JP3429881B2 - Composite type hexagonal ferrite magnetic powder and method for producing the same - Google Patents

Composite type hexagonal ferrite magnetic powder and method for producing the same

Info

Publication number
JP3429881B2
JP3429881B2 JP00249995A JP249995A JP3429881B2 JP 3429881 B2 JP3429881 B2 JP 3429881B2 JP 00249995 A JP00249995 A JP 00249995A JP 249995 A JP249995 A JP 249995A JP 3429881 B2 JP3429881 B2 JP 3429881B2
Authority
JP
Japan
Prior art keywords
ferrite
magnetic powder
hexagonal
magnetic
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00249995A
Other languages
Japanese (ja)
Other versions
JPH08191009A (en
Inventor
修 久保
肇 竹内
哲 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00249995A priority Critical patent/JP3429881B2/en
Publication of JPH08191009A publication Critical patent/JPH08191009A/en
Application granted granted Critical
Publication of JP3429881B2 publication Critical patent/JP3429881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高記録密度磁気記録媒
体や磁気繊維、磁性ガラスなどの複合材料に適する六方
晶系フェライト磁性粉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hexagonal ferrite magnetic powder suitable for high recording density magnetic recording media, magnetic fibers, composite materials such as magnetic glass.

【0002】[0002]

【従来の技術】一般に、塗布型の記録媒体は、ポリエチ
レンテレフタレートフィルムなどから成る非磁性基体
と、この基体面上に形成された磁性粉および樹脂バイン
ダを主成分とする磁性層とで構成されている。そしてこ
のような構成の磁気記録媒体においては、従来γ−Fe
2 3 、Co被着γ−Fe2 3 、CrO2 あるいは金
属Feなどの針状磁性粉を用い、塗布面内長手方向の磁
化を利用する磁気記録方式が採られていた。しかし、こ
の記録方式においては、高周波域における記録再生の向
上を計ろうとすると、記録媒体内の減磁界が増加するた
め、記録密度をそれほど向上させることができないとい
う問題がある。
2. Description of the Related Art Generally, a coating type recording medium comprises a non-magnetic substrate made of polyethylene terephthalate film or the like, and a magnetic layer containing magnetic powder and a resin binder as main components formed on the surface of the substrate. There is. In the magnetic recording medium having such a structure, the conventional γ-Fe
A magnetic recording method has been adopted in which needle-like magnetic powder such as 2 O 3 , Co-deposited γ-Fe 2 O 3 , CrO 2 or metallic Fe is used and magnetization in the longitudinal direction of the coated surface is utilized. However, in this recording method, if an attempt is made to improve recording / reproduction in a high frequency region, the demagnetizing field in the recording medium increases, so that the recording density cannot be improved so much.

【0003】そこで、記録密度の大幅な改善・向上を図
るため、磁気記録媒体の基体と垂直な方向の磁化を利用
する垂直磁気記録方式が提案され、開発が進められてい
る。この垂直磁気記録方式は、高周波域においても記録
媒体内の減磁界の問題が生じないため、高密度の磁気記
録に適している。
Therefore, in order to significantly improve the recording density, a perpendicular magnetic recording system utilizing magnetization in a direction perpendicular to the base of the magnetic recording medium has been proposed and is being developed. This perpendicular magnetic recording system is suitable for high-density magnetic recording because the problem of demagnetizing field in the recording medium does not occur even in the high frequency range.

【0004】この垂直磁気記録方式に適する記録媒体と
して、従来、Co−Cr合金などの金属磁性薄膜を、真
空蒸着法やスパッタ法により基体面上に被着させた構成
のものが知られている。この種の磁気記録媒体は、磁性
層が金属薄膜からなるため、環境安定性や走行耐久性、
また生産性などにも問題があった。
As a recording medium suitable for this perpendicular magnetic recording system, there is conventionally known a recording medium in which a metal magnetic thin film such as a Co--Cr alloy is deposited on the substrate surface by a vacuum deposition method or a sputtering method. . In this type of magnetic recording medium, the magnetic layer is made of a metal thin film, so environmental stability and running durability,
There was also a problem with productivity.

【0005】そこで、このような問題の生じるおそれの
少ない塗布型の垂直磁気記録媒体として、垂直方向に磁
化容易軸を配向しやすい六方晶系フェライト磁性微粒子
を、磁性粉として使用した磁気記録媒体が知られてい
る。磁気記録媒体に適した六方晶系フェライト磁性粉と
しては、たとえばM型のBaFe1219、W型のBaM
2 Fe1627(Meは置換金属元素)などの単相の六
方晶系フェライト磁性粒子、M型あるいはW型の六方晶
系フェライトとスピネルフェライトとを1粒子中に同時
に含む複合型六方晶系フェライト磁性粒子、あるいはそ
れらの原子の一部を他の元素で置換した六方晶系フェラ
イト磁性粒子などがあげられる。このような六方晶系フ
ェライト磁性粉を製造する方法としては、ガラス結晶化
法、共沈−焼成法、水熱合成−焼成法、両者の沈殿物を
フラックス中で焼成するフラックス法などが一般的であ
る。
Therefore, as a coating type perpendicular magnetic recording medium which is less likely to cause such a problem, there is a magnetic recording medium using hexagonal ferrite magnetic fine particles in which the easy axis of magnetization is easily oriented in the vertical direction as magnetic powder. Are known. Examples of hexagonal ferrite magnetic powder suitable for a magnetic recording medium include M-type BaFe 12 O 19 and W-type BaM.
e 2 Fe 16 O 27 (Me is a substitutional metal element) single-phase hexagonal ferrite magnetic particles, or composite hexagonal crystal containing simultaneously M-type or W-type hexagonal ferrite and spinel ferrite in one particle Examples thereof include system ferrite magnetic particles, and hexagonal system ferrite magnetic particles obtained by substituting some of those atoms with other elements. As a method for producing such a hexagonal ferrite magnetic powder, a glass crystallization method, a coprecipitation-firing method, a hydrothermal synthesis-firing method, a flux method of firing both precipitates in a flux, etc. are generally used. Is.

【0006】なお、上記した六方晶系フェライトのう
ち、単相の六方晶系フェライトは一般に飽和磁化があま
り高くないのに対して、複合型六方晶系フェライトは、
スピネルフェライトを複合化させることによって磁化が
向上し、60emu/g以上の飽和磁化が容易に得られ
るという特長があるため、高記録密度の磁気記録媒体用
としてとくに注目されている。
Of the above-mentioned hexagonal ferrites, single-phase hexagonal ferrites generally do not have very high saturation magnetization, whereas composite hexagonal ferrites have
Magnetization has been improved by compounding spinel ferrite, and saturation magnetization of 60 emu / g or more can be easily obtained. Therefore, it has attracted particular attention for high recording density magnetic recording media.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな六方晶系フェライトのスピネルフェライトの複合化
による飽和磁化の向上は、主として長波長領域での出力
向上に寄与することが認められるものの、短波長領域で
はむしろ複合化により出力が低下する傾向があり、しか
もこのような複合粉には、ロット間で磁性粉保磁力がバ
ラつくという欠点も認められていた。
However, although it is recognized that the improvement of the saturation magnetization due to the compounding of the spinel ferrite of the hexagonal ferrite as described above mainly contributes to the improvement of the output in the long wavelength region, it has a short wavelength. In the region, the output tends to be lowered due to the compounding, and it has been also recognized that the coercive force of the magnetic powder varies among lots.

【0008】この原因の一つとして、スピネルフェライ
トの複合化が必ずしも各粒子毎に均一には進まないこと
があげられる。各粒子の複合化の不均一が、短波長特性
の支配因子の一つと言われる磁性粉のSFD(Switchin
g Field Distribution:個々の磁性粒子のHc分布状態
を表す)を大きくし、その結果、磁気記録媒体の記録再
生特性を劣化させていると考えられる。
One of the causes for this is that the composite of spinel ferrite does not necessarily proceed uniformly for each particle. It is said that the non-uniformity of compounding of each particle is one of the controlling factors of the short wavelength characteristics of SFD (Switchin
g Field Distribution: represents the Hc distribution state of individual magnetic particles), and as a result, it is considered that the recording / reproducing characteristics of the magnetic recording medium are deteriorated.

【0009】本発明は、複合型六方晶系フェライトにお
けるこのような問題を解決するためになされたものであ
り、その高い磁化を維持しつつ、従来の欠点であったS
FDを低減化し、短波長領域においても高い出力特性を
示す磁気記録媒体が製造可能な磁性粉を提供することを
その目的としている。
The present invention has been made in order to solve such a problem in the composite type hexagonal ferrite, and while maintaining its high magnetization, the conventional drawback of S
It is an object of the present invention to provide a magnetic powder capable of producing a magnetic recording medium having a reduced FD and exhibiting high output characteristics even in a short wavelength region.

【0010】[0010]

【課題を解決するための手段】本発明に係わる複合型六
方晶系フェライト磁性粉は、六方晶系フェライトに複合
化されるスピネルフェライトの組成に、その特徴があ
る。すなわち本発明の特徴は、六方晶系フェライトとス
ピネルフェライトとが複合されて成る複合型六方晶系フ
ェライト磁性粉において、前記スピネルフェライトが、
一般式 M1+xFe2−x…………(1) (ただし、式中xは0<x<0.1の数を表し,MはC
o,Ni,Zn,Cu,Mg,Mnの中から選択される
少なくとも一種の元素を表す)で示されることを特徴と
している。また本発明の複合型六方晶系フェライト磁性
粉の製造方法は、六方晶フェライト磁性粉を製造する工
程と、前記六方晶フェライト磁性粉に、一般式M 1+x
Fe 2−x 、(ただし、式中xは0<x<0.1の
数を表し、MはCo,Ni,Zn,Cu,Mg,Mnの
中から選択される少なくとも一種の元素を表す)で示さ
れる組成に設定してスピネルフェライトを被着する工程
とを備えたことを特徴としている。
The composite type hexagonal ferrite magnetic powder according to the present invention is characterized by the composition of spinel ferrite compounded with hexagonal ferrite. That is, the feature of the present invention is that in the composite hexagonal ferrite magnetic powder formed by compounding hexagonal ferrite and spinel ferrite, the spinel ferrite is
Formula M 1 + x Fe 2-x O 4 ............ (1) ( where where x represents a number of 0 <x <0.1, M is C
o represents at least one element selected from Ni, Zn, Cu, Mg, and Mn). Further, the composite hexagonal ferrite magnet of the present invention
The powder manufacturing method is based on the process of manufacturing hexagonal ferrite magnetic powder.
And the hexagonal ferrite magnetic powder with the general formula M 1 + x
Fe 2−x O 4 (where x is 0 <x <0.1
Represents the number, M is Co, Ni, Zn, Cu, Mg, Mn
Represents at least one element selected from)
Process to set spinel ferrite to the composition
It is characterized by having and.

【0011】本発明においては、スピネルフェライト組
成におけるxの範囲を、これまで通常用いられてきた範
囲とは異なるようにしたことにより、複合型六方晶系フ
ェライトの特長である高い飽和磁化を維持しつつ、その
SFDを大幅に改善することを可能にしている。
In the present invention, the range of x in the spinel ferrite composition is set to be different from the range usually used so far, so that the high saturation magnetization characteristic of the composite hexagonal ferrite is maintained. At the same time, it is possible to significantly improve the SFD.

【0012】本発明において、一般式(1)で示される
スピネルフェライト組成中、x>0であることが第一の
特徴であるが、さらにxは0.1より小さいことが好ま
しい。xが0.1以上であるとスピネルフェライトの磁
化が低減するため、好ましくない。
In the present invention, the first feature of the spinel ferrite composition represented by the general formula (1) is that x> 0, and it is preferable that x is smaller than 0.1. When x is 0.1 or more, the magnetization of spinel ferrite is reduced, which is not preferable.

【0013】また本発明において、上記組成のスピネル
フェライトと複合化され得る六方晶系フェライトとして
は、M型(マグネトプランバイト型)あるいはW型など
の単相の六方晶系フェライト、もしくはすでにスピネル
フェライトが複合化された各種の複合型六方晶系フェラ
イトなどががあげられる。これらの六方晶系フェライト
は、次の一般式で表すことができる。
In the present invention, the hexagonal ferrite that can be composited with the spinel ferrite having the above composition is a single-phase hexagonal ferrite such as M type (magnetoplumbite type) or W type, or already spinel ferrite. Examples include various composite hexagonal ferrites that are compounded with. These hexagonal ferrites can be represented by the following general formula.

【0014】 AO・n(Fe12-x-yM1x M2y 18-a)…(2) (ただし、式中AはBa、Sr、Caから選択される少
なくとも一種の元素を、M1は2価の金属元素群から選
ばれる少なくとも一種の元素を、M2は4〜6価の金属
元素群から選ばれる少なくとも一種の元素を、aは[x
+(3−m)y]/2(なおmはM2の平均原子価)で
示される数を、nは0.8以上3以下の数を、xは0以
上3以下の数を、yは0以上2以下の数をそれぞれ表し
ている)上記一般式(2)で表される六方晶系フェライ
トにおいて、とくに2価の金属M1としては、Co,Z
n,Niから選択される少なくとも一種の元素を用いる
ことが効果的である。また、これらの六方晶系フェライ
トの中で、n=0.8〜1.03、a=0で表されるM
型Baフェライトは、工業的に最も得易いため、スピネ
ルフェライトとの複合化の対象として好ましい。
AO.n (Fe 12-xy M1 x M2 y O 18-a ) (2) (wherein A is at least one element selected from Ba, Sr, and Ca, and M1 is divalent) Of at least one element selected from the group of metal elements, M2 is at least one element selected from the group of 4- to 6-valent metal elements, and a is [x
+ (3-m) y] / 2 (where m is the average valence of M2), n is 0.8 or more and 3 or less, x is 0 or more and 3 or less, and y is In the hexagonal ferrite represented by the general formula (2), particularly, the divalent metal M1 includes Co and Z.
It is effective to use at least one element selected from n and Ni. Further, among these hexagonal ferrites, M represented by n = 0.8 to 1.03 and a = 0
The type Ba ferrite is industrially the easiest to obtain, and is therefore preferable as a target for compounding with spinel ferrite.

【0015】本発明において、一般式(1)で示される
スピネルフェライト、および一般式(2)で示される六
方晶系フェライトとを複合化させる手段としては、特定
の方法に限定されるものではない。その複合化の手段の
一つとして、スピネルフェライトと六方晶系フェライト
のそれぞれの構成元素を含む原料を一括で調合した後、
ガラス結晶化法など前述した従来の六方晶系フェライト
の製造方法にしたがって、結晶を作製するいわゆる一括
方法があげられる。この方法によれば、六方晶系フェラ
イト結晶中のRブロック層間にスピネル構造のフェライ
トが食い込む形で結晶成長して、本発明の磁性粉が得ら
れる。なお、このときスピネルフェライトの一部は、六
方晶系フェライトの結晶の表面に成長する。
In the present invention, the means for compounding the spinel ferrite represented by the general formula (1) and the hexagonal ferrite represented by the general formula (2) is not limited to a particular method. . As one of the means of compounding, after batch-mixing raw materials containing respective constituent elements of spinel ferrite and hexagonal ferrite,
There is a so-called batch method for producing crystals according to the above-described conventional method for producing hexagonal ferrite such as a glass crystallization method. According to this method, the ferrite having a spinel structure is bitten between the R block layers in the hexagonal ferrite crystal to grow crystals, and the magnetic powder of the present invention is obtained. At this time, part of the spinel ferrite grows on the surface of the hexagonal ferrite crystal.

【0016】複合化の手段のもう一つの方法として、一
般式(2)で表される六方晶系フェライト磁性粒子を従
来の六方晶系フェライトの方法により合成した後、一般
式(1)で表されるスピネルフェライトを合成するとい
うように2段階で行う方法があげられる。この場合に
は、六方晶系フェライト磁性粒子の表面に被着する形
で、スピネルフェライトが成長する。本発明の効果は、
上記どちらの複合化方法によってでも得ることができる
が、とくに後者の、スピネルフェライトを六方晶系フェ
ライト表面に被着させる複合方法をとることによって、
本発明の効果がより顕著に得られる。
As another method of forming a composite, the hexagonal ferrite magnetic particles represented by the general formula (2) are synthesized by the conventional hexagonal ferrite method, and then represented by the general formula (1). There is a method of performing it in two steps such as synthesizing the spinel ferrite. In this case, spinel ferrite grows in the form of being deposited on the surface of the hexagonal ferrite magnetic particles. The effect of the present invention is
Although it can be obtained by either of the above composite methods, in particular by the latter, by adopting a composite method of depositing spinel ferrite on the surface of the hexagonal ferrite,
The effect of the present invention can be more remarkably obtained.

【0017】また本発明において、母体となる六方晶系
フェライトに対するスピネルフェライトの複合化の割合
は、モル比にして0.2〜5、より好ましくは0.5〜
2の範囲にあることが望ましい。モル比で0.2より少
ない場合には、複合化による飽和磁化向上の効果が少な
くなるため、好ましくない。5より多い場合には、得ら
れる結晶の一軸異方性が失われて磁性粉の磁場配向性が
低下したり、あるいは粒子が粗大化するため、やはり好
ましくない。
In the present invention, the ratio of the spinel ferrite compounded to the matrix hexagonal ferrite is 0.2 to 5, more preferably 0.5 to 5, in terms of molar ratio.
The range of 2 is desirable. When the molar ratio is less than 0.2, the effect of improving the saturation magnetization due to compounding is reduced, which is not preferable. If it is more than 5, the uniaxial anisotropy of the obtained crystal is lost and the magnetic field orientation of the magnetic powder is lowered, or the particles are coarsened, which is also not preferable.

【0018】本発明の磁性粉は、磁気記録媒体をはじめ
として磁気繊維あるいは磁性ガラスなどの複合材料など
広範な使途を有する。磁気記録媒体に用いる場合は、と
くに磁気的に安定であることが要求されるため、その平
均粒径は10〜60nmの範囲内にあることが好まし
い。その保磁力は、高すぎると記録時にヘッド磁界が飽
和して通常の磁気ヘッドによる書き込みが困難になり、
低すぎると記録信号の保持が不可能となるため、200
〜4000 Oeの範囲内となるように調整されること
が望ましい。
The magnetic powder of the present invention has a wide range of uses such as magnetic recording media and composite materials such as magnetic fibers and magnetic glass. When it is used for a magnetic recording medium, it is particularly required to be magnetically stable, so that the average particle diameter thereof is preferably within the range of 10 to 60 nm. If the coercive force is too high, the head magnetic field saturates during recording, making writing with a normal magnetic head difficult.
If it is too low, it becomes impossible to hold the recording signal.
It is desirable to adjust it to be in the range of up to 4000 Oe.

【0019】[0019]

【作用】従来提案されてきた複合型六方晶系フェライト
におけるスピネルフェライトの組成は、上記一般式
(1)におけるxの値が0以下(x≦0)のもの、すな
わち化学量論組成にしたがうかもしくは鉄過剰型のもの
であった。このような組成は、スピネルフェライト中に
Fe2+を生成させ、Fe3+との電子交換により電気抵抗
を低減させることを目的としたものであった。
The composition of spinel ferrite in the conventionally proposed composite type hexagonal ferrite is such that the value of x in the general formula (1) is 0 or less (x≤0), that is, the stoichiometric composition. It was an iron-rich type. Such a composition was intended to generate Fe 2+ in the spinel ferrite and reduce the electric resistance by electron exchange with Fe 3+ .

【0020】本発明が成されるにあたり、このような組
成領域の複合型磁性粉の欠点である、SFDが大きく、
飽和磁化が大きいわりには短波長特性が伸びず、しかも
ロット間で磁性粉保磁力がバラつくという現象につい
て、考察が進められた。
In carrying out the present invention, the SFD, which is a drawback of the composite magnetic powder having such a composition region, is large,
Though the saturation magnetization is large, the short wavelength characteristics do not extend and the coercive force of the magnetic powder varies among lots.

【0021】なぜこのような現象が生じるのかについて
は必ずしもその理由は定かではないが、次のように考え
ることができる。すなわちx≦0の場合は、結晶化の過
程でスピネルフェライト中にFe2+イオンができ易い
が、一方このFe2+イオンはFe3+イオンに容易に酸化
され易いという性質がある。したがって結晶生成時のわ
ずかな酸素濃度の違いによりその数が変化しやすく、そ
れに応じて磁性粉の磁気特性も変化しやすい。したがっ
てx≦0の場合に磁性粉SFDが大きい理由は、結晶生
成過程における個々の磁性粒子を取りまく酸素濃度が、
微視的には必ずしも一定とならず、その結果、結晶化の
過程でスピネルフェライト中にできるFe2+イオン濃度
が各粒子ごとに異なるため、と考えられる。またロット
間の磁性粉保磁力がバラつくのも、やはり結晶生成時の
酸素濃度の微妙な変化により、磁性粉中のFe2+濃度が
変化するためと考えられる。
The reason why such a phenomenon occurs is not always clear, but it can be considered as follows. That is the case of x ≦ 0, it easily can Fe 2+ ions in the spinel ferrite in the process of crystallization, whereas the Fe 2+ ions has a property of easily being readily oxidized to Fe 3+ ions. Therefore, the number thereof is likely to change due to a slight difference in oxygen concentration during crystal formation, and the magnetic characteristics of the magnetic powder are likely to change accordingly. Therefore, the reason why the magnetic powder SFD is large when x ≦ 0 is that the oxygen concentration surrounding individual magnetic particles in the crystal formation process is
It is considered that it is not always constant microscopically, and as a result, the Fe 2+ ion concentration formed in the spinel ferrite during the crystallization process differs for each particle. The variation in the coercive force of the magnetic powder between lots is also considered to be due to the change in the Fe 2+ concentration in the magnetic powder due to the subtle change in the oxygen concentration during crystal formation.

【0022】本発明は、従来組成の複合型六方晶系フェ
ライト磁性粉の上記難点を、スピネルフェライト一般式
中のM元素量xを0<xとして化学量論組成より大きく
設定することにより、言い換えれば、鉄濃度を化学量論
組成より少なく鉄不足型とすることにより解消しようと
したものである。
In the present invention, the above-mentioned difficulties of the conventional composite type hexagonal ferrite magnetic powder can be rephrased by setting the amount of M element x in the general formula of spinel ferrite to 0 <x and setting it larger than the stoichiometric composition. For example, an attempt was made to eliminate it by making the iron concentration lower than the stoichiometric composition and making it iron-deficient.

【0023】本発明によれば、上記鉄不足型スピネルフ
ェライトを用いて結晶中のFe2+濃度を低減させること
により、複合型六方晶系フェライト磁性粉のSFDが小
さくなり、粒子間、ロット間の保磁力Hcのバラツキが
改善される。磁性粉の保磁力が安定に制御される結果、
作製した磁気記録媒体の短波長特性が改善される。同時
に、複合型六方晶系フェライト磁性粉本来の特長である
高い飽和磁化は損なわれないため、その長波長特性も従
来どおり確保できる。
According to the present invention, by reducing the Fe 2+ concentration in the crystal by using the iron-deficient spinel ferrite, the SFD of the composite hexagonal ferrite magnetic powder is reduced, and the interparticle and lot The variation of the coercive force Hc of is improved. As a result of stable control of the coercive force of the magnetic powder,
The short wavelength characteristics of the manufactured magnetic recording medium are improved. At the same time, since the high saturation magnetization, which is an inherent feature of the composite type hexagonal ferrite magnetic powder, is not impaired, its long wavelength characteristics can be secured as before.

【0024】[0024]

【実施例】以下、実施例にしたがって本発明を詳しく説
明する。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0025】実施例1 本発明の複合型六方晶系Baフェライト磁性粉末を2段
階で作製するにあたり、まず、単相六方晶系Baフェラ
イト磁性粉末を作製した。単相粉の作製にあたって、B
aCl2 、FeCl3 、CoCl2 およびNbCl5
各水溶液を調製し、それらを混合した。各水溶液の調製
は、それらを混合したときにBa,Fe,Co,および
Nbの各元素が、次の化学式 Ba・Fe12-2x Cox Nbx/2 19 (ただし、x=0.64)で表されるCo−Nb置換B
aフェライトの組成比で含まれるようにした。そしてこ
の混合溶液にアルカリを加え、pH13のもとで共沈物
を沈殿させた。さらにこの混合物を120℃にて4時間
加熱することにより、上記Co−Nb置換Baフェライ
トの前駆体を生成させた。ついでこの前駆体を水洗した
後、BaCl2 を混合(乾燥した前駆体に対するBaC
2 の重量比=1:1)し、十分撹拌した後、スプレー
ドライヤーにて乾燥した。このようにして得られた乾燥
混合物を、900℃で2時間熱処理した後、BaCl2
フラックスを水洗により除去して、上記組成のM型の単
相六方晶系Baフェライト磁性粉末を得た。
Example 1 In producing the composite type hexagonal Ba ferrite magnetic powder of the present invention in two steps, first, a single-phase hexagonal Ba ferrite magnetic powder was produced. For the production of single-phase powder, B
Aqueous solutions of aCl 2 , FeCl 3 , CoCl 2 and NbCl 5 were prepared and mixed. Each of the aqueous solutions was prepared by mixing Ba, Fe, Co, and Nb elements with the following chemical formula Ba.Fe 12-2x Co x Nb x / 2 O 19 (where x = 0.64) when they are mixed. ) Co-Nb substitution B represented by
a Ferrite composition ratio is included. Then, an alkali was added to this mixed solution to precipitate a coprecipitate under pH 13. Further, this mixture was heated at 120 ° C. for 4 hours to generate a precursor of the Co—Nb-substituted Ba ferrite. Then, this precursor was washed with water and mixed with BaCl 2 (BaC was added to the dried precursor).
The weight ratio of l 2 = 1: 1) and, after sufficiently stirring, and then dried by a spray drier. The dry mixture thus obtained was heat treated at 900 ° C. for 2 hours and then dried with BaCl 2
The flux was removed by washing with water to obtain an M-type single-phase hexagonal Ba ferrite magnetic powder having the above composition.

【0026】次いで、このようにして得られたBaフェ
ライト磁性粉末0.1モルを加えた水に、Coスピネル
フェライト(化学式Co1+x Fe2-x 4 においてx=
0.05としたもので表される組成を有する)0.2モ
ルに相当するCoとFeとを含むCoCl2 とFeCl
2 の水溶液をさらに加え、撹拌混合した。得られた混合
液にアルカリ水溶液を混合し、pH13のもとで、Ba
フェライト磁性粉末上にスピネルフェライト成分を共沈
させた。その後チッソバブリングを施しながら、このス
ラリーの温度を約90℃まで高めた後、チッソバブリン
グを酸素バブリングに切り替えて約4時間反応させた。
その後、得られたこのスラリーを水洗いしてアルカリを
除去し、次いで乾燥させることにより磁性微粒子を得
た。
Then, to the water to which 0.1 mol of the Ba ferrite magnetic powder thus obtained was added, Co spinel ferrite (chemical formula Co 1 + x Fe 2-x O 4 x =
CoCl 2 and FeCl containing 0.2 mol of Co and Fe (having a composition represented by 0.05)
The aqueous solution of 2 was further added and mixed with stirring. An alkaline aqueous solution is mixed with the obtained mixed solution, and Ba is mixed at a pH of 13.
A spinel ferrite component was coprecipitated on the ferrite magnetic powder. Then, while performing nitrogen bubbling, the temperature of this slurry was raised to about 90 ° C., and then nitrogen bubbling was switched to nitrogen bubbling and the reaction was performed for about 4 hours.
Then, the obtained slurry was washed with water to remove alkali, and then dried to obtain magnetic fine particles.

【0027】得られた磁性微粒子について、X線回折、
電子顕微鏡観察、組成分析を行った結果、これは表面に
Coスピネルフェライトが被着した複合型六方晶系Ba
フェライト磁性粉であることが確認された。
With respect to the obtained magnetic fine particles, X-ray diffraction,
As a result of electron microscopic observation and composition analysis, it was found that this was a composite hexagonal Ba with Co spinel ferrite deposited on the surface.
It was confirmed to be ferrite magnetic powder.

【0028】実施例2 実施例1と同様にして単相六方晶系Baフェライト磁性
粉末を作製し、その0.1モルを加えた水に、Coスピ
ネルフェライト(化学式Co1+x Fe2-x 4において
x=0.026としたもので表される組成を有する)
0.2モルに相当するCoとFeとを含むCoCl2
よびFeCl2 の水溶液をさらに加え、撹拌混合した。
得られた混合液にアルカリ水溶液を混合し、pH13の
もとで、Baフェライト磁性粉末上にスピネルフェライ
ト成分を共沈させた。その後チッソバブリングを施しな
がら、このスラリーの温度を約90℃まで高めた後、チ
ッソバブリングを酸素バブリングに切り替えて約4時間
反応させた。その後、得られたこのスラリーを水洗いし
てアルカリを除去し、次いで乾燥させることにより磁性
微粒子を得た。
Example 2 A single-phase hexagonal Ba ferrite magnetic powder was prepared in the same manner as in Example 1, and 0.1 mol of the magnetic powder was added to Co spinel ferrite (chemical formula Co 1 + x Fe 2-x O 4 has a composition represented by x = 0.026)
An aqueous solution of CoCl 2 and FeCl 2 containing 0.2 mol of Co and Fe was further added and mixed with stirring.
An alkaline aqueous solution was mixed with the obtained mixed liquid to coprecipitate the spinel ferrite component on the Ba ferrite magnetic powder under pH 13. Then, while performing nitrogen bubbling, the temperature of this slurry was raised to about 90 ° C., and then nitrogen bubbling was switched to nitrogen bubbling and the reaction was performed for about 4 hours. Then, the obtained slurry was washed with water to remove alkali, and then dried to obtain magnetic fine particles.

【0029】得られた磁性微粒子について、実施例1と
同様にX線回折、電子顕微鏡観察、組成分析を行った結
果、これは表面にCoスピネルフェライトが被着した複
合型六方晶系Baフェライト磁性粉であることが確認さ
れた。
The obtained magnetic fine particles were subjected to X-ray diffraction, electron microscope observation and composition analysis in the same manner as in Example 1. As a result, it was found that this was a composite hexagonal Ba ferrite magnet with Co spinel ferrite deposited on the surface. It was confirmed to be powder.

【0030】実施例3 実施例1と同様にして単相六方晶系Baフェライト磁性
粉末を作製し、その0.1モルを加えた水に、実施例2
で用いたものと同組成のCoスピネルフェライト0.1
モル相当のCoCl2 およびFeCl2 の水溶液をさら
に加え撹拌混合した他は実施例2と同様にして、磁性微
粒子を得た。
Example 3 A single-phase hexagonal Ba ferrite magnetic powder was prepared in the same manner as in Example 1, and 0.1 mol of the magnetic powder was added to water to give Example 2.
Co spinel ferrite having the same composition as used in 0.1
Magnetic fine particles were obtained in the same manner as in Example 2 except that an aqueous solution of CoCl 2 and FeCl 2 in an amount corresponding to moles was further added and mixed with stirring.

【0031】得られた磁性微粒子について、実施例1と
同様にX線回折、電子顕微鏡観察、組成分析を行った結
果、これは表面にCoスピネルフェライトが被着した複
合型六方晶系Baフェライト磁性粉であることが確認さ
れた。
The obtained magnetic fine particles were subjected to X-ray diffraction, electron microscope observation, and composition analysis in the same manner as in Example 1. As a result, it was found that this was a composite hexagonal Ba ferrite magnet with Co spinel ferrite deposited on the surface. It was confirmed to be powder.

【0032】実施例4 実施例1と同様にして単相六方晶系Baフェライト磁性
粉末を作製し、その0.1モルを加えた水に、Co−Z
nスピネルフェライト{化学式(Co0.8 Zn0.2
1+x Fe2-x 4 においてx=0.026としたもので
表される組成を有する}0.2モルに相当するCo、Z
n、Feを含むCoCl2 、ZnCl2 、FeCl2
水溶液をさらに加え、撹拌混合した。得られた混合液に
アルカリ水溶液を混合し、pH13のもとで、Baフェ
ライト磁性粉末上にスピネルフェライト成分を共沈させ
た。その後チッソバブリングを施しながら、このスラリ
ーの温度を約90℃まで高めた後、チッソバブリングを
酸素バブリングに切り替えて約4時間反応させた。その
後、得られたこのスラリーを水洗いしてアルカリを除去
し、次いで乾燥させることにより磁性微粒子を得た。
Example 4 A single-phase hexagonal Ba ferrite magnetic powder was prepared in the same manner as in Example 1, and 0.1 mol of the magnetic powder was added to Co-Z.
n spinel ferrite {Chemical formula (Co 0.8 Zn 0.2 )
1 + x Fe 2-x O 4 has a composition represented by x = 0.026} Co, Z corresponding to 0.2 mol
An aqueous solution of CoCl 2 , ZnCl 2 , and FeCl 2 containing n and Fe was further added and mixed with stirring. An alkaline aqueous solution was mixed with the obtained mixed liquid to coprecipitate the spinel ferrite component on the Ba ferrite magnetic powder under pH 13. Then, while performing nitrogen bubbling, the temperature of this slurry was raised to about 90 ° C., and then nitrogen bubbling was switched to nitrogen bubbling and the reaction was performed for about 4 hours. Then, the obtained slurry was washed with water to remove alkali, and then dried to obtain magnetic fine particles.

【0033】得られた磁性微粒子について、実施例1と
同様にX線回折、電子顕微鏡観察、組成分析を行った結
果、これは表面にCo−Znスピネルフェライトが被着
した複合型六方晶系Baフェライト磁性粉であることが
確認された。
The obtained magnetic fine particles were subjected to X-ray diffraction, electron microscope observation and composition analysis in the same manner as in Example 1. As a result, it was found that the composite hexagonal Ba having Co-Zn spinel ferrite deposited on the surface was used. It was confirmed to be ferrite magnetic powder.

【0034】実施例5 次に、一括方法により本発明の複合粉を作製した。作製
にあたっては、実施例2で用いられたM型の六方晶系B
aフェライトと同じ組成比のBa,Fe,Co,および
Nbを含むBaCl2 、FeCl3 、CoCl2 および
NbCl5 の各水溶液と、同じく実施例2で用いられた
Coスピネルフェライトと同じ組成比のCoとFeとを
含むCoCl2 およびFeCl3 の各水溶液を加え、撹
拌混合した。得られた混合液にアルカリ水溶液を混合
し、オートクレーブ中にて120℃、pH13のもとで
約6時間水熱処理を行った。
Example 5 Next, the composite powder of the present invention was produced by the batch method. Upon production, the M-type hexagonal system B used in Example 2 was used.
a aqueous solution of BaCl 2 , FeCl 3 , CoCl 2 and NbCl 5 containing Ba, Fe, Co and Nb in the same composition ratio as the a ferrite, and Co having the same composition ratio as the Co spinel ferrite used in Example 2 as well. CoCl 2 and FeCl 3 aqueous solutions containing Fe and Fe were added and mixed with stirring. An alkaline aqueous solution was mixed with the obtained mixed liquid, and hydrothermal treatment was performed in an autoclave at 120 ° C. and pH 13 for about 6 hours.

【0035】次いでこのスラリーを水洗した後、BaC
2 を混合(乾燥した前駆体に対するBaCl2 の重量
比=1:1)し、十分撹拌した後、スプレードライヤー
にて乾燥した。このようにして得られた乾燥混合物を、
900℃で2時間熱処理した後、BaCl2 フラックス
を水洗により除去して、磁性微粒子を得た。
Next, this slurry was washed with water and then BaC
l 2 was mixed (weight ratio of BaCl 2 to the dried precursor = 1: 1), sufficiently stirred, and dried by a spray dryer. The dry mixture thus obtained is
After heat treatment at 900 ° C. for 2 hours, the BaCl 2 flux was removed by washing with water to obtain magnetic fine particles.

【0036】得られた磁性微粒子について、同様にX線
回折、電子顕微鏡観察、組成分析を行った結果、これ
は、表面および内部にスピネル層を含むスピネル内包型
の複合型六方晶系Baフェライト磁性粉であることが確
認された。
The obtained magnetic fine particles were similarly subjected to X-ray diffraction, electron microscope observation and composition analysis. As a result, it was found that this was a spinel-encapsulated composite hexagonal Ba ferrite magnet containing spinel layers on the surface and inside. It was confirmed to be powder.

【0037】比較例1 実施例1と同様にして単相六方晶系Baフェライト磁性
粉末を作製し、それに加えるCoスピネルフェライト原
料として、Coスピネルフェライトの組成を表す化学式
Co1+x Fe2-x 4 においてx=0としたものを用い
た他は実施例2と同様にして、表面にCoフェライトの
被着された複合型六方晶系Baフェライト磁性粉を作製
した。
Comparative Example 1 A single-phase hexagonal Ba ferrite magnetic powder was prepared in the same manner as in Example 1, and a chemical formula Co 1 + x Fe 2-x representing the composition of Co spinel ferrite was prepared as a Co spinel ferrite raw material to be added thereto. A composite hexagonal Ba ferrite magnetic powder having Co ferrite adhered to the surface thereof was produced in the same manner as in Example 2 except that O 4 with x = 0 was used.

【0038】比較例2 実施例1と同様にして単相六方晶系Baフェライト磁性
粉末を作製し、それに加えるCoスピネルフェライト原
料として、Coスピネルフェライトの組成を表す化学式
Co1+x Fe2-x 4 においてx=−0.4としたもの
を用いた他は実施例2と同様にして、表面にCoフェラ
イトの被着された複合型六方晶系Baフェライト磁性粉
を作製した。
Comparative Example 2 A single-phase hexagonal Ba ferrite magnetic powder was prepared in the same manner as in Example 1, and as a Co spinel ferrite raw material to be added thereto, a chemical formula Co 1 + x Fe 2-x representing the composition of Co spinel ferrite was prepared. A composite hexagonal Ba ferrite magnetic powder having Co ferrite adhered to the surface thereof was produced in the same manner as in Example 2 except that O 4 with x = −0.4 was used.

【0039】比較例3 実施例1と同様にして単相六方晶系Baフェライト磁性
粉末を作製し、それに加えるCo−Znスピネルフェラ
イト原料として、Co−Znスピネルフェライトの組成
を表す化学式(Co0.8 Zn0.2 1+x Fe2-x 4
おいてx=0としたものを用いた他は実施例4と同様に
して、表面にCoフェライトの被着された複合型六方晶
系Baフェライト磁性粉を作製した。
Comparative Example 3 A single-phase hexagonal Ba ferrite magnetic powder was prepared in the same manner as in Example 1, and a chemical formula (Co 0.8 Zn ZnO) representing the composition of Co-Zn spinel ferrite was added as a Co-Zn spinel ferrite raw material. 0.2 ) In the same manner as in Example 4 except that x = 0 in 1 + x Fe 2 -x O 4 was used, a composite hexagonal Ba ferrite magnetic powder having Co ferrite deposited on the surface was used. It was made.

【0040】比較例4 M型の六方晶系Baフェライト材料とともに一括に混合
するCoスピネルフェライト原料として、Coスピネル
フェライトの組成を表す化学式Co1+x Fe2- x 4
おいてx=0としたものを用いた他は、実施例5と同様
にして、Coスピネルフェライトを内包した複合型六方
晶系Baフェライト磁性粉を試作した。
Comparative Example 4 As a Co spinel ferrite raw material to be mixed together with the M-type hexagonal Ba ferrite material, x = 0 in the chemical formula Co 1 + x Fe 2 -x O 4 representing the composition of Co spinel ferrite. A composite type hexagonal Ba ferrite magnetic powder containing Co spinel ferrite was manufactured in the same manner as in Example 5 except that the above-mentioned materials were used.

【0041】次に、このようにして得られた上記実施例
および比較例の磁性粉のそれぞれについて、磁気特性、
形状特性およびSFDの値を測定した。それらの測定結
果を、置換金属元素Mの種類、xの値、およびスピネル
フェライトとBaフェライトのモル比とともに次の表1
に示す。
Next, with respect to each of the magnetic powders of the above-mentioned Examples and Comparative Examples thus obtained, the magnetic characteristics,
The shape characteristics and SFD values were measured. The measurement results are shown in the following Table 1 together with the kind of the substitutional metal element M, the value of x, and the molar ratio of spinel ferrite and Ba ferrite.
Shown in.

【0042】[0042]

【表1】 表1から明らかなように、六方晶系フェライトとスピネ
ルフェライトを複合化させた磁性微粒子において、スピ
ネル型フェライト組成を鉄不足型とすることにより、磁
性粉のSFDが改善されていることが分かる。
[Table 1] As is clear from Table 1, in the magnetic fine particles in which hexagonal ferrite and spinel ferrite are compounded, the SFD of the magnetic powder is improved by making the spinel ferrite composition iron-deficient.

【0043】また、実施例2および比較例1の複合粉の
試作をそれぞれ5回繰り返し、保磁力のバラツキの度合
いを調べたところ、実施例2では±20 Oeであるの
に対し、比較例1の場合は±70 Oeであった。この
ことからも鉄不足型スピネルフェライトを用いた本発明
の複合磁性粉は、保磁力のバラツキを小さくし保磁力の
安定制御が可能であるということが理解されよう。さら
に、実施例2および比較例1の磁性粉の電気抵抗を測定
したところ、それぞれ4×106 Ωcm、7×107 Ωcm
であり、本発明は、磁性粉の電気抵抗低減にも効果があ
ることが判明した。
Further, the trial production of the composite powders of Example 2 and Comparative Example 1 was repeated 5 times, respectively, and the degree of coercive force variation was examined. In Example 2, it was ± 20 Oe, while in Comparative Example 1 In the case of, it was ± 70 Oe. From this, it can be understood that the composite magnetic powder of the present invention using the iron-deficient spinel ferrite can reduce the variation in coercive force and stably control the coercive force. Furthermore, when the electric resistances of the magnetic powders of Example 2 and Comparative Example 1 were measured, they were 4 × 10 6 Ωcm and 7 × 10 7 Ωcm, respectively.
Therefore, it was found that the present invention is also effective in reducing the electric resistance of the magnetic powder.

【0044】[0044]

【発明の効果】以上説明したように、スピネルフェライ
トの組成を鉄不足型とした本発明の複合磁性粉によれ
ば、従来の組成のスピネルフェライトと六方晶系フェラ
イトを複合させた磁性粉に比べて、短波長特性の支配因
子であるSFDが大幅に改善されると同時に、副次的効
果として、保磁力の安定制御、電気抵抗の低減などの効
果も認められる。したがって、本発明によれば、短波長
領域においても高い出力特性を示す磁気記録媒体が製造
可能な磁性粉が提供される。
As described above, according to the composite magnetic powder of the present invention in which the composition of the spinel ferrite is iron-deficient, compared to the magnetic powder of the conventional composition in which spinel ferrite and hexagonal ferrite are composited. As a result, the SFD, which is a controlling factor of the short wavelength characteristic, is significantly improved, and at the same time, as secondary effects, effects such as stable control of coercive force and reduction of electric resistance are recognized. Therefore, according to the present invention, a magnetic powder capable of producing a magnetic recording medium exhibiting high output characteristics even in a short wavelength region is provided.

【0045】[0045]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 哲 静岡県榛原郡吉田町川尻3583番地の5 東芝硝子株式会社内 (56)参考文献 特開 平4−236403(JP,A) 特開 平6−77034(JP,A) 特開 平2−40127(JP,A) 特開 昭60−261051(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 C04G 35/26 - 35/40 C01G 49/00 - 49/08 C04B 35/00 - 35/22 G11B 5/62 - 5/82 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Satoshi Hagiwara 5583 Kawajiri, Yoshida-cho, Hara-gun, Shizuoka 5 Toshiba Toshiba Glass Co., Ltd. (56) Reference JP-A-4-236403 (JP, A) JP-A-6 -77034 (JP, A) JP 2-40127 (JP, A) JP 60-261051 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00- 1/117 C04G 35/26-35/40 C01G 49/00-49/08 C04B 35/00-35/22 G11B 5/62-5/82

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 六方晶系フェライトとスピネルフェライ
トとが複合されて成る複合型六方晶系フェライト磁性粉
において、前記スピネルフェライトが、一般式 M1+xFe2−x (ただし、式中xは0<x<0.1の数を表し,MはC
o,Ni,Zn,Cu,Mg,Mnの中から選択される
少なくとも一種の元素を表す)で示されることを特徴と
する複合型六方晶系フェライト磁性粉。
1. A composite hexagonal ferrite magnetic powder comprising a mixture of hexagonal ferrite and spinel ferrite, wherein the spinel ferrite has a general formula of M 1 + x Fe 2 -x O 4 (where x is the formula: Represents a number 0 <x <0.1, M is C
o, Ni, Zn, Cu, Mg, Mn, which represents at least one element selected from the above.), a composite hexagonal ferrite magnetic powder.
【請求項2】 前記スピネルフェライトが、単相六方晶
系フェライト磁性粒子もしくは複合型六方晶系フェライ
ト磁性粒子の表面に被着されていることを特徴とする特
許請求の範囲請求項1記載の複合型六方晶系フェライト
磁性粉。
2. The composite according to claim 1, wherein the spinel ferrite is adhered to the surface of the single-phase hexagonal ferrite magnetic particles or the composite hexagonal ferrite magnetic particles. Type hexagonal ferrite magnetic powder.
【請求項3】 平均粒径が10〜60nm、保磁力が2
00〜4000 Oeであることを特徴とする特許請求
の範囲請求項1あるいは2記載の複合型六方晶系フェラ
イト磁性粉。
3. An average particle size of 10 to 60 nm and a coercive force of 2
The composite hexagonal ferrite magnetic powder according to claim 1 or 2, characterized in that it is from 0 to 4000 Oe.
【請求項4】 六方晶フェライト磁性粉を製造する工程
と、 前記六方晶フェライト磁性粉に、一般式 M 1+x Fe 2−x (ただし、式中xは0<x<0.1の数を表し、MはC
o,Ni,Zn,Cu,Mg,Mnの中から選択される
少なくとも一種の元素を表す)で示される組成に設定し
てスピネルフェライトを被着する工程とを備えたことを
特徴とする複合型六方晶系フェライト磁性粉の製造方
法。
4. A process for producing hexagonal ferrite magnetic powder.
If, on the hexagonal ferrite magnetic powder, the general formula M 1 + x Fe 2-x O 4 ( provided that where x is a number from 0 <x <0.1, M is C
selected from o, Ni, Zn, Cu, Mg, Mn
(Representing at least one element)
And the step of depositing spinel ferrite.
Production method of the characteristic composite type hexagonal ferrite magnetic powder
Law.
JP00249995A 1995-01-11 1995-01-11 Composite type hexagonal ferrite magnetic powder and method for producing the same Expired - Fee Related JP3429881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00249995A JP3429881B2 (en) 1995-01-11 1995-01-11 Composite type hexagonal ferrite magnetic powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00249995A JP3429881B2 (en) 1995-01-11 1995-01-11 Composite type hexagonal ferrite magnetic powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08191009A JPH08191009A (en) 1996-07-23
JP3429881B2 true JP3429881B2 (en) 2003-07-28

Family

ID=11531060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00249995A Expired - Fee Related JP3429881B2 (en) 1995-01-11 1995-01-11 Composite type hexagonal ferrite magnetic powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3429881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145522A2 (en) * 2008-05-27 2009-12-03 주식회사 이엠따블유안테나 Preparation method of high permeability ni-zn ferrite and an antenna using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106350B2 (en) * 2008-10-29 2012-12-26 京セラ株式会社 Composite sintered body of magnetic body and dielectric body and LC composite electronic component using the same
JP5316522B2 (en) * 2010-11-30 2013-10-16 戸田工業株式会社 Magnetic particle powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145522A2 (en) * 2008-05-27 2009-12-03 주식회사 이엠따블유안테나 Preparation method of high permeability ni-zn ferrite and an antenna using the same
WO2009145522A3 (en) * 2008-05-27 2010-02-25 주식회사 이엠따블유안테나 Preparation method of high permeability ni-zn ferrite and an antenna using the same

Also Published As

Publication number Publication date
JPH08191009A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
EP0290263B1 (en) Platelike magnetic powder and its manufacturing method and a recording medium which use the platelike magnetic powder
EP0183988A2 (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
JPS6314410B2 (en)
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
US6599608B2 (en) Media employing substantially spherical magneto-plumbite ferrite particles
Sakai et al. Preparation and magnetic properties of barium ferrite fine particles by the coprecipitation salt-catalysis method
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
JPH033361B2 (en)
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPH1092620A (en) Magnetic powder for magnetic recording
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JPH044253B2 (en)
KR920004999B1 (en) Ferrous type magnetic body and its manufacturing method and magnatic medium using it
JP2745306B2 (en) Ferromagnetic fine powder for magnetic recording and method for producing the same
JP3654917B2 (en) Method of manufacturing magnetic recording medium using hexagonal ferrite powder
JP2735281B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH05258932A (en) Magnetism recording magnetic powder
JPH1092618A (en) Hexagonal ferrite magnetic powder and its manufacture
JPS6260209A (en) Manufacture of hexagonal system ferrite magnetic powder
KR960000502B1 (en) Method of preparing magnetic hexagonal ferrite powder
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030506

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees