JPS6257577B2 - - Google Patents

Info

Publication number
JPS6257577B2
JPS6257577B2 JP58180397A JP18039783A JPS6257577B2 JP S6257577 B2 JPS6257577 B2 JP S6257577B2 JP 58180397 A JP58180397 A JP 58180397A JP 18039783 A JP18039783 A JP 18039783A JP S6257577 B2 JPS6257577 B2 JP S6257577B2
Authority
JP
Japan
Prior art keywords
precipitate
magnetic powder
thawing
magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58180397A
Other languages
Japanese (ja)
Other versions
JPS6077130A (en
Inventor
Masahiro Fukazawa
Tatsumi Maeda
Takashi Anami
Tadashi Ido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58180397A priority Critical patent/JPS6077130A/en
Publication of JPS6077130A publication Critical patent/JPS6077130A/en
Publication of JPS6257577B2 publication Critical patent/JPS6257577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は磁気記録用磁性粉の製造方法に関し、
更に詳しくは、高密度の磁気記録に好適な微細粉
であつて、製造時の乾燥工程での凝集を起すこと
がなく、磁性塗料調製時の分散性が優れ、もつて
テープノイズを小さくすることが可能である磁性
粉の製造方法に関する。 〔発明の技術的背景とその問題点〕 磁気記録再生時、従来は、記録媒体の面内長手
方向の残留磁化を用いているが、しかしこの面内
長手方向を用いる方式においては記録の高密度化
に限度がある。即ち、面内長手方向の残留磁化を
用いる記録再生方式においては、記録の高密度化
に伴ない磁気記録媒体内の反磁界が増加するとい
う性質がある。この反磁界に打ち勝つて高密度記
録を行なうためには、記録媒体(記録層)の保磁
力を高めることが必要であると同時にこの記録媒
体層を薄くすることが必要である。 しかしながら、記録媒体層を高保磁力化する
と、それに対応する磁気ヘツドも高磁束密度化し
なければならないが、現状ではそれは期待し難
い。また、記録媒体層を薄くすることは、再生信
号の出力低下を招くという問題を生ずる。 このようなことから、磁気記録の高密度化の要
求に対しては、従来の面内長手方向の残留磁化を
用いる方式から記録媒体層の面に垂直な方向の残
留磁化を用いる方式が提案されている。 この垂直磁化記録方式に用いられる磁性粉は、
磁気記録媒体の面と垂直な方向に磁化容易軸を有
することが必要である。 このような磁性粉としては、粒子形状が六角平
板状で、この板面と垂直な方向に磁化容易軸を有
する六方晶系フエライト磁性粉が注目されてい
る。例えば、BaFe12O19である。 しかしながら、BaFe12O19磁性粉はその保磁力
(IHc)が5000Oe以上であり磁気記録用としては
高すぎるので、Feの一部をCoなどで置換してそ
のIHcを磁気記録用として適正な200〜2000Oeに
まで低減させて使用されている。 そして、多くの研究の結果、高密度垂直磁化記
録に好適な磁性粉としては、次式:(AFe12−x
−yCoxMyO19)(式中、AはBa,Sr,Caの群か
ら選ばれる少なくとも1種の元素を表わし;Mは
Ti,Zn,Nb,V,Sb,Ta,Ni,Mn,Inの群か
ら選ばれる少なくとも1種の元素を表わし;x,
yは0.5以上1.1以下の数を表わす)で示される組
成のコバルト置換六方晶系フエライト磁性粉が知
られている。 このCo置換六方晶系フエライト磁性粉は次の
ようにして製造されている。 すなわち、上記組成を構成するに必要な各元素
のイオンが化学量論的に必要な量含まれている水
溶液にPH9以上のアルカリ溶液を接触させ、必要
に応じてはオートクレーブ処理を施して、前駆体
沈澱物を生成せしめる。この前駆体は、組成は目
的組成を有しているが結晶質ではなくまた磁性粉
としての磁気特性をもつていない。 ついでこの前駆体を充分に洗浄したのち一旦凍
結する。その後、これを自然解凍し、例えばホツ
トプレート上で乾燥させてから600〜1000℃の温
度域で加熱処理を施して結晶化させ、所望特性の
磁性粉とする。 ところで、このCo置換六方晶系フエライトを
磁気記録媒体、とりわけ、高密度磁気記録媒体に
用いる場合には、その粒径が0.3μm以下でしか
もその粒径分布が狭く、個々の粒子の寸法、形状
の揃つていることが強く望まれている。なお、こ
こで粒径とは、上記フエライト粉の六角平板の板
面における対角線の長さをいう。 しかしながら、上記した製造方法の場合、沈澱
物を解凍したのち乾燥時に、個々の粒子が凝集
し、この凝集塊が次の加熱処理工程でそのまま焼
き固まつてしまい、結局は0.5μm以上の粒径の
磁性粉になるという現象が起る。 このような磁性粉を用いて、溶媒、分散剤、バ
インダなどと共に磁性塗料を調製し、この磁性塗
料をポリエステルフイルムのような支持体の上に
塗布した場合、該磁性粉の磁性塗料中への分散が
悪く、均一な記録媒体層が得られず、その結果、
テーブノイズが大きくなつてしまうのである。 〔発明の目的〕 本発明は、上記した不都合を起さず、微細で、
分散性がよく、したがつて高密度垂直磁化記録に
適したCo置換六方晶系フエライト磁性粉の製造
方法の提供を目的とする。 〔発明の概要〕 本発明者らは、上記目的を達成すべく、従来の
製造工程に対し充分な検討を加えたところ、解凍
工程で自然解凍ではなくある種の溶剤を用いて解
凍処理を行なうと、次の乾燥工程での凝集現象は
解消され、微細な磁性粉が得られるとの事実を見
出し、本発明方法を完成するに到つた。 すなわち、本発明方法は、六方晶のバリウムフ
エライト若しくは一部置換バリウムフエライトを
構成するに必要な各元素のイオンを含む水溶液に
PH9以上のアルカリ溶液を接触させて沈澱物を生
成する工程(工程1); 該沈澱物を洗浄したのち凍結する工程(工程
2); 該沈澱物の凍結体を解凍する工程(工程3);
及び解凍した沈澱物を乾燥したのち加熱処理して
結晶化する工程(工程4)とから成る磁気記録用
磁性粉の製造方法において、該解凍工程が、水に
可溶な有機溶剤を用いて行なわれることを特徴と
する。 本発明方法が対象とするバリウムフエライト
は、次式:AFe12−x−yCoxMyO19(式中、Aは
Ba,Sr,Caの群から選ばれる少なくとも1種の
元素を表わし、MはTi,Zn,Nb,V,Sb,Ta,
Ni,Mn,Inの群から選ばれる少なくとも1種の
元素を表わし;x,yはそれぞれ0.5以上1.1以下
の数を表わす)で示される組成のものであること
が好ましい。 まず、工程1においてイオンを含む水溶液は、
上記した組成を構成するに必要な各元素の水溶性
塩を水に溶解して調製される。例えばFe,Coに
ついてはそれぞれの塩化物、硫酸塩、硝酸塩、
Ba,Sr,Caなどについては塩化物のような塩で
ある。このとき、各元素のイオン濃度は、目的組
成における化学量論的必要量との関係で決められ
るので一義的ではない。 また、アルカリ溶液としては水酸化ナトリウ
ム、水酸化カリウム、アンモニア水などがあげら
れる。これらアルカリ溶液はいずれもPH9以上で
あることが必要で、PHが9より小さいとこの工程
1で目的組成の前駆体沈澱物を得ることができな
い。 水溶液とアルカリ溶液とを接触させるには、前
者を後者の中に滴下させる、又は後者を前者の中
に滴下させるなどの方法で行なえばよい。このと
き、撹拌しながら滴下してもよい。またこのと
き、常法のようにオートクレーブ処理を施しても
よい。 このようにして、前駆体沈澱物が得られる。こ
の沈澱物は、各元素の共沈物であり、目的とする
組成と同様の組成を有している。しかし、結晶質
ではなくかつまた磁性粉としての磁気特性は保持
していない。 つぎに工程2では、得られた沈澱物を洗浄した
のち凍結する。洗浄は通常水で充分に行なう。洗
浄が充分でない場合には、アルカリ等が残存して
凝集現象を引き起す。凍結は常法に従つて行なえ
ばよい。例えば液体窒素が用いられる。 工程3、すなわち、解凍工程が本発明における
最大の特徴点をなす。 本発明方法において、解凍は自然解凍ではな
く、水に可溶な有機溶剤を用いて行なう。用いる
有機溶剤としては、水に可溶なものであれば何で
あつてもよいが、とくに常温で水に20重量%以上
可溶な有機溶剤であることが好ましい。 例えば、メチルアルコール、エチルアルコー
ル、iso−プロピルアルコール、n−プロピルア
ルコール、tert−ブチルアルコール、フルフリル
アルコール、テトラヒドロフルフリルアルコー
ル、1,2−プロピレンオキシド、1,4−ジオ
キサン、トリオキサン、テトラヒドロフラン、テ
トラヒドロピラン、メチラール、アセトン、メチ
ルアセトン、メチルエチルケトン、アセトニルア
セトン、ジアセトニルアルコール、ギ酸メチル等
をあげることができる。これらのうち、とくにメ
チルアルコール、エチルアルコール、アセトンは
好ましいものである。また、これら有機溶剤はそ
れぞれ単独で用いても、2種以上を適宜に混合し
て用いてもよい。 解凍は、上記有機溶剤の中に工程2で得た沈澱
物の凍結体を投入することによつて行なわれる。 解凍終了後、有機溶剤と沈澱物の懸濁液を濾過
して沈澱物のケーキを濾取したのち、これを乾燥
し、ついで所定温度で加熱処理を施して結晶化す
る。 乾燥は空気中における自然乾燥であつてもよい
し、空気浴を用いた熱風乾燥であつてもよい。ま
た、加熱処理は、常法のように空気中にて600〜
900℃の温度域で行なえばよい。 〔発明の実施例〕 126.5gのF3+ イオンを含有するFeCl3・6H2O
水溶液1.5,33.6gのB2+ イオンを含有する
BaCl2・2H2O水溶液0.5,12.0gのC2+ イオンを
含有するCoCl2・6H2O水溶液0.25,9.8gのT
4+ イオンを含有するTiCl4水溶液0.25を混合し
た。この混合水溶液を、水酸化ナトリウム1.2Kg
を溶解するアルカリ溶液3に撹拌しながら添加
し、全体をオートクレーブ中で150℃,45分間反
応させた。 得られた沈澱物を純水で反復洗浄したのち、沈
澱物を濾取し、液体窒素で凍結した。 この凍結体を解凍した。解凍は、自然解凍、エ
チルアルコールを用いた解凍、アセトンを用いた
解凍、エチルアルコールとアセトンの等量混合液
を用いた解凍の4つの態様で行なつた。 濾取後、得られたケーキを、いずれも200℃の
ホツトプレート上で乾燥し、ついで空気中、900
℃で加熱処理した。 得られた4種類の磁性粉の嵩比重(g/c.c.)を
測定し、その外観を肉眼観察した。また、これら
磁性粉を用いて常法により磁気テープを製造し、
これらテープのノイズを測定した。以上の結果を
一括して表に示した。
[Technical field of the invention] The present invention relates to a method for producing magnetic powder for magnetic recording,
More specifically, it is a fine powder suitable for high-density magnetic recording, does not cause agglomeration during the drying process during manufacturing, has excellent dispersibility when preparing magnetic paint, and reduces tape noise. The present invention relates to a method for producing magnetic powder that is capable of producing magnetic powder. [Technical background of the invention and its problems] Conventionally, during magnetic recording and reproduction, residual magnetization in the in-plane longitudinal direction of the recording medium is used, but in this method using this in-plane longitudinal direction, the high density of recording There are limits to what can be done. That is, in a recording/reproducing system using residual magnetization in the in-plane longitudinal direction, there is a property that the demagnetizing field within the magnetic recording medium increases as the recording density increases. In order to overcome this demagnetizing field and perform high-density recording, it is necessary to increase the coercive force of the recording medium (recording layer) and at the same time to make this recording medium layer thinner. However, if the coercive force of the recording medium layer is increased, the corresponding magnetic head must also be increased in magnetic flux density, which is difficult to expect at present. Further, making the recording medium layer thinner causes a problem of lowering the output of the reproduced signal. For this reason, in order to meet the demand for higher density magnetic recording, a method has been proposed that uses residual magnetization in the direction perpendicular to the plane of the recording medium layer, instead of the conventional method that uses residual magnetization in the longitudinal direction of the recording medium. ing. The magnetic powder used in this perpendicular magnetization recording method is
It is necessary to have an axis of easy magnetization in a direction perpendicular to the surface of the magnetic recording medium. As such magnetic powder, hexagonal ferrite magnetic powder, which has a particle shape of a hexagonal plate and has an axis of easy magnetization perpendicular to the plane of the plate, is attracting attention. For example, BaFe12O19 . However, BaFe 12 O 19 magnetic powder has a coercive force (IHc) of 5000 Oe or more, which is too high for magnetic recording, so some of the Fe is replaced with Co etc. to increase the IHc to 200 Oe, which is appropriate for magnetic recording. It is used after being reduced to ~2000Oe. As a result of many studies, the following formula: (AFe 12 −x
−yCoxMyO 19 ) (wherein A represents at least one element selected from the group of Ba, Sr, and Ca; M is
Represents at least one element selected from the group of Ti, Zn, Nb, V, Sb, Ta, Ni, Mn, In; x,
A cobalt-substituted hexagonal ferrite magnetic powder having a composition represented by the formula (y represents a number from 0.5 to 1.1) is known. This Co-substituted hexagonal ferrite magnetic powder is produced as follows. That is, an aqueous solution containing the stoichiometrically required amounts of ions of each element necessary to constitute the above composition is brought into contact with an alkaline solution with a pH of 9 or higher, and if necessary, an autoclave treatment is performed to prepare the precursor. Produces body precipitate. Although this precursor has the desired composition, it is not crystalline and does not have the magnetic properties of magnetic powder. This precursor is then thoroughly washed and then frozen. Thereafter, this is naturally thawed, dried on, for example, a hot plate, and then heat-treated in a temperature range of 600 to 1000°C to crystallize it to obtain magnetic powder with desired characteristics. By the way, when this Co-substituted hexagonal ferrite is used for magnetic recording media, especially high-density magnetic recording media, its grain size is 0.3 μm or less and its grain size distribution is narrow, and the size and shape of individual grains are small. It is strongly desired that the following be completed. Note that the particle size here refers to the length of the diagonal line on the plate surface of the hexagonal flat plate of the ferrite powder. However, in the case of the above-mentioned manufacturing method, when the precipitate is thawed and then dried, the individual particles agglomerate, and these agglomerates are baked and solidified in the next heat treatment step, resulting in particles with a particle size of 0.5 μm or more. The phenomenon of turning into magnetic powder occurs. When a magnetic paint is prepared using such magnetic powder together with a solvent, a dispersant, a binder, etc., and this magnetic paint is applied onto a support such as a polyester film, the magnetic powder is absorbed into the magnetic paint. Due to poor dispersion, a uniform recording medium layer cannot be obtained, and as a result,
The table noise becomes louder. [Object of the invention] The present invention does not cause the above-mentioned inconveniences, has a fine structure,
The object of the present invention is to provide a method for producing Co-substituted hexagonal ferrite magnetic powder that has good dispersibility and is therefore suitable for high-density perpendicular magnetization recording. [Summary of the Invention] In order to achieve the above object, the present inventors have made sufficient studies on the conventional manufacturing process, and found that the thawing process is performed using a certain kind of solvent instead of natural thawing. They discovered that the agglomeration phenomenon in the next drying step was eliminated and fine magnetic powder could be obtained, and the method of the present invention was completed. That is, the method of the present invention involves adding an aqueous solution containing ions of each element necessary to constitute hexagonal barium ferrite or partially substituted barium ferrite.
A step of contacting with an alkaline solution having a pH of 9 or more to produce a precipitate (Step 1); A step of washing and then freezing the precipitate (Step 2); A step of thawing the frozen form of the precipitate (Step 3);
and a step of drying the thawed precipitate and then heating it to crystallize it (step 4), wherein the thawing step is performed using a water-soluble organic solvent. It is characterized by being The barium ferrite targeted by the method of the present invention has the following formula: AFe 12 −x−yCoxMyO 19 (where A is
Represents at least one element selected from the group of Ba, Sr, Ca, and M is Ti, Zn, Nb, V, Sb, Ta,
The composition preferably represents at least one element selected from the group of Ni, Mn, and In; x and y each represent a number from 0.5 to 1.1. First, in step 1, the aqueous solution containing ions is
It is prepared by dissolving water-soluble salts of each element necessary to constitute the above-mentioned composition in water. For example, for Fe and Co, their respective chlorides, sulfates, nitrates,
Ba, Sr, Ca, etc. are salts such as chlorides. At this time, the ion concentration of each element is not unique because it is determined in relation to the stoichiometrically necessary amount in the target composition. Further, examples of the alkaline solution include sodium hydroxide, potassium hydroxide, and aqueous ammonia. All of these alkaline solutions must have a pH of 9 or higher; if the pH is lower than 9, a precursor precipitate having the desired composition cannot be obtained in step 1. The aqueous solution and the alkaline solution may be brought into contact with each other by dropping the former into the latter, or dropping the latter into the former. At this time, it may be added dropwise while stirring. Further, at this time, autoclave treatment may be performed as in the conventional method. In this way, a precursor precipitate is obtained. This precipitate is a coprecipitate of each element and has the same composition as the target composition. However, it is not crystalline and does not retain the magnetic properties of magnetic powder. Next, in step 2, the obtained precipitate is washed and then frozen. Wash thoroughly with normal water. If cleaning is not sufficient, alkali and the like remain and cause aggregation. Freezing can be carried out according to conventional methods. For example, liquid nitrogen is used. Step 3, ie, the thawing step, is the most distinctive feature of the present invention. In the method of the present invention, thawing is not carried out naturally, but using a water-soluble organic solvent. The organic solvent used may be any organic solvent as long as it is soluble in water, but it is particularly preferable to use an organic solvent that is soluble in water at room temperature in an amount of 20% by weight or more. For example, methyl alcohol, ethyl alcohol, iso-propyl alcohol, n-propyl alcohol, tert-butyl alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, 1,2-propylene oxide, 1,4-dioxane, trioxane, tetrahydrofuran, tetrahydrofurfuryl alcohol, Examples include pyran, methylal, acetone, methylacetone, methyl ethyl ketone, acetonylacetone, diacetonyl alcohol, and methyl formate. Among these, methyl alcohol, ethyl alcohol, and acetone are particularly preferred. Further, these organic solvents may be used alone or in an appropriate mixture of two or more. Thawing is carried out by introducing the frozen precipitate obtained in step 2 into the organic solvent. After thawing, the suspension of the organic solvent and the precipitate is filtered to obtain a precipitate cake, which is then dried and then heat-treated at a predetermined temperature to crystallize it. Drying may be natural drying in the air or hot air drying using an air bath. In addition, heat treatment is carried out in the air for 600~
It can be carried out in a temperature range of 900℃. [Embodiment of the invention] FeCl 3 6H 2 O containing 126.5 g of F 3+ e ions
Aqueous solution 1.5, containing 33.6g B 2+ a ion
BaCl 2 2H 2 O aqueous solution 0.5, CoCl 2 6H 2 O aqueous solution 0.25 containing 12.0 g C 2+ p ions, 9.8 g T
0.25% of TiCl 4 aqueous solution containing 4+ i ions was mixed. Add this mixed aqueous solution to 1.2 kg of sodium hydroxide.
was added to alkaline solution 3 while stirring, and the whole was reacted in an autoclave at 150°C for 45 minutes. After repeatedly washing the obtained precipitate with pure water, the precipitate was collected by filtration and frozen with liquid nitrogen. This frozen body was thawed. Thawing was carried out in four ways: natural thawing, thawing using ethyl alcohol, thawing using acetone, and thawing using a mixture of equal amounts of ethyl alcohol and acetone. After filtering, the resulting cakes were dried on a hot plate at 200°C, and then heated in air at 900°C.
Heat treated at ℃. The bulk specific gravity (g/cc) of the four types of magnetic powder obtained was measured, and the appearance was observed with the naked eye. In addition, magnetic tapes are manufactured using conventional methods using these magnetic powders,
The noise of these tapes was measured. The above results are summarized in the table.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明方法によ
つて製造したCo置換六方晶系フエライト磁性粉
は、嵩比重のデータにみられるように従来の方法
によるものに比べて凝集塊が存在せず微細であ
り、また、テープ製造に適用した場合にも分散性
が優れていてテープノイズを起さず、高密度の垂
直磁化記録用の磁性粉として好適である。
As is clear from the above explanation, the Co-substituted hexagonal ferrite magnetic powder produced by the method of the present invention has no agglomerates compared to those produced by the conventional method, as seen in the bulk density data. It is fine and has excellent dispersibility when applied to tape manufacturing, and does not cause tape noise, making it suitable as a magnetic powder for high-density perpendicular magnetization recording.

Claims (1)

【特許請求の範囲】 1 六方晶系のバリウムフエライト若しくは一部
置換バリウムフエライトを構成するに必要な各元
素のイオンを含む水溶液にPH9以上のアルカリ溶
液を接触させて沈澱物を生成する工程; 該沈澱物を洗浄したのち凍結する工程; 該沈澱物の凍結体を解凍する工程;及び 解凍した沈澱物を乾燥したのち加熱処理して結
晶化する工程 とから成る磁気記録用磁性粉の製造方法におい
て、該解凍工程が、水に可溶な有機溶剤を用いて
行なわれることを特徴とする磁気記録用磁性粉の
製造方法。 2 該バリウムフエライトが、 次式:AFe12−x−yCoxMyO19 (式中、AはBa,Sr,Caの群から選ばれる少
なくとも1種の元素を表わし;MはTi,Zn,
Nb,V,Sb,Ta,Ni,Mn,Inの群から選ばれ
る少なくとも1種の元素を表わし;x,yはそれ
ぞれ0.5以上1.1以下の数を表わす) で示される組成のバリウムフエライトである特
許請求の範囲第1項記載の磁気記録用磁性粉の製
造方法。
[Scope of Claims] 1. A step of contacting an aqueous solution containing ions of each element required to constitute hexagonal barium ferrite or partially substituted barium ferrite with an alkaline solution having a pH of 9 or higher to form a precipitate; A method for producing magnetic powder for magnetic recording comprising: washing the precipitate and then freezing it; thawing the frozen precipitate; and drying the thawed precipitate and then heat-treating it to crystallize it. . A method for producing magnetic powder for magnetic recording, characterized in that the thawing step is carried out using a water-soluble organic solvent. 2 The barium ferrite has the following formula: AFe 12 −x−yCoxMyO 19 (wherein A represents at least one element selected from the group of Ba, Sr, and Ca; M represents Ti, Zn,
represents at least one element selected from the group of Nb, V, Sb, Ta, Ni, Mn, and In; x and y each represent a number from 0.5 to 1.1). A method for producing magnetic powder for magnetic recording according to claim 1.
JP58180397A 1983-09-30 1983-09-30 Preparation of magnetic powder for magnetic recording Granted JPS6077130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180397A JPS6077130A (en) 1983-09-30 1983-09-30 Preparation of magnetic powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180397A JPS6077130A (en) 1983-09-30 1983-09-30 Preparation of magnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS6077130A JPS6077130A (en) 1985-05-01
JPS6257577B2 true JPS6257577B2 (en) 1987-12-01

Family

ID=16082518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180397A Granted JPS6077130A (en) 1983-09-30 1983-09-30 Preparation of magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS6077130A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374904A (en) * 1986-09-17 1988-04-05 Kawasaki Steel Corp Production of inorganic fine powder

Also Published As

Publication number Publication date
JPS6077130A (en) 1985-05-01

Similar Documents

Publication Publication Date Title
JPS6250890B2 (en)
JPS6242337B2 (en)
JPS6149251B2 (en)
JPS6257577B2 (en)
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
US4052326A (en) Manufacture of γ-iron(III) oxide
JPS62287604A (en) Magnetic material and manufacture of the same and magnetic recording medium
JPH0719363B2 (en) Magnetic recording medium
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPS6135135B2 (en)
JPH0126163B2 (en)
JPS6149252B2 (en)
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JPS5860624A (en) Ferromagnetic powder and its preparation
JPS6132259B2 (en)
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JPH0341412B2 (en)
JPH025690B2 (en)
JPS6151401B2 (en)
KR930011235B1 (en) Magnetic materials
JP2958369B2 (en) Method for producing composite ferrite magnetic powder
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPS6323139B2 (en)