JPH0459620A - Magnetic powder for magnetic recording and magnetic recording medium therefrom - Google Patents

Magnetic powder for magnetic recording and magnetic recording medium therefrom

Info

Publication number
JPH0459620A
JPH0459620A JP2165773A JP16577390A JPH0459620A JP H0459620 A JPH0459620 A JP H0459620A JP 2165773 A JP2165773 A JP 2165773A JP 16577390 A JP16577390 A JP 16577390A JP H0459620 A JPH0459620 A JP H0459620A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
coercive force
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165773A
Other languages
Japanese (ja)
Inventor
Tadayuki Kikuma
忠之 菊間
Akihisa Yamamoto
陽久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2165773A priority Critical patent/JPH0459620A/en
Publication of JPH0459620A publication Critical patent/JPH0459620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title magnetic powder with reduced variation in coercive force and improved physical properties by forming hexagonal ferrite magnetic powder with a composition containing as substituent elements Nb, Bi, Sb and each specific metallic element. CONSTITUTION:The objective magnetic powder can be obtained by formation with a composition of the formula (M<1> is metallic element selected from Ba, Sr, Pb and Ca; M<2> is metallic element selected from Mn, Mg, Ni, Al, Ce, Cr, Cu, La, V, Ti, Zr and W; a is 8-13; b is 0.01-8; c is 0.3-6; d is 0.01-6; e is 0.01-6; f is number of oxygen atoms satisfying the valences of the other elements). The present magnetic powder is low in the variation in coercive force, excellent in densification with fine average particle size, great in saturation magnetization, and also excellent in dispersibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録用磁性粉および磁気記録媒体に関し
、さらに詳しくは、高密度磁気記録媒体用に適する微細
な粒子からなる六方晶系フェライト磁性粉右よびそれを
用いた磁気記録媒体に関する。本発明の磁性粉から、所
望の保磁力を有する磁気記録媒体を精度よく得ることが
できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic powder for magnetic recording and a magnetic recording medium, and more particularly to a hexagonal ferrite composed of fine particles suitable for high-density magnetic recording media. This invention relates to magnetic powder and magnetic recording media using the same. A magnetic recording medium having a desired coercive force can be obtained with high precision from the magnetic powder of the present invention.

〔従来の技術〕[Conventional technology]

近年、磁気記録に対する高密度化の要求に伴い。 In recent years, with the demand for higher density magnetic recording.

磁気記録媒体の厚み方向に磁界を記録する垂直磁気記録
方式が注目されている。このような垂直磁気記録媒体方
式において使用される磁性材料は、磁気記録媒体表面に
垂直な方向に磁化容易軸を有するものであることが必要
である。
Perpendicular magnetic recording, which records a magnetic field in the thickness direction of a magnetic recording medium, is attracting attention. The magnetic material used in such a perpendicular magnetic recording medium system must have an axis of easy magnetization in a direction perpendicular to the surface of the magnetic recording medium.

六方晶系で一軸磁化異方性を有するフェライト。A ferrite with a hexagonal crystal system and uniaxial magnetization anisotropy.

例えばバリウムフェライト(B a F e 1201
9)磁性粉は、六角板状の結晶であって、板面に垂直な
方向に磁化容易軸を有しており、このため、該磁性粉は
塗布しただけでも板面が基体面と並行になり易く、磁場
配向処理もしくは機械的配向処理によって、容易にその
磁化容易軸が垂直方向に配向するので、塗布膜タイプの
垂直磁気記録媒体用磁性材料として適している。
For example, barium ferrite (B a Fe 1201
9) Magnetic powder is a hexagonal plate-shaped crystal with an axis of easy magnetization perpendicular to the plate surface. Therefore, even if the magnetic powder is simply applied, the plate surface will be parallel to the substrate surface. It is suitable as a magnetic material for coating film type perpendicular magnetic recording media because its axis of easy magnetization can be easily oriented in the perpendicular direction by magnetic field orientation treatment or mechanical orientation treatment.

ところで、塗布膜タイプの垂直磁気記録用磁性材料とし
ては、六方晶系で一軸磁化異方性を有するだけではなく
1次のような要件を満足する必要がある。
Incidentally, as a coating film type magnetic material for perpendicular magnetic recording, it is necessary not only to have a hexagonal crystal system and uniaxial magnetization anisotropy, but also to satisfy requirements such as first order.

すなわち、一般に磁気テープやフロッピーディスク等の
磁気記録媒体に磁気ヘッドを用いて記録再生および消去
を行なうためには、磁性粉は、通常、200〜2000
〔Oe〕程度の範囲の適度な保磁力(Hc )を有する
と共に、ψなくとも40 e m u / g以上の大
きな飽和磁化(σS)を有することが必要である。また
、磁性粉の平均粒子径は、記録波長との関係から0. 
3μm以下、かつ、超常磁性との関係から0.01μm
以上の範囲にあることが必要であり、さらに、その範囲
内ではノイズとの関係から0.1μm以下であることが
好ましい。しかも、磁気記録媒体として用いたときに高
出力が得られることが大切であり、このため分散性の良
い磁性粉であることが好ましい6磁気記録媒体における
磁性粉の分散性は1gi性粉の形状、表面性および磁性
粉と樹脂結合剤との相互作用等により決定されるため、
磁性粉の粒子形状のみでは分散性の良否を充分に判断す
ることはできない。
That is, in general, in order to perform recording, reproduction and erasing using a magnetic head on a magnetic recording medium such as a magnetic tape or a floppy disk, the magnetic powder usually has a density of 200 to 2000.
It is necessary to have an appropriate coercive force (Hc) in the range of about [Oe] and a large saturation magnetization (σS) of at least 40 emu/g. Also, the average particle diameter of the magnetic powder is 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 than more.
3μm or less and 0.01μm from the relationship with superparamagnetism
It is necessary that the thickness be within the above range, and furthermore, within this range, it is preferably 0.1 μm or less from the perspective of noise. Moreover, it is important that high output can be obtained when used as a magnetic recording medium, and for this reason it is preferable to use magnetic powder with good dispersibility.6 The dispersibility of magnetic powder in magnetic recording media is 1gi. , determined by the surface properties and the interaction between the magnetic powder and the resin binder, etc.
The quality of dispersibility cannot be sufficiently determined based on the particle shape of magnetic powder alone.

このため、一般に、磁性粉を樹脂結合剤と混合して磁気
記録媒体とし、その表面の光沢度を測定することによっ
て分散性の良否を評価している。
For this reason, generally, magnetic powder is mixed with a resin binder to form a magnetic recording medium, and the quality of dispersibility is evaluated by measuring the glossiness of the surface.

したがって、磁気記録媒体としたときの光沢度の大きな
磁性粉であることが望ましい。
Therefore, it is desirable that the magnetic powder has high gloss when used as a magnetic recording medium.

ところが、一般に知られている六方晶系バリウムフェラ
イト(B a F e 12019)磁性粉は2 保磁
力が5000(Oe)近く、このままでは磁気記録用磁
性材料としては保磁力が大きすぎるため、従来、バリウ
ムフェライトの構成元素の一部をコバルト(CO)等の
置換元素で置換して保磁力を低下させる方法(例えば、
特開昭56−67904号公報、特開昭59−1757
07号公報)が提案されている。これらの方法によれば
、COの置換量を制御することによって六方晶系バリウ
ムフェライト磁性粉の保磁力を低減させ、磁気記録媒体
用に適した保磁力にすることができる(倒えば、特開昭
55−86103号公報)。
However, the generally known hexagonal barium ferrite (B a Fe 12019) magnetic powder has a coercive force of nearly 5000 (Oe), which is too large to be used as a magnetic material for magnetic recording, so conventionally, A method of lowering the coercive force by substituting some of the constituent elements of barium ferrite with a substituting element such as cobalt (CO) (for example,
JP-A-56-67904, JP-A-59-1757
No. 07) has been proposed. According to these methods, the coercive force of hexagonal barium ferrite magnetic powder can be reduced by controlling the amount of CO substitution, and the coercive force can be made suitable for magnetic recording media. Publication No. 55-86103).

しかしながら、Co置換により保磁力を制御したCO含
含有六方茶系バリウムフェライト磁性粉、磁気記録媒体
用として用いたときにその保磁力が大きく変動するとい
う問題がある。例えば、第1表に示すように、磁気記録
媒体としたときのCOO換六方晶系バリウムフェライト
磁性粉の保磁力は、使用した原料磁性粉の保磁力に対し
て約1゜1倍以上、場合によっては2.0 倍程度にま
で上昇するという問題がある。
However, when a CO-containing hexagonal brown barium ferrite magnetic powder whose coercive force is controlled by Co substitution is used for a magnetic recording medium, there is a problem in that the coercive force varies greatly. For example, as shown in Table 1, the coercive force of COO-exchanged hexagonal barium ferrite magnetic powder when used as a magnetic recording medium is approximately 1°1 times or more than the coercive force of the raw material magnetic powder used. There is a problem in that in some cases, it can increase to about 2.0 times.

(以下余白) このように、一般に、置換元素含有六方晶系バリウムフ
ェライト磁性粉の保磁力は、磁気記録媒体としたときに
変動するが、出力およびノイズ等の性能上の要求から、
磁気記録媒体保磁力の変動許容範囲は、設定値±20〔
003以内、好ましくは設定値±10(Oe)以内であ
ることが要求される。このため、所望の設定値の保磁力
を有する磁気記録媒体を±20(Oe)以内、好ましく
は±10(Oe)以内の精度で製造するためには、使用
する磁性粉の保磁力と、それを磁気記録媒体にしたとき
の保磁力との関係を前以って正確に予測し、その子lI
!!値通りの保磁力を有する磁性粉を製造し、使用しな
ければならない。
(Left below) As described above, the coercive force of hexagonal barium ferrite magnetic powder containing substituent elements generally varies when used as a magnetic recording medium, but due to performance requirements such as output and noise,
The permissible range of variation in the coercive force of the magnetic recording medium is the set value ±20 [
It is required that the value be within 0.003, preferably within ±10 (Oe) of the set value. Therefore, in order to manufacture a magnetic recording medium having a coercive force of a desired set value with an accuracy within ±20 (Oe), preferably within ±10 (Oe), it is necessary to determine the coercive force of the magnetic powder used and its Accurately predict in advance the relationship between the coercivity and coercive force when used as a magnetic recording medium, and
! ! Magnetic powders with reasonable coercivity must be produced and used.

このことを具体的に第1表の特開昭62−207720
号公報記載の例で説明するならば、設定[652(Oe
)の保磁力を有する磁気テープを±20〔Oe〕の精度
で製造するためには、先ず、正確に515±15[Oe
)の保磁力を有するCo11換六方品系バリウムフェラ
イト磁性粉を製造することが必要である。
This can be explained in detail in Table 1 of JP-A No. 62-207720.
To explain using the example described in the publication, the setting [652 (Oe
) In order to manufacture a magnetic tape with a coercive force of ±20 [Oe], first, the magnetic tape must have a coercive force of exactly 515 ± 15 [Oe].
) It is necessary to produce a Co11-converted hexagonal barium ferrite magnetic powder having a coercive force of

ところ、Co含有六方晶系バリウムフェライト磁性粉の
保磁力は、coの含有量をかえることによって制御でき
るが、Coの含有量が変化すること、その変化量が微量
であっても得られる磁性粉の保磁力は大きく変化しく日
経ニューマテリアル、1986年4月28日号52頁)
、しかも、製造工程の微少な条件変化によっても、保磁
力はかなり変化するため、前述の如き狭い許容範囲内で
所望の保磁力を有する磁性粉を安定して製造することは
非常に困難である。
However, the coercive force of Co-containing hexagonal barium ferrite magnetic powder can be controlled by changing the Co content. (Nikkei New Materials, April 28, 1986 issue, p. 52)
Moreover, the coercive force changes considerably even with slight changes in the conditions of the manufacturing process, so it is extremely difficult to stably produce magnetic powder having the desired coercive force within the narrow tolerance range mentioned above. .

次に、所望の保磁力を有する磁性粉を製造することがで
きたとしても、これを磁気記録媒体としたときに、その
保磁力が大きく変動しないように工程管理をしなければ
ならない、しかしながら、Co含有六方晶系バリウムフ
ェライト磁性粉の場合、磁性粉の含水率、表面イ・オン
濃度1公散の度合い、あるいは磁気記録媒体の製造工程
における条件の変化等によって、磁気記録媒体としたと
きにその保磁力が大きく変動し易いため、設定値通りの
保磁力を有する磁気記録媒体を精度よく製造することは
極めて困難である。
Next, even if it is possible to produce magnetic powder with a desired coercive force, the process must be controlled so that the coercive force does not vary significantly when used as a magnetic recording medium. In the case of Co-containing hexagonal barium ferrite magnetic powder, when it is used as a magnetic recording medium, it may vary depending on the moisture content of the magnetic powder, the degree of surface ion concentration 1 dispersion, or changes in conditions in the manufacturing process of the magnetic recording medium. Since the coercive force tends to fluctuate greatly, it is extremely difficult to accurately manufacture a magnetic recording medium having a coercive force exactly as set.

一方−Coを含まない高密度磁気記録媒体用バリウムフ
ェライト磁性粉についても各種の提案がなされている。
On the other hand, various proposals have been made regarding barium ferrite magnetic powder for high-density magnetic recording media that does not contain -Co.

例えば、置換元素としてスズ(S n)を用いたSn含
有バリウムフェライト磁性粉が知られており、これらの
磁性粉は、保磁力の温度依存性が小さい。しかしながら
、公知のCOを含まないSn含有バリウムフェライト磁
性粉は、一般に、平均粒径が0.85μm以上と大きい
ため、高密度化が不充分であること、板状比が10以上
と大きいため、塗布媒体中で高充填率が得られないこと
(例えば、東方レビュー1[40巻第13号1985年
)、粒度分布が大きいこと、保磁力を1000(Oe 
)以下にすることが困難であるため、低保磁力(200
−900(Oe〕)を要する磁気記録媒体には使用する
ことができないこと、飽和磁化が比較的小さいこと、さ
らに分散性が悪いことにより、高出力が得られないこと
等の欠点を有している。
For example, Sn-containing barium ferrite magnetic powders using tin (S n ) as a substituent element are known, and these magnetic powders have a small temperature dependence of coercive force. However, known CO-free, Sn-containing barium ferrite magnetic powders generally have a large average particle size of 0.85 μm or more, so densification is insufficient, and the plate ratio is large, 10 or more. The inability to obtain a high filling rate in the coating medium (for example, Touhou Review 1 [Volume 40, No. 13, 1985), the large particle size distribution, and the coercive force of 1000 (Oe)
) or less, it is difficult to reduce the coercive force to less than
-900 (Oe)), the saturation magnetization is relatively small, and the dispersibility is poor, so high output cannot be obtained. There is.

例えば、特開昭60−122726号公報および特開昭
61−174118号公報において提案されているCo
を含まないSn含有バリウムフェライト磁性粉は、平均
粒径が0.2μm以上で。
For example, Co
Sn-containing barium ferrite magnetic powder that does not contain Sn has an average particle size of 0.2 μm or more.

板状比も10以上と大きく、また、飽和磁化は小さいと
いった欠点を有している。特開昭61−219720号
公報において提案されているCoを含まないSn含有バ
リウムフェライト磁性粉は、1000(Oe)以下の低
い保磁力まで制御できるものの、平均粒径が0. 1μ
m以上と大きく、板状比も10以上と大きいといった欠
点を有している。
The plate ratio is also large at 10 or more, and the saturation magnetization is small. Co-free Sn-containing barium ferrite magnetic powder proposed in JP-A-61-219720 can control coercive force as low as 1000 (Oe) or less, but has an average particle size of 0. 1μ
It has the drawbacks of being large, at more than m, and having a large plate-like ratio of at least 10.

特開昭61−295236号公報において提案されてい
るCoを含まないSn含有バリウムフェライト磁性粉は
、平均粒径が小さく、かつ保磁力も低いものが得られて
いるものの、板状比が大きく、飽和磁化は52 (em
u/g )以下と小さいといった欠点を有している。
Although the Co-free Sn-containing barium ferrite magnetic powder proposed in JP-A-61-295236 has a small average particle size and a low coercive force, it has a large plate-like ratio; The saturation magnetization is 52 (em
It has the disadvantage that it is small, less than 2 u/g.

特開昭63−193504号公報、特開昭63−193
506号公報および特開昭63−193507号公報に
おいて提案されているCoを含まないSn含有バリウム
フェライト磁性粉は、平均粒径が小さいものの、粒度分
布が大きく、また、保磁力を1ooOcOe)以下にg
減することが困難であり、200〜900(Oe)のよ
うな低保磁力を要する磁気記録媒体用の磁性粉には使用
することができないといった欠点を有している。
JP-A-63-193504, JP-A-63-193
Co-free Sn-containing barium ferrite magnetic powder proposed in Japanese Patent Application Laid-Open No. 63-193507 has a small average particle diameter, but a large particle size distribution, and a coercive force of less than 1ooOcOe). g
It has the drawback that it is difficult to reduce the magnetic flux and cannot be used as magnetic powder for magnetic recording media that requires a low coercive force of 200 to 900 (Oe).

また、特開昭63−310729号公報において提案さ
れているCoを含まないSn含有バリウムフェライト磁
性粉は、平均粒径が小さく、飽和磁化が大きく、また、
保磁力も低いものが得られているものの、平均粒径およ
び板状比が大きく、また1分散性が悪いため、磁気記録
媒体用の磁性粉として好ましくない。このように、公知
のCOを含まないSn含有バリウムフェライト磁性粉は
、高密度磁気記録媒体用磁性粉としての性能が不充分で
ある。
In addition, the Co-free Sn-containing barium ferrite magnetic powder proposed in JP-A No. 63-310729 has a small average particle size, a large saturation magnetization, and
Although a product with a low coercive force has been obtained, the average particle size and platelet ratio are large, and the monodispersity is poor, making it undesirable as a magnetic powder for magnetic recording media. As described above, the known CO-free Sn-containing barium ferrite magnetic powder has insufficient performance as a magnetic powder for high-density magnetic recording media.

また置換用元素としてNb、SbおよびTaからえらば
れる541金属を用いたバリウムフェライト磁性粉が知
られている(例えば、特開昭63−193504号公報
)。しかしこれらの磁性粉は磁気テープ化したときに保
磁力が大きく変動し、また、保磁力の温度依存性も2〜
4と大きく磁気テープに要求される保磁力の温度安定性
の点で不充分である。
Barium ferrite magnetic powder using 541 metal selected from Nb, Sb and Ta as a substituting element is also known (for example, Japanese Patent Application Laid-Open No. 193504/1983). However, when these magnetic powders are made into magnetic tape, the coercive force fluctuates greatly, and the temperature dependence of the coercive force also varies from 2 to 2.
4, which is insufficient in terms of the temperature stability of coercive force required of magnetic tapes.

このようにNb−5bおよびTaからえらばれる5価金
属を置換したバリウムフェライト磁性粉は、磁気記録媒
体用の磁性粉として満足のいける特性を有していない。
Barium ferrite magnetic powder in which pentavalent metals selected from Nb-5b and Ta are substituted in this way does not have satisfactory characteristics as a magnetic powder for magnetic recording media.

一方、置換元素としてジルコニウム(Z r)を用いた
Zr含有バリウムフェライト磁性粉が知られているが(
Iえば、特開昭61−40823号公報、特開昭63−
156303号公報)、これらの磁性粉は、a気テープ
化したときに保磁力が±30(Oe)以上も変動する(
特開昭63−146216号公*)。提案も、Zr含有
磁性粉は、平均粒子径が0. 1μm以上と大きいため
、高密度化が不充分であり、また、板状比が10以上と
大きいため、塗布媒体中で高充填率が得ら九ないという
欠点を有している(例えば、東方レビューj140巻1
[13号、1985年)、さらに、Zr含有バリウムフ
ェライト磁性粉は、保磁力の温度依存性が大きいため(
Nえば、特開昭63−193506号公報)、磁気テー
プに要求される保磁力の温度安定性の点で不充分である
。このように、従来公知のGoを含まないZr含有バリ
ウムフェライト磁性粉は、磁気記録媒体用の磁性粉とし
て要求水準を満足する特性を有していない。
On the other hand, Zr-containing barium ferrite magnetic powder using zirconium (Zr) as a substituent element is known.
For example, JP-A-61-40823, JP-A-63-
156303), and when these magnetic powders are made into a-air tape, the coercive force fluctuates by more than ±30 (Oe) (
JP-A-63-146216*). In the proposal, the Zr-containing magnetic powder has an average particle diameter of 0. Because it is large (1 μm or more), high density is insufficient, and because the plate ratio is large (10 or more), it has the disadvantage that it is difficult to obtain a high filling rate in the coating medium (for example, Toho review j140 volume 1
[No. 13, 1985), and furthermore, since Zr-containing barium ferrite magnetic powder has a large temperature dependence of coercive force (
(For example, Japanese Patent Application Laid-Open No. 193506/1983) is insufficient in terms of the temperature stability of coercive force required of magnetic tapes. As described above, the conventionally known Go-free Zr-containing barium ferrite magnetic powder does not have characteristics that satisfy the required level as a magnetic powder for magnetic recording media.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、磁気テープなどの磁気記録媒体用とし
て用いた場合に、保磁力の変動が小さく。
An object of the present invention is to reduce fluctuations in coercive force when used for magnetic recording media such as magnetic tapes.

かつ、優れた諸物性を有する磁性粉を提供することにあ
る。
Another object of the present invention is to provide magnetic powder having excellent physical properties.

また、本発明の目的は、保磁力が磁気記録媒体用に適し
た範囲に制御、でき、飽和磁化が大きく、平均粒径が小
さく、粒度分布が均一であり、板状比が小さく、しかも
分散性に優れた六方晶系フェライト磁性粉を提供するこ
とにある。
Further, the object of the present invention is to control the coercive force within a range suitable for magnetic recording media, to have large saturation magnetization, small average particle diameter, uniform particle size distribution, small platelet ratio, and dispersion. An object of the present invention is to provide hexagonal ferrite magnetic powder with excellent properties.

本発明の他の目的は、上記の優れた諸物性を有する磁性
粉を用いた磁気記録媒体を提供することにある。
Another object of the present invention is to provide a magnetic recording medium using magnetic powder having the above-mentioned excellent physical properties.

本発明者らは、前記従来技術の有する間層点を解決する
ために鋭意研究した結果、置換元素としてNb−B1お
よびsbから選ばれる少くとも1種の元素とSiおよび
特定の金属元素を含有させた特定の組成を有する六方晶
系フェライト磁性粉が上記目的を達成する優れた物性を
有することを見出し、その知見に基づいて本発明を完成
するに至った。
As a result of intensive research in order to solve the interlayer point of the prior art, the present inventors found that the present invention contains at least one element selected from Nb-B1 and sb, Si, and a specific metal element as a substituent element. The present inventors have discovered that hexagonal ferrite magnetic powder having a specific composition has excellent physical properties that achieve the above object, and have completed the present invention based on this knowledge.

かくして本発明によれば、一般組成式 %式%) で表される磁気記録用磁性粉。Thus, according to the invention, the general composition formula %formula%) Magnetic powder for magnetic recording represented by

(ただし、Ml はBa、Sr、PbおよびCaから選
択される少なくとも1種の金属元素を表わし、M2はB
1−Nbおよびsbから選ばれる少なくとも1種の金属
元素を表わし、M3はMn−Mg、Ni、AI  Ce
、Cr−Cu−La、V−Ti。
(However, Ml represents at least one metal element selected from Ba, Sr, Pb and Ca, and M2 represents B
1-represents at least one metal element selected from Nb and sb, M3 is Mn-Mg, Ni, AI Ce
, Cr-Cu-La, V-Ti.

Zr、WおよびZnから選択される少なくとも1種の元
素を表わす。また、a、  b−c、  d−eおよび
fは、それぞれFe、Si−M’  M2 M3および
○の原子数を表わし+  a=8.0〜13゜0、b=
o、01〜8. 0−  c=0. 3〜6.0゜d=
0.01〜6.  Olおよびe=0. 01−6゜0
の値をとり、fは他の元素の原子価を満足する酸素の原
子数である。) また、本発明によれば、前記磁気記録用磁性粉を用いる
ことにより、所望の保磁力を有する磁気記録媒体を精度
よく、かつ、安定的に製造することができる。
Represents at least one element selected from Zr, W and Zn. In addition, a, b-c, de-e and f represent the number of atoms of Fe, Si-M'M2M3 and ○, respectively, + a=8.0~13゜0, b=
o, 01-8. 0-c=0. 3~6.0゜d=
0.01-6. Ol and e=0. 01-6゜0
, and f is the number of oxygen atoms that satisfies the valences of other elements. Furthermore, according to the present invention, by using the magnetic powder for magnetic recording, a magnetic recording medium having a desired coercive force can be manufactured accurately and stably.

以下1本発明について詳述する。The present invention will be explained in detail below.

本発明の磁性粉の特徴は、各金属元素の種類および使用
割合等を制御することにより、磁性粉の保磁力を200
〜2000[Oe)の間で所望の値に設定でき、しかも
磁気記録媒体としたときの保磁力が原料磁性粉の保磁力
とほぼ同じであり、保磁力の変動が極めて小さいため、
所望の設定保磁力を有する磁気記録媒体を精度よく得る
ことができる。
The feature of the magnetic powder of the present invention is that by controlling the type and proportion of each metal element, the coercive force of the magnetic powder can be increased to 200%.
It can be set to a desired value between ~2000 [Oe], and the coercive force when used as a magnetic recording medium is almost the same as the coercive force of the raw magnetic powder, and the variation in coercive force is extremely small.
A magnetic recording medium having a desired set coercive force can be obtained with high precision.

また− 本発明の磁性粉は、飽和磁化が55emu/g
以上と大きく、平均粒径が0.08μm以下で、板状比
(板状粒子の長軸径/板状粒子の厚み)が8以下、個数
基準の幾何標準偏差で表わされた粒度分布が3.3以下
で、かつ、分散性に優れており、磁気記録媒体用磁性粉
として優れた諸物性を有する。
Furthermore, the magnetic powder of the present invention has a saturation magnetization of 55 emu/g.
The average particle size is 0.08 μm or less, the platelet ratio (long axis diameter of platelet particles/thickness of platelet particles) is 8 or less, and the particle size distribution expressed by the number-based geometric standard deviation is 3.3 or less, has excellent dispersibility, and has excellent physical properties as a magnetic powder for magnetic recording media.

〔組成〕〔composition〕

本発明の磁性粉は、前記一般組成式で示される組成を有
する置換六方晶系フェライトである。
The magnetic powder of the present invention is a substituted hexagonal ferrite having a composition represented by the above general compositional formula.

本発明においては、磁性粉の各成分元素の原子数a −
fが前記数値範囲内にあることが必要であり、この範囲
外では、磁気記録媒体に適した保磁力や飽和磁化および
平均粒径0.08μm以下の磁性粉を得ることが困難で
ある。
In the present invention, the number of atoms of each component element of the magnetic powder is a −
It is necessary that f be within the above numerical range; outside this range, it is difficult to obtain magnetic powder with coercive force, saturation magnetization, and average particle size of 0.08 μm or less suitable for magnetic recording media.

各成分の好ましい割合は、前記一般組成式において、 
a=9. 0−12. 0−  b=0. 02〜6゜
0、c=0. 3−4. 0、d=0. 02−4. 
0およびe=0.02〜4.0の値であり、fは他の元
素の原子価を満足する酸素の原子数である。
The preferred proportions of each component are as follows in the general compositional formula:
a=9. 0-12. 0-b=0. 02~6°0, c=0. 3-4. 0, d=0. 02-4.
0 and e=0.02 to 4.0, and f is the number of oxygen atoms satisfying the valences of other elements.

また−  M3は、前記特定の金属元素から選択される
が、その中でもMg、Ni、Zn、Zrおよびそれらの
組合わせが好ましい。
Moreover, -M3 is selected from the above-mentioned specific metal elements, and among them, Mg, Ni, Zn, Zr, and combinations thereof are preferable.

本発明の磁性粉は、il造条件の差異等により、必ずし
も正常な六角板状の結晶を呈していない粒子が混在する
場合もあるが、前記一般組成式を満足するものである限
り、本発明の磁性粉として好適に用いることができる。
The magnetic powder of the present invention may contain particles that do not necessarily exhibit normal hexagonal plate-shaped crystals due to differences in IL manufacturing conditions, etc., but as long as it satisfies the general compositional formula described above, the magnetic powder of the present invention may be used. It can be suitably used as magnetic powder.

〔磁性粉の製造方法〕[Method for manufacturing magnetic powder]

本発明の磁性粉の製造方法は特に限定されず、例えば、
共沈法、フラックス法、ガラス結晶化法、水熱合成法等
の任意の製造方法により得ることができる。その中でも
、各成分の混合が非常に良く、均一なフェライトが得ら
れること、比較的低温でフェライト化し得ることなどか
ら、共沈法が特に好ましい。
The method for producing magnetic powder of the present invention is not particularly limited, and for example,
It can be obtained by any production method such as a coprecipitation method, a flux method, a glass crystallization method, and a hydrothermal synthesis method. Among these, the coprecipitation method is particularly preferred because it allows for very good mixing of each component, provides uniform ferrite, and can be converted into ferrite at a relatively low temperature.

本発明の磁性粉を共沈法により製造する場合について、
以下に説明する。
Regarding the case where the magnetic powder of the present invention is manufactured by coprecipitation method,
This will be explained below.

各金属元素の原料化合物としては、酸化物、オキシ水酸
化物、水酸化物、アンモニウム塩、硝酸塩、硫酸塩、炭
酸塩、有機酸塩、ハロゲン化物、アルカリ金属塩等の塩
類、遊離酸、酸無水物、縮合酸等を挙げることができる
。その中でも、特に水溶性化合物が好・ましい。
Raw material compounds for each metal element include oxides, oxyhydroxides, hydroxides, ammonium salts, nitrates, sulfates, carbonates, organic acid salts, halides, salts such as alkali metal salts, free acids, and acid salts. Examples include anhydrides and condensed acids. Among these, water-soluble compounds are particularly preferred.

各金属元素の原料化合物は、水溶液となるように、水に
混合溶解されることが好ましい。また、アルカリ水溶液
に混合溶解した方が都合がよい場合には、後述のアルカ
リ水溶液中に混合溶解される。
The raw material compounds of each metal element are preferably mixed and dissolved in water to form an aqueous solution. Further, if it is convenient to mix and dissolve in an alkaline aqueous solution, it can be mixed and dissolved in an alkaline aqueous solution, which will be described later.

また、Nb、Biあるいはsbのような、水に溶解しに
くい金属元素の原料化合物は、適宜、アルコール、四塩
化炭素、エーテル、アセトン、クロロホルムあるいは塩
酸、酒石酸水溶液のような溶媒に、あらかじめ溶解させ
て用いることが好ましい。
In addition, raw material compounds of metal elements that are difficult to dissolve in water, such as Nb, Bi, or sb, should be dissolved in advance in a solvent such as alcohol, carbon tetrachloride, ether, acetone, chloroform, or an aqueous solution of hydrochloric acid or tartaric acid. It is preferable to use it.

一方、アルカリ水溶液に用いるアルカリ成分としては、
水溶性のものであればよく、アルカリ金属の水酸化物や
炭酸塩、アンモニア、炭酸アンモニア等が挙げられる。
On the other hand, the alkaline components used in alkaline aqueous solutions include:
Any water-soluble material may be used, and examples thereof include alkali metal hydroxides, carbonates, ammonia, and ammonia carbonate.

具体的には1例えば、NaOH,N a 2COs−N
 a HCO3、K OH−K 2 C03、N H4
0Hl (N Ha ) CO3等が用いられ、その中
でも特に水酸化物と炭ll塩との併用が好ましいつ 次いで、上記金属イオン水溶液とNb、Biあるいはs
bと適当な溶媒との溶液、およびアルカリ水溶液とを混
合し、pH5以上、好ましくはpH8以上で共沈物を生
成させる。得られた共沈物は、水洗した後濾別する。こ
のようにして得られたケーキ状ないしスラリー状の共沈
物は、これを乾燥後、600〜1100℃で10分〜3
0時間高温焼成することにより六方晶系フェライト磁性
粉となる。
Specifically, 1, for example, NaOH, Na 2COs-N
a HCO3, KOH-K2C03, NH4
0Hl (N Ha ) CO3, etc. are used, and among these, it is particularly preferable to use a hydroxide and a carbonate salt in combination.
A solution of b and a suitable solvent and an aqueous alkaline solution are mixed to form a coprecipitate at pH 5 or higher, preferably at pH 8 or higher. The obtained coprecipitate is washed with water and then filtered. The cake-like or slurry-like coprecipitate thus obtained is dried at 600-1100°C for 10 minutes to 3 minutes.
Hexagonal ferrite magnetic powder is obtained by firing at a high temperature for 0 hours.

また、共沈物をフラックス(融剤)の存在下に焼成する
場合には、水洗された共沈物に水溶性フラックス(例え
ば、塩化ナトリウムや塩化カリウム等のハロゲン化アル
カリ金属塩;塩化バリウムやストロンチウム等のハロゲ
ン化アルカリ土類金属塩;硫酸ナトリウム、硫酸カリウ
ム、硝酸ナトリウム、硝酸カリウム、およびこれらの混
合物等)を適当量加え、あるいは金属イオン水溶液とア
ルカリ水溶液との混合物から得られる共沈物を塩酸等で
pH1III後濾別し、水洗することなくそのまま水分
を蒸発させてこれを乾燥後、600〜1100℃で10
分〜30時間高温焼成した後、水溶性フラックスを水ま
たは酸水溶液で洗浄渡別し、必要に応じさらに水洗した
後、乾燥して六方晶系フェライト磁性粉を得る。
In addition, when the coprecipitate is fired in the presence of flux (fluxing agent), water-soluble flux (for example, alkali metal halides such as sodium chloride and potassium chloride; barium chloride, etc.) is added to the washed coprecipitate. A suitable amount of halogenated alkaline earth metal salts such as strontium; sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, and mixtures thereof, etc.) is added, or a coprecipitate obtained from a mixture of an aqueous metal ion solution and an aqueous alkali solution is added. After adjusting the pH to 1III with hydrochloric acid, etc., filter it, evaporate the water without washing with water, dry it, and heat it at 600 to 1100°C for 10 minutes.
After firing at a high temperature for 30 minutes to 30 hours, the water-soluble flux is washed and separated with water or an acid aqueous solution, further washed with water if necessary, and then dried to obtain hexagonal ferrite magnetic powder.

本発明の磁性粉は、樹脂バインダーを用いる通常の塗布
法により基材に適用して、磁気テープなどの磁気記録媒
体とすることができる。
The magnetic powder of the present invention can be applied to a base material by a conventional coating method using a resin binder to form a magnetic recording medium such as a magnetic tape.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁気記録媒体にしたときの保磁力の変
動が極めて小さいため、所望の保磁力を有する磁気記録
媒体を設定値±10[Oe)以内の精度で安定的にI!
造することができる。また、磁性粉の保磁力を200〜
2000〔Oe〕の間で所望の値に設定できるため、汎
用の磁気ヘッドに合わせた保磁力を有する磁性粉が容易
に得られる。このため、所望の保磁力を有する磁気記録
媒体を精度よく製造することができる。さらに、平均粒
子径が0.08μm以下と微細な粒子のため、高密度化
に優れており、板状比は8以下、特に2〜5と小さい板
状比のものが得られ、個数基準の幾何標準偏差で表わさ
れる粒度分布は3.3以下であるために、塗布媒体中に
おいて高い充填率が得られ、また、飽和磁化が大きくか
つ分散性の優れた磁性粉を得ることができる。
According to the present invention, since fluctuations in coercive force when used as a magnetic recording medium are extremely small, magnetic recording media having a desired coercive force can be stably produced with an accuracy of within ±10 [Oe] of the set value.
can be built. In addition, the coercive force of magnetic powder is 200~
Since the desired value can be set between 2000 [Oe], magnetic powder having a coercive force suitable for general-purpose magnetic heads can be easily obtained. Therefore, a magnetic recording medium having a desired coercive force can be manufactured with high precision. Furthermore, since the particles are fine with an average particle diameter of 0.08 μm or less, they are excellent at high density, and the plate ratio is 8 or less, especially a plate ratio as small as 2 to 5. Since the particle size distribution expressed by the geometric standard deviation is 3.3 or less, a high filling rate can be obtained in the coating medium, and a magnetic powder with high saturation magnetization and excellent dispersibility can be obtained.

これらの優れた特性は、公知のco含有大方晶系フェラ
イト磁性粉、又は、Sn含有六方晶系フェライト磁性粉
、あるいはZr含有六方晶系フェライト磁性粉からは全
く予想できない驚くべき効果である。
These excellent properties are surprising effects that could not be expected from the known Co-containing orthogonal ferrite magnetic powder, Sn-containing hexagonal ferrite magnetic powder, or Zr-containing hexagonal ferrite magnetic powder.

〔実施例〕〔Example〕

以下に実施例および比較例を挙げて、本発明をさらに具
体的に説明するが1本発明はこれらの実施例のみに限定
されるものではない。
The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

〈物性等の測定方法〉 実施例および比較例における各種物性の測定方法は、以
下のとおりである。
<Methods for measuring physical properties, etc.> Methods for measuring various physical properties in Examples and Comparative Examples are as follows.

の VSM (振動磁気測定装置)を用い、最大印加磁場1
0(KOe)、測定温度28℃で測定した。
Using a VSM (vibration magnetometer), the maximum applied magnetic field 1
0 (KOe), measured at a measurement temperature of 28°C.

透過型電子R微鍾で得られた磁性粉の写真から4008
の粒子の最大直径、および最大直径と最大厚みの比を測
定し、算術平均により算出した。
4008 from a photograph of magnetic powder obtained with a transmission electron R microscopy
The maximum diameter of the particles and the ratio of maximum diameter to maximum thickness were measured and calculated by the arithmetic mean.

σ d 上記粒子径の謝定値を対数正規分布を用いて整理し求め
た。
σ d The above particle diameter values were arranged and determined using a log-normal distribution.

シー の 試料磁性粉100重量部を、磁気テープバインダー(M
R−110日本ゼオン■IK)10重量部およびメチル
エチルケトン、 トルエン、シクロヘキサノンからなる
混合溶媒とよく混合して磁気塗料とし、これをドクター
ブレードにてポリエステルフィルムに塗布し、乾燥後、
磁気シートとした後、VSM(振動磁気測定装置)を用
い、最大印加磁場5[KOe)で、磁気シートの面内方
向の保磁力の測定を行なった。また光沢度は、村上色彩
研究所製グロスメータを用いて、入射角60’で測定し
た。
100 parts by weight of magnetic powder sample was mixed with a magnetic tape binder (M
Mix well with 10 parts by weight of R-110 Nippon Zeon (IK) and a mixed solvent consisting of methyl ethyl ketone, toluene, and cyclohexanone to make a magnetic paint, apply this to a polyester film with a doctor blade, and after drying,
After forming a magnetic sheet, the coercive force in the in-plane direction of the magnetic sheet was measured using a VSM (vibrating magnetometer) at a maximum applied magnetic field of 5 [KOe]. The glossiness was measured at an incident angle of 60' using a gloss meter manufactured by Murakami Color Research Institute.

の 原料調製時の各元素の原子比を用いた。なお、磁性粉成
分中の酸素の表示については、簡略化のため省略した。
The atomic ratio of each element at the time of raw material preparation was used. Note that the representation of oxygen in the magnetic powder components has been omitted for the sake of brevity.

〔実施例1〕 B a C02・2 H2O0,3モル、 F e C
13・6 H2O2,675モル、 NiCl2・ 6
H200,175モルを、2.51の純水に混合溶解し
これをA液とした。また、NbCl5 0.15モルは
0.31のエタノールであらかじめ溶解させ、この溶液
を上記A液と混合した。
[Example 1] B a C02.2 H2O 0.3 mol, F e C
13.6 H2O2, 675 mol, NiCl2.6
175 moles of H200 were mixed and dissolved in 2.51 moles of pure water to form a solution A. Further, 0.15 mol of NbCl5 was dissolved in advance in 0.31 mol of ethanol, and this solution was mixed with the above-mentioned liquid A.

NaOH10,0モル、 Na2CO32−5モル、N
 a2s i 03−9 H2O0,2モルを、2.5
1の純水に溶解しこれをB液とした。
NaOH 10.0 mol, Na2CO3 2-5 mol, N
a2s i 03-9 0.2 mol of H2O, 2.5
1 was dissolved in pure water, and this was used as Solution B.

A液、B液とも30℃に保ちなから両液を混合し30℃
で13時間攪拌した。こうして得られた共沈物を含む混
合液にIN塩酸5500 m lおよび純水501を加
え、30℃で15時間攪拌した。
Keep both liquids A and B at 30°C, then mix both liquids and heat to 30°C.
The mixture was stirred for 13 hours. To the thus obtained mixed solution containing the coprecipitate, 5500 ml of IN hydrochloric acid and 501 ml of pure water were added, and the mixture was stirred at 30° C. for 15 hours.

次に混合液を渡別し、固形分の水分を蒸発乾固せしめ、
895℃で2時間電気炉で焼成した。得られた焼成物を
純水を用いて可溶物がなくなるまで洗浄した後、渡過、
ri’i燥しフェライト磁性粉を得た。得られたフェラ
イト磁性粉の諸物性は第2表に示したとおりである。
Next, the mixed liquid is separated and the water content of the solids is evaporated to dryness.
It was fired in an electric furnace at 895°C for 2 hours. After washing the obtained fired product with pure water until all soluble materials are removed,
ri'i was dried to obtain ferrite magnetic powder. The physical properties of the obtained ferrite magnetic powder are shown in Table 2.

〔実施例2〜33〕 Ml、M2およびM3成分を変え、さらに組成比を変え
て、その他の条件は実施例1と同様の方法でII2表記
載のフェライト磁性粉を製造した。
[Examples 2 to 33] Ferrite magnetic powders listed in Table II2 were produced in the same manner as in Example 1 except that the Ml, M2, and M3 components were changed and the composition ratio was changed.

なおMl、M2成分の原料は塩化物を使用し、M3成分
の原料のうち、A1、La、およびMnは硝酸塩を使用
し、■およびWはアンモニウム塩を使用した。その他の
成分の原料は塩化物を使用した。 第2表から明らかな
ように、本発明の磁性粉は適度の保磁力を有するととも
に、磁気シートにしたときの保磁力の変動比が小さい。
Note that chloride was used as the raw material for the M1 and M2 components, and among the raw materials for the M3 component, nitrates were used for A1, La, and Mn, and ammonium salts were used for (2) and W. Chloride was used as the raw material for other components. As is clear from Table 2, the magnetic powder of the present invention has an appropriate coercive force, and when formed into a magnetic sheet, the variation ratio of the coercive force is small.

また平均粒径が0.08μm以下、板状比8以下、粒度
分布3.3以下であって、さらに分散性の指標であるシ
ートの光沢度は90%以上となり、いずれの点でも優れ
た特性を示す。
In addition, the average particle diameter is 0.08 μm or less, the platelet ratio is 8 or less, and the particle size distribution is 3.3 or less, and the glossiness of the sheet, which is an indicator of dispersibility, is 90% or more, and it has excellent properties in all respects. shows.

(以下余白) 〔比較例1〕 Na25iO+・9H20を溶解させず。その他の条件
は実施例1と同様の方法によってフェライト磁性粉m造
した。
(Left below) [Comparative Example 1] Na25iO+・9H20 was not dissolved. Ferrite magnetic powder was produced in the same manner as in Example 1 under other conditions.

得られた磁性粉の組成および物性値を第3表に示す。Table 3 shows the composition and physical properties of the obtained magnetic powder.

〔比較例2〜33〕 Ml、M2、およびM3成分ならびに組成比を変えて、
その他の条件は実施例1と同様の方法で、第3表記載の
フェライト磁性粉をMl造した。
[Comparative Examples 2 to 33] By changing Ml, M2, and M3 components and composition ratios,
The ferrite magnetic powders listed in Table 3 were manufactured using the same method as in Example 1 under other conditions.

(以下余白) 〔実施例34〜40〕 M2成分を第4表記載の種々の溶媒を用いて溶解し、そ
の他の条件は実施例1と同様の方法により、第4表に示
すフェライト磁性粉を製造した。
(Left below) [Examples 34 to 40] Ferrite magnetic powder shown in Table 4 was dissolved by dissolving the M2 component using various solvents listed in Table 4, and other conditions were the same as in Example 1. Manufactured.

(以下余白)(Margin below)

Claims (2)

【特許請求の範囲】[Claims] (1)一般組成式 (Fe)_a(Si)_b(M^1)_c(M^2)_
d(M^3)_eO_fで表される磁気記録用磁性粉。 (ただし、M^1はBa、Sr、PbおよびCaから選
択される少なくとも1種の金属元素を表わし、M^2は
Bi、NbおよびSbから選ばれる少なくとも1種の金
属元素を表わし、M^3はMn,Mg、Ni、Al、C
e、Cr、Cu、La、V、Ti、Zr、WおよびZn
から選択される少なくとも1種の元素を表わす。また、
a、b、c、d、eおよびfは、それぞれFe、Si、
M^1、M^2、M^3およびOの原子数を表わし、a
=8.0〜13.0、b:0.01〜8.0、c:0.
3〜6.0、d:0.01〜6.0、およびe=0.0
1〜6.0の値をとり、fは他の元素の原子価を満足す
る酸素の原子数である。)
(1) General compositional formula (Fe)_a(Si)_b(M^1)_c(M^2)_
Magnetic powder for magnetic recording represented by d(M^3)_eO_f. (However, M^1 represents at least one metal element selected from Ba, Sr, Pb, and Ca, M^2 represents at least one metal element selected from Bi, Nb, and Sb, and M^ 3 is Mn, Mg, Ni, Al, C
e, Cr, Cu, La, V, Ti, Zr, W and Zn
Represents at least one element selected from. Also,
a, b, c, d, e and f are respectively Fe, Si,
Represents the number of atoms of M^1, M^2, M^3 and O, a
=8.0-13.0, b:0.01-8.0, c:0.
3-6.0, d: 0.01-6.0, and e=0.0
It takes a value of 1 to 6.0, and f is the number of oxygen atoms that satisfies the valences of other elements. )
(2)請求項1記載の磁気記録用磁性粉を用いた磁気記
録媒体。
(2) A magnetic recording medium using the magnetic recording magnetic powder according to claim 1.
JP2165773A 1990-06-26 1990-06-26 Magnetic powder for magnetic recording and magnetic recording medium therefrom Pending JPH0459620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165773A JPH0459620A (en) 1990-06-26 1990-06-26 Magnetic powder for magnetic recording and magnetic recording medium therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165773A JPH0459620A (en) 1990-06-26 1990-06-26 Magnetic powder for magnetic recording and magnetic recording medium therefrom

Publications (1)

Publication Number Publication Date
JPH0459620A true JPH0459620A (en) 1992-02-26

Family

ID=15818764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165773A Pending JPH0459620A (en) 1990-06-26 1990-06-26 Magnetic powder for magnetic recording and magnetic recording medium therefrom

Country Status (1)

Country Link
JP (1) JPH0459620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236620A (en) * 1986-04-16 1987-02-17 Minolta Camera Co Ltd Automatic focusing device
JP2008254969A (en) * 2007-04-05 2008-10-23 Kanto Denka Kogyo Co Ltd FLAKE LIKE IRON OXIDE PARTICULATE, FLAKE LIKE Fe BASE METAL PARTICULATE, AND METHOD FOR PRODUCING THEM
US20150123026A1 (en) * 2013-11-01 2015-05-07 Dowa Electronics Materials Co., Ltd. Magnetic powder for magnetic recording medium
CN105448449A (en) * 2014-09-24 2016-03-30 乾坤科技股份有限公司 Mixed magnetic powders and the electronic device using the same
US20220093126A1 (en) * 2019-01-11 2022-03-24 Fujifilm Corporation Hexagonal strontium ferrite powder, magnetic recording medium, and magnetic recording and reproducing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236620A (en) * 1986-04-16 1987-02-17 Minolta Camera Co Ltd Automatic focusing device
JP2008254969A (en) * 2007-04-05 2008-10-23 Kanto Denka Kogyo Co Ltd FLAKE LIKE IRON OXIDE PARTICULATE, FLAKE LIKE Fe BASE METAL PARTICULATE, AND METHOD FOR PRODUCING THEM
US20150123026A1 (en) * 2013-11-01 2015-05-07 Dowa Electronics Materials Co., Ltd. Magnetic powder for magnetic recording medium
JP2015111484A (en) * 2013-11-01 2015-06-18 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording media
US9741479B2 (en) * 2013-11-01 2017-08-22 Dowa Electronics Materials Co., Ltd. Magnetic powder for magnetic recording medium
CN105448449A (en) * 2014-09-24 2016-03-30 乾坤科技股份有限公司 Mixed magnetic powders and the electronic device using the same
CN105448449B (en) * 2014-09-24 2018-02-16 乾坤科技股份有限公司 Mictomagnetism powder and the electronic component using mictomagnetism powder
US20220093126A1 (en) * 2019-01-11 2022-03-24 Fujifilm Corporation Hexagonal strontium ferrite powder, magnetic recording medium, and magnetic recording and reproducing apparatus
US11705156B2 (en) * 2019-01-11 2023-07-18 Fujifilm Corporation Hexagonal strontium ferrite powder, magnetic recording medium, and magnetic recording and reproducing apparatus

Similar Documents

Publication Publication Date Title
JPS63277523A (en) Production of platelike magnetic powder
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
US4820433A (en) Magnetic powder for magnetic recording
JPH0459620A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPH033361B2 (en)
US5062983A (en) Magnetic powder for magnetic recording media
JPS6249963B2 (en)
US5062982A (en) Magnetic powder for magnetic recording media
JP2011065705A (en) Method for producing hexagonal ferrite particle powder and hexagonal ferrite particle powder, and magnetic recording medium
JPH03285302A (en) Magnetic powder for magnetic recording and magnetic recording media
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JP2807278B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JPS6377105A (en) Magnetic powder for magnetic recording
JPH0618073B2 (en) Magnetic powder for magnetic recording
JPS63260103A (en) Magnetic powder for magnetic recording
JPS63185829A (en) Magnetic powder for magnetic recording
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JPH05258932A (en) Magnetism recording magnetic powder
JP2706774B2 (en) Method for producing substitution type hexagonal ferrite magnetic powder
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH01119521A (en) Magnetic powder for magnetic recording
JPS63260109A (en) Magnetic powder for magnetic recording