁
化が垂直であつてもよいし、また磁性粉を配向さ
せることなく無配向で塗布して残留磁化の一部が
垂直方向に残つていてもよい。
Conventionally, γ-Fe 2 O 3 , CrO 2 ,
A common method is to orient magnetic powder made of acicular crystals such as Co-coated γ-Fe 2 O 3 in the in-plane longitudinal direction of the recording medium and utilize residual magnetization in the in-plane longitudinal direction. However, this recording medium has the disadvantage that the demagnetizing field within the magnetic recording medium increases as the recording density increases, and recording and reproducing characteristics are particularly poor in the short wavelength region. In order to overcome this demagnetizing field and perform high-density recording, it is necessary to increase the coercive force of the recording medium and thin the magnetic recording layer, but currently it is difficult to increase the coercive force of the magnetic recording layer, and it is also necessary to thin the magnetic recording layer. Making it thinner has problems such as degrading the characteristics of the reproduced signal. After all, it is difficult to achieve high density magnetic recording using the conventional method of orienting acicular magnetic powder in the in-plane longitudinal direction and utilizing residual magnetization in this direction. Therefore, a method has been proposed that uses residual magnetization in the direction perpendicular to the surface of the magnetic recording medium.
In this perpendicular magnetic recording method, as the recording density increases, the demagnetizing field in the recording medium decreases, so it can be said that it is essentially a recording method suitable for high-density recording. Here, the residual magnetization in the direction perpendicular to the surface of the recording medium may be caused by orienting the magnetic powder over the entire recording medium so that the residual magnetization is perpendicular, or it may be non-oriented without orienting the magnetic powder. A portion of residual magnetization may remain in the perpendicular direction after coating.

このような記録媒体としてはCo−Cr合金をス
パツタ法により膜を形成するものや記録膜を磁性
微粒子の塗布層で形成するものが提案されてい
る。ところで記録膜を磁性粉末を含む塗布層で形
成するものにあつては、次のような製造方法が考
えられる。すなわち、磁性粉末として、たとえば
BaFe12O19等の六方晶フエライトを用いる。六方
晶フエライトを用いる。理由は、このフエライト
は平板状をなしており、しかも磁化容易軸が板面
に垂直であるため、塗布後六方晶フエライトの板
面がテープ面に平行になりやすく、かつ磁場配向
処理もしくは機械的配向処理によつて容易に垂直
配向を行ない得るからである。しかして、上述の
六方晶系フエライトの微粉末を使い、いわゆる塗
布法によつて垂直磁気記録媒体を製造する場合に
は、次の点を考慮する必要がある。すなわち上記
六方晶系フエライトは、保磁力Hcが高く記録時
にヘツドが飽和するため、構成原子の一部を特定
の他の原子で置換することによつて、その保磁力
を垂直磁気記録に適した値まで低減化させること
が必要である。また上記六方晶系フエライトの結
晶粒径を0.01〜0.3μmの範囲に選択する必要があ
る。その理由は0.01μm未満では磁気記録に要す
る強い磁性を呈しないし、また0.3μmを越えると
高密度記録を有利に行ない難いからである。上記
に述べた六方晶系フエライトの製造方法として
は、種々提案されている。これらのうち六方晶フ
エライトを構成する金属イオン溶液とアルカリ溶
液とを混合して共沈物を得て後焼成して六方晶フ
エライトを得る共沈法においては、共沈物は粒径
が役100〓以下の超微粒子であり、このような超
微粒子を水洗して、アルカリなどの目的以外の成
分を除去するためには非常に多くの水と時間を必
要とする。さらにこの水洗が不十分で、共沈物中
にアルカリなどが残存していると焼成時に焼結し
た粉末が存在し、記録媒体製造時に粉末を分散で
きなく、望ましい特性を持つた記録媒体が得にく
い。また他の製法である水熱合成法においてはオ
ートクレーブを用いるため製造時作業が悪く、困
難をともなう。さらに高温高圧下で六方晶フエラ
イトを生成させるため反応が急速に進行して得ら
れる六方晶フエライトの粒径が粗大化してしま
う。このような粗大粒径の磁性粉は高密度磁気記
録に不適当であり、このため磁性粉の製造に当た
つては、得られる磁性粉が粗大粒径のものを含ま
ず、かつ粒度分布がよりシヤープになるように、
反応を制御しなければならない。
As such recording media, there have been proposed media in which a Co--Cr alloy film is formed by sputtering, and media in which the recording film is formed by a coated layer of magnetic fine particles. By the way, in the case where the recording film is formed of a coating layer containing magnetic powder, the following manufacturing method can be considered. That is, as a magnetic powder, for example
A hexagonal ferrite such as BaFe 12 O 19 is used. Uses hexagonal ferrite. The reason is that this ferrite has a flat plate shape and the axis of easy magnetization is perpendicular to the plate surface, so the plate surface of hexagonal ferrite tends to become parallel to the tape surface after coating, and it is difficult to apply magnetic field orientation treatment or mechanical treatment. This is because vertical alignment can be easily achieved by alignment treatment. However, when manufacturing a perpendicular magnetic recording medium by a so-called coating method using the above-mentioned hexagonal ferrite fine powder, the following points need to be taken into consideration. In other words, the above-mentioned hexagonal ferrite has a high coercive force Hc that saturates the head during recording, so by replacing some of the constituent atoms with specific other atoms, the coercive force can be adjusted to be suitable for perpendicular magnetic recording. It is necessary to reduce the amount to a certain value. Further, it is necessary to select the crystal grain size of the hexagonal ferrite in the range of 0.01 to 0.3 μm. The reason for this is that if the thickness is less than 0.01 μm, it will not exhibit the strong magnetism required for magnetic recording, and if it exceeds 0.3 μm, it will be difficult to perform high-density recording advantageously. Various methods for producing the above-mentioned hexagonal ferrite have been proposed. Among these, in the coprecipitation method in which a metal ion solution constituting hexagonal ferrite and an alkaline solution are mixed to obtain a coprecipitate and then fired to obtain hexagonal ferrite, the coprecipitate has a particle size of 100 〓These are the following ultrafine particles, and it requires a large amount of water and time to wash such ultrafine particles with water to remove non-purpose components such as alkali. Furthermore, if this water washing is insufficient and alkali or the like remains in the coprecipitate, sintered powder will be present during firing, making it impossible to disperse the powder during recording medium production, making it difficult to obtain a recording medium with desired characteristics. Another production method, hydrothermal synthesis, uses an autoclave, which makes the production process difficult and difficult. Furthermore, since the hexagonal ferrite is produced under high temperature and high pressure, the reaction proceeds rapidly and the particle size of the obtained hexagonal ferrite becomes coarse. Magnetic powder with such a coarse particle size is unsuitable for high-density magnetic recording, and for this reason, when producing magnetic powder, it is necessary to ensure that the obtained magnetic powder does not contain coarse particles and has a good particle size distribution. To make it sharper,
The reaction must be controlled.

本発明はこのような事情に鑑み、煩雑な装置を
要せず、かつ簡単な操作により、粉度分布も狭
く、かつ均一な形状を有する微結晶六方晶フエラ
イト置換体の粉末を製造しうる方法を提供するこ
とを目的とするものである。
In view of these circumstances, the present invention provides a method for producing powder of a microcrystalline hexagonal ferrite substituted product having a narrow particle size distribution and a uniform shape without requiring complicated equipment and using simple operations. The purpose is to provide the following.

本発明は、第2鉄塩と、バリウム塩、ストロン
チウム塩、カルシウム塩の少なくとも1種以上及
び保磁力を制御するためのコバルト、チタン、ニ
ツケル、銅、亜鉛、インジウム、ニオブ、ゲルマ
ニウム、ジルコニウムの少なくとも1種以上の塩
を含む水溶液にアルカリを含むPH10以上、望まし
くはPH12〜13の水溶液を接触混合し、混合水溶液
を50℃以上150℃以下にたもつて共沈物を得、つ
いでこの共沈物について洗浄、乾燥を施してから
加熱処理を施して反応させることからなる粒度分
布のよく整つた、分散性のすぐれた、製造法の容
易な六方晶系フエライトの製造方法である。
The present invention includes a ferric salt, at least one of barium salt, strontium salt, and calcium salt, and at least one of cobalt, titanium, nickel, copper, zinc, indium, niobium, germanium, and zirconium for controlling coercive force. An aqueous solution containing one or more salts is contacted with an aqueous solution containing an alkali with a pH of 10 or higher, preferably PH12 to 13, and the mixed aqueous solution is kept at a temperature of 50°C or higher and 150°C or lower to obtain a coprecipitate. This is an easy-to-manufacture method for producing hexagonal ferrite, which has a well-organized particle size distribution, excellent dispersibility, and consists of washing and drying the material, and then subjecting it to heat treatment and reaction.

本発明を詳細に説明する。 The present invention will be explained in detail.

まず、Ba、Sr、Ca塩の少なくとも1種と、第
2鉄塩、及び必要に応じて保磁力制御のための置
換元素の塩を含む水溶液を作成する。これらの塩
は、塩化物硝酸塩、有機酸塩の形で供給すること
が好ましい。一方、例えばNaOH、KOH、
NH4、OH、Na2CO3(NH42CO3でPHを調整した
アルカリ水溶液を作成する。この際PH10以上であ
れば各元素の沈澱物は得られるが、この沈澱物を
安定なものとするにはPH12〜13の範囲とするのが
望ましい。次いで、該金属水溶液とアルカリ水溶
液を接触させる。この時、両水溶液を均一に接触
させるために撹拌混合することができる。また、
混合時に各溶液のいずれか一方あるいは両方を加
温しておくこともできる。この場合次の温度保持
工程において特に加温する必要はなくなる。
First, an aqueous solution containing at least one of Ba, Sr, and Ca salts, a ferric salt, and, if necessary, a salt of a substitution element for coercive force control is prepared. These salts are preferably supplied in the form of chloride nitrates and organic acid salts. On the other hand, for example NaOH, KOH,
Create an alkaline aqueous solution whose pH is adjusted with NH 4 , OH, and Na 2 CO 3 (NH 4 ) 2 CO 3 . At this time, if the pH is 10 or higher, a precipitate of each element can be obtained, but in order to make this precipitate stable, the pH is preferably in the range of 12 to 13. Next, the aqueous metal solution and aqueous alkaline solution are brought into contact. At this time, both aqueous solutions can be stirred and mixed in order to uniformly contact them. Also,
Either or both of the solutions can be heated during mixing. In this case, there is no need for particular heating in the next temperature holding step.

混合液は、続いて50℃以上、150℃未満の温度
に保持し、沈澱物の生成を促進する。この保持温
度が50℃に満たない場合には、得られる沈澱物の
飽和磁化が零であり、強磁性成分が全く生成され
ない。一方保持温度が150℃を越える場合には加
圧を必要とするために製造時作業性が悪くなり、
かつ急激に多数の強磁性成分が生成して、得られ
る磁性粉体が粗大化して粒度分布が広がり、磁気
記録媒体用として好ましい特性が得られない。さ
らに、この沈澱物を水洗する際にも、保持温度が
50℃未満で生成した沈澱物の場合、沈澱物の沈降
速度が遅く、実用上水洗が困難である。このため
沈澱物にアルカリ成分が残存してしまい、加熱焼
成時に微粒子間の焼結が起り、塗料化が困難とな
る。
The mixture is then maintained at a temperature above 50°C and below 150°C to promote the formation of a precipitate. If this holding temperature is less than 50°C, the saturation magnetization of the obtained precipitate is zero, and no ferromagnetic component is generated. On the other hand, if the holding temperature exceeds 150℃, pressurization is required, resulting in poor workability during manufacturing.
In addition, a large number of ferromagnetic components are rapidly generated, and the resulting magnetic powder becomes coarse and has a wide particle size distribution, making it impossible to obtain desirable properties for use in magnetic recording media. Furthermore, when washing this precipitate with water, the holding temperature is
In the case of precipitates formed at temperatures below 50°C, the settling speed of the precipitates is slow, making washing with water practically difficult. As a result, alkaline components remain in the precipitate, causing sintering between fine particles during heating and baking, making it difficult to form into a paint.

上記加温保持工程において、加温温度を100℃
以上とする場合にはオートクレーブのような圧力
容器が用いられる。この容器は、加温温度を150
℃とした場合でも内圧が2.5気圧程度に昇圧する
のみであるので通常使用される加圧容器であるオ
ートクレーブより簡便な容器を使用しうる。この
加温保持時間は少なくとも10分間以上上記温度範
囲に保持することが必要である。この時間が10分
より短かい場合には充分な沈澱物が得られず、原
料の損失が大きい。また保持時間に特に上限はな
いが、作業効率の点から、上限が決定される。加
温保持後、混合液を静置し、上澄液を除去した後
沈澱物を水で洗浄する。洗浄水にアルカリ等の成
分が抽出されなくなるまで水洗を繰り返した後、
乾燥し、次いで焼成する。焼成温度は850℃以上
975℃以下が適当であるが特に900℃以上950℃以
下が望ましい。焼成温度が850℃以下では得られ
る六方晶系フエライトの飽和磁化が小さく、磁気
記録媒体としては好ましくない。一方975℃以上
では六方晶系フエライトの微粒子が焼結してしま
い、塗料化する際に分散が困難となる。
In the above heating and holding process, the heating temperature is 100℃.
In the above case, a pressure vessel such as an autoclave is used. This container has a heating temperature of 150
℃, the internal pressure only increases to about 2.5 atm, so a container simpler than the commonly used pressurized container, an autoclave, can be used. It is necessary to maintain the temperature within the above temperature range for at least 10 minutes or longer. If this time is shorter than 10 minutes, sufficient precipitate will not be obtained and the loss of raw materials will be large. Further, although there is no particular upper limit to the holding time, the upper limit is determined from the viewpoint of work efficiency. After maintaining the temperature, the mixture is allowed to stand, the supernatant liquid is removed, and the precipitate is washed with water. After repeated washing with water until no components such as alkali are extracted into the washing water,
Dry and then bake. Firing temperature is 850℃ or higher
A temperature of 975°C or lower is appropriate, but a temperature of 900°C or higher and 950°C or lower is particularly desirable. If the firing temperature is 850° C. or lower, the saturation magnetization of the obtained hexagonal ferrite will be low, which is not preferable as a magnetic recording medium. On the other hand, at temperatures above 975°C, the fine particles of hexagonal ferrite are sintered, making it difficult to disperse them when made into a paint.

以上詳述したような本発明の製造方法によれば
最大粒子径が小さく、かつ粒度分布が狭く、焼結
による凝集塊のない六方晶系フエライト粉末を得
ることができ、これを例えば樹脂バインダー等と
混合して磁性体塗料を形成し非磁性支持体上に塗
布することにより表面性の優れた高密度記録に適
した磁気記録媒体が製造できる。
According to the manufacturing method of the present invention as detailed above, it is possible to obtain a hexagonal ferrite powder having a small maximum particle size, a narrow particle size distribution, and no agglomerates due to sintering, and which can be used with, for example, a resin binder, etc. A magnetic recording medium suitable for high-density recording with excellent surface properties can be manufactured by mixing the magnetic material with the magnetic material to form a magnetic coating material and coating it on a non-magnetic support.

以下実施例にて詳細に説明する。 This will be explained in detail in Examples below.

実施例 1 Feイオンとして126.5g含んだFeCl3・6H2O水
溶液1.5lと、Baイオンとして33.6g含んだ
BaCl2・2H2O水溶液0.5lと、保磁力制御のための
置換元素としてCoイオンとして12.0gを含んだ
CoCl2・6H2O水溶液0.25lおよびTiイオンとして
9.8g含んだTicl4水溶液0.25lを混合し、該混合液
をあらかじめ調整してあるNaOH1.2Kgを溶解し
た水溶液3lに撹拌しながら加える。ただちに第1
図に示した所定温度に保持した恒温槽に入れ、撹
拌しながら一時間保持する。恒温槽より取り出し
たのち純水にて水洗を繰り返し、十分水洗した後
乾燥焼処理して沈澱物粉体を得た。これらの沈澱
物粉体の飽和磁化の値を第1図に示した。図から
明らかなように保持温度が50℃以下の場合には飽
和磁化の値が零であり、沈澱物中に残磁性成分が
含まれておらず、また150℃以上の温度では、飽
和磁化の値が極めて大きく、沈澱物中に多数の強
磁性成分が存在していることが確認できた。
Example 1 1.5 l of FeCl 3 6H 2 O aqueous solution contained 126.5 g as Fe ions and 33.6 g as Ba ions.
Contains 0.5 l of BaCl 2 2H 2 O aqueous solution and 12.0 g of Co ions as a substitution element for coercive force control.
As CoCl 2 6H 2 O aqueous solution 0.25l and Ti ion
Mix 0.25 liters of Ticl 4 aqueous solution containing 9.8 g, and add the mixture to 3 liters of a previously prepared aqueous solution containing 1.2 kg of NaOH with stirring. Immediately the first
Place in a constant temperature bath maintained at the predetermined temperature shown in the figure and hold for one hour while stirring. After taking it out from the constant temperature bath, it was washed repeatedly with pure water, thoroughly washed with water, and then dried and calcined to obtain a precipitate powder. The saturation magnetization values of these precipitate powders are shown in FIG. As is clear from the figure, when the holding temperature is 50°C or lower, the saturation magnetization value is zero, and no residual magnetic component is contained in the precipitate, and at a temperature of 150°C or higher, the saturation magnetization value is zero. The value was extremely large, confirming the presence of many ferromagnetic components in the precipitate.

上記試料のうち保持温度を850℃に設定した場
合の粉体の磁化特性は飽和磁化55emu/gであ
り、この沈澱物粉体を900℃45分の加熱反応を行
つて得られたCo−Ti置換Baフエライト微粉末の
飽和磁化は59.1emu/g保磁力は810Oeであつた。
この微粉体の平均粒径は0.080μmで、最大粒径
0.18μmで、粒度分布は非常にシヤープであり、
特に磁気媒体のノイズに原因する最大粒径が
0.18μmと小さい。
Among the above samples, the magnetization property of the powder when the holding temperature was set at 850°C was a saturation magnetization of 55 emu/g. The substituted Ba ferrite fine powder had a saturation magnetization of 59.1 emu/g and a coercive force of 810 Oe.
The average particle size of this fine powder is 0.080μm, and the maximum particle size is
At 0.18μm, the particle size distribution is very sharp.
In particular, the maximum particle size that causes noise in magnetic media is
As small as 0.18μm.

実施例 2 実施例1と同組成で混合溶液を作成し、実施例
1と同様にアルカリ溶液を作成し、これを混合接
触させた。この溶液をオートクレーブ中に入れ
130℃に1時間保持した。その後これを取り出し、
純水にて水洗を繰り返し、十分に水洗した後乾燥
処理して沈澱物粉体を得る。この粉体の磁気特性
は飽和磁化6.3emu/gであつた。この沈澱粉体
を900℃、45分の加熱反応を行つてCo−Ti置換
Baフエライト微粉末を得た。この微粉末の飽和
磁化は59.3emu/gで、保磁力は790Oeであつた。
この粒度分布を第2図に示す。この図には比較の
ためオートクレーブ温度を200℃の場合について
も示した。本発明により得られた六方晶Baフエ
ライトの方が粒度分布がシヤープであることが判
る。この六方晶Baフエライトを用いて作製した
記録媒体のS/Nは、オートクレーブ温度200℃
の場合の粉体を用いて作製した記録媒体のS/N
より4dB以上も高く、高性能な記録媒体が得られ
た。
Example 2 A mixed solution was prepared with the same composition as in Example 1, and an alkaline solution was prepared in the same manner as in Example 1, and these were mixed and brought into contact. Put this solution in an autoclave
It was held at 130°C for 1 hour. Then take this out and
Washing with pure water is repeated, and after thorough washing, drying is performed to obtain a precipitate powder. The magnetic properties of this powder were a saturation magnetization of 6.3 emu/g. This precipitated powder was subjected to a heating reaction at 900℃ for 45 minutes to replace Co-Ti.
Ba ferrite fine powder was obtained. This fine powder had a saturation magnetization of 59.3 emu/g and a coercive force of 790 Oe.
This particle size distribution is shown in FIG. This figure also shows the autoclave temperature of 200°C for comparison. It can be seen that the hexagonal Ba ferrite obtained by the present invention has a sharper particle size distribution. The S/N of the recording medium made using this hexagonal Ba ferrite is as follows:
S/N of recording medium made using powder in case of
This resulted in a high-performance recording medium that was more than 4 dB higher than the previous one.

以上実施例では示さなかつたが、Sr塩、Ca塩
などを用いた六方晶系フエライトでも同様な結果
が得られた。また、保磁力制御のための置換元素
として、Ni、Mn、Cu、Zn、In、Ge、Nb、Zrな
どを用いた場合にも同様な結果を得た。
Although not shown in the above examples, similar results were obtained with hexagonal ferrite using Sr salt, Ca salt, etc. Similar results were also obtained when Ni, Mn, Cu, Zn, In, Ge, Nb, Zr, etc. were used as substitution elements for coercive force control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による金属塩溶液とアルカリ溶
液の保持温度と、この時得られる沈澱物粉体の飽
和磁化の値を示す図、第2図は本発明による六方
晶Baのフエライトの粒分布を示す図である。
Figure 1 is a diagram showing the holding temperature of the metal salt solution and alkaline solution according to the present invention and the saturation magnetization value of the precipitate powder obtained at this time, and Figure 2 is the particle distribution of the hexagonal Ba ferrite according to the present invention. FIG.

Claims (1)

【特許請求の範囲】 1 一般式 AO.n(Fe11-x−Mx)2O3 (式中A=Ba、Sr、Caのうち少なくとも1種M
=Co、Ti、Ni、Mn、Cu、Zn、In、Ge、Nb、
Zrのうち少なくとも1種、n=5〜6、x=0.08
〜0.2)で示される六方晶系フエライトを構成す
る割合で選ばれた各元素イオンを含む溶液とPH10
以上のアルカリ性溶液とを混合し、続いて50℃以
上150℃未満の温度で保持して、沈澱物を得、水
洗、乾燥後、該沈澱物を焼成することを特徴とす
る高密度磁気記録用磁性粉の製造方法。 2 焼成温度を850℃以上975℃以下とする特許請
求の範囲第1項記載の高密度磁気記録用磁性粉の
製造方法。
[Claims] 1 General formula AO.n(Fe 11-x −Mx) 2 O 3 (wherein A=at least one M of Ba, Sr, and Ca)
=Co, Ti, Ni, Mn, Cu, Zn, In, Ge, Nb,
At least one type of Zr, n=5-6, x=0.08
~0.2) A solution containing ions of each element selected in a proportion constituting a hexagonal ferrite with a pH of 10
A method for high-density magnetic recording characterized by mixing the above alkaline solution and subsequently holding at a temperature of 50°C or more and less than 150°C to obtain a precipitate, washing with water, drying, and then firing the precipitate. Method for producing magnetic powder. 2. The method for producing magnetic powder for high-density magnetic recording according to claim 1, wherein the firing temperature is 850°C or higher and 975°C or lower.
JP56153753A 1981-09-30 1981-09-30 Manufacture of magnetic powder used for high density magnetic recording Granted JPS5856302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153753A JPS5856302A (en) 1981-09-30 1981-09-30 Manufacture of magnetic powder used for high density magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153753A JPS5856302A (en) 1981-09-30 1981-09-30 Manufacture of magnetic powder used for high density magnetic recording

Publications (2)

Publication Number Publication Date
JPS5856302A JPS5856302A (en) 1983-04-04
JPH033361B2 true JPH033361B2 (en) 1991-01-18

Family

ID=15569362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153753A Granted JPS5856302A (en) 1981-09-30 1981-09-30 Manufacture of magnetic powder used for high density magnetic recording

Country Status (1)

Country Link
JP (1) JPS5856302A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207605A (en) * 1983-05-11 1984-11-24 Tohoku Metal Ind Ltd Manufacture of powder for magnetic recording
JPS6069822A (en) * 1983-08-19 1985-04-20 Toshiba Corp Magnetic recording medium
JPS6055516A (en) * 1983-09-06 1985-03-30 Toshiba Corp Magnetic recording medium
JPS6095902A (en) * 1983-10-31 1985-05-29 Toda Kogyo Corp Manufacture of tabular ba ferrite corpuscular powder for magnetic recording
JPH061546B2 (en) * 1985-03-26 1994-01-05 株式会社東芝 Ferromagnetic powder for magnetic recording medium and manufacturing method thereof
JPS62176920A (en) * 1986-01-31 1987-08-03 Sony Corp Preparation of powdery barium ferrite
JPH0761874B2 (en) * 1986-09-12 1995-07-05 戸田工業株式会社 Plate-shaped Ba ferrite fine particle powder for magnetic recording and method for producing the same
US5585032A (en) * 1987-04-21 1996-12-17 Ishihara Sangyo Kaisha, Ltd. Ferromagnetic fine powder for magnetic recording
US5378384A (en) * 1991-09-19 1995-01-03 Minnesota Mining And Manufacturing Company Process of making hexagonal magnetic ferrite pigment for high density magnetic recording applications
US5616414A (en) * 1993-12-28 1997-04-01 Imation Corp. Hexagonal magnetic ferrite pigment for high density magnetic recording applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit

Also Published As

Publication number Publication date
JPS5856302A (en) 1983-04-04

Similar Documents

Publication Publication Date Title
US5585032A (en) Ferromagnetic fine powder for magnetic recording
US4636433A (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
DE3885335T2 (en) Disc-shaped magnetic powder and its production process and a recording medium from this magnetic powder.
JPH033361B2 (en)
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
JPS6242337B2 (en)
JPS6249963B2 (en)
JPS62287604A (en) Magnetic material and manufacture of the same and magnetic recording medium
JPH0359007B2 (en)
US5062983A (en) Magnetic powder for magnetic recording media
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
US5246609A (en) Process for preparing ferromagnetic fine particles for magnetic recording
JPS5841728A (en) Manufacture of fine ferrite powder
JPH044253B2 (en)
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
US5062982A (en) Magnetic powder for magnetic recording media
JPH0459620A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
US5531977A (en) Process for producing acicular γ-FeOOH particles
JPS5888122A (en) Production of cobalt-containing ferromagnetic iron oxide
JPS5814508A (en) Manufacture of magnetic powder for high-density recording
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JP2946374B2 (en) Method for producing composite ferrite magnetic powder