JPH0341412B2 - - Google Patents

Info

Publication number
JPH0341412B2
JPH0341412B2 JP57208396A JP20839682A JPH0341412B2 JP H0341412 B2 JPH0341412 B2 JP H0341412B2 JP 57208396 A JP57208396 A JP 57208396A JP 20839682 A JP20839682 A JP 20839682A JP H0341412 B2 JPH0341412 B2 JP H0341412B2
Authority
JP
Japan
Prior art keywords
cobalt
ferrite
powder
solution
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57208396A
Other languages
Japanese (ja)
Other versions
JPS59102823A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57208396A priority Critical patent/JPS59102823A/en
Publication of JPS59102823A publication Critical patent/JPS59102823A/en
Publication of JPH0341412B2 publication Critical patent/JPH0341412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高密度記録用磁性粉の製造方法に関
し、更に詳しくは、六方晶フエライト粉末をCo
イオン含有溶液で処理する、磁気特性が優れた高
密度記録用磁性粉の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for producing magnetic powder for high-density recording, and more specifically, the present invention relates to a method for producing magnetic powder for high-density recording.
The present invention relates to a method for producing magnetic powder for high-density recording, which is treated with an ion-containing solution and has excellent magnetic properties.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体として、通常はγ−Fe2O3などの
針状粉末が用いられているが、近年、高密度記録
法として垂直磁化記録が考案された。この記録媒
体としては六方晶フエライト粉が利用されるが、
垂直磁化記録において更に記録密度を上げるに
は、該フエライト粉末の飽和磁化が高いことが要
求される。それは、磁性粉末の飽和磁化(Ms)
が大きい程、磁気記録媒体の再生出力が増大する
からである。
Acicular powder such as γ-Fe 2 O 3 is usually used as a magnetic recording medium, but in recent years, perpendicular magnetization recording has been devised as a high-density recording method. Hexagonal ferrite powder is used as this recording medium,
In order to further increase the recording density in perpendicular magnetization recording, the ferrite powder is required to have high saturation magnetization. It is the saturation magnetization (Ms) of magnetic powder
This is because the larger the value, the greater the reproduction output of the magnetic recording medium.

従来の六方晶フエライト粉末の製造方法として
は、例えば、Ba−フエライトの場合 (a) Baイオン、Feイオン及び必要に応じてCo,
Ti,In,Zn,Mn,Ni,Ge,Nb等のイオンを
含むPH8以上の水溶液を、オートクレーブ中に
て100〜300℃で加熱する方法(水熱合成法)、
及び (b) 上記のイオンをPH8以上の状態で沈殿せし
め、生成した該沈殿物を900℃以上の温度で焼
成する方法(共沈法) が知られている。
As a conventional method for producing hexagonal ferrite powder, for example, in the case of Ba-ferrite, (a) Ba ions, Fe ions, and Co, if necessary,
A method of heating an aqueous solution containing ions such as Ti, In, Zn, Mn, Ni, Ge, Nb, etc. with a pH of 8 or higher at 100 to 300°C in an autoclave (hydrothermal synthesis method),
and (b) a method (co-precipitation method) in which the above ions are precipitated at a pH of 8 or higher and the resulting precipitate is calcined at a temperature of 900° C. or higher is known.

しかしながら、これらの方法で得られる六方晶
フエライト粉末の飽和磁化は、フエライトの飽和
磁化の理論値と比較して、10%以上も小さいた
め、その改善が望まれていた。
However, the saturation magnetization of the hexagonal ferrite powder obtained by these methods is more than 10% smaller than the theoretical value of the saturation magnetization of ferrite, and an improvement has been desired.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の磁性粉と同等の保持力を維持
しつつ、飽和磁化の値を理論値に近い値にまで高
め得る。高密度記録用磁性粉の製造方法を提供す
ることを目的とする。
The present invention can increase the saturation magnetization value to a value close to the theoretical value while maintaining a coercive force equivalent to that of conventional magnetic powder. The purpose of the present invention is to provide a method for producing magnetic powder for high-density recording.

〔発明の概要〕[Summary of the invention]

本発明の高密度記録用磁性粉の製造方法は、次
式: AO・n(Fe1−mMm)2O3 (式中、AはBa,Sr及びCaから選ばれる1種
以上の元素を表わし;MはCo,Ti,In,Zn,
Mn,Ni,Ge及びNbから選ばれる1種以上の元
素を表わし;mは0〜0.2の数を表わし;nは5.4
〜6.0の数を表わす) で示される六方晶フエライト粉末を、Coイオン
含有溶液に接触させて、該粉末表面にCoを吸着
せしめることを特徴とする。
The method for producing magnetic powder for high-density recording of the present invention is performed using the following formula: AO・n(Fe 1 −mMm) 2 O 3 (wherein A represents one or more elements selected from Ba, Sr, and Ca). ;M is Co, Ti, In, Zn,
Represents one or more elements selected from Mn, Ni, Ge and Nb; m represents a number from 0 to 0.2; n is 5.4
It is characterized in that a hexagonal ferrite powder represented by (representing a number of ~6.0) is brought into contact with a Co ion-containing solution to cause Co to be adsorbed onto the powder surface.

以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明に用いる六方晶フエライト粉末原料は、
常法、即ち、水熱合成法又は共沈法により供給さ
れる。
The hexagonal ferrite powder raw material used in the present invention is
It is supplied by a conventional method, that is, a hydrothermal synthesis method or a coprecipitation method.

原料の種類としては、Ba,Sr又はCa−フエラ
イトがあるが、Ba−フエライトを用いることが、
本発明効果を奏する上で好ましい。
Types of raw materials include Ba, Sr, or Ca-ferrite, but using Ba-ferrite is
This is preferable in terms of achieving the effects of the present invention.

本発明では、フエライト粉末をCoイオン含有
溶液と接触させる。
In the present invention, ferrite powder is brought into contact with a solution containing Co ions.

Coイオン含有溶液中に溶解されるCo化合物と
しては、溶解性のCo塩であればいかなるもので
あつてもよいが、例えば、酢酸コバルト、塩化ア
ルミニウムコバルト、臭化コバルト、水酸化炭酸
コバルト、塩化コバルト、水酸化コバルト、クエ
ン酸コバルト、ギ酸コバルト、ナフテン酸コバル
ト、ヨウ化コバルト、シユウ酸コバルト、酒石酸
コバルト、オレイン酸コバルト、パルミチン酸コ
バルト、ステアリン酸コバルト、オクテン酸コバ
ルト、硝酸コバルト及びこれらの水和物があげら
れる。これらを2種以上混合してもよい。また、
上記Co化合物の溶媒としては、通常、水が用い
られるが、メタノール、エタノール等のアルコー
ル類のように、Co化合物からCoイオンを解離し
得る溶媒であれば、いかなるものも使用可能であ
る。
The Co compound to be dissolved in the Co ion-containing solution may be any soluble Co salt, but examples include cobalt acetate, cobalt aluminum chloride, cobalt bromide, cobalt hydroxide carbonate, and cobalt chloride. Cobalt, cobalt hydroxide, cobalt citrate, cobalt formate, cobalt naphthenate, cobalt iodide, cobalt oxalate, cobalt tartrate, cobalt oleate, cobalt palmitate, cobalt stearate, cobalt octenoate, cobalt nitrate and their water. Japanese food is available. Two or more of these may be mixed. Also,
Water is usually used as the solvent for the Co compound, but any solvent can be used as long as it can dissociate Co ions from the Co compound, such as alcohols such as methanol and ethanol.

Co化合物は、溶液中にCoイオンとして、通常、
0.05〜0.2mol/、好ましくは0.01〜0.05mol/
の範囲で溶解される。
Co compounds are usually produced as Co ions in solution.
0.05-0.2mol/, preferably 0.01-0.05mol/
It is dissolved in the range of .

フエライト粉末とCoイオン含有溶液との接触
方法としては、通常、該粉末をCoイオン含有溶
液に混合し、得られた溶液を攪拌する方法が採用
される。また混合溶液を振盪して接触させてもよ
い。しかし、これらの処理に限らず、例えば、漬
浸静置、スプレードライ、充填通水などの方法で
あつてもよい。攪拌又は振盪する場合、処理温度
は、通常、0〜50℃であり、処理時間は数分程度
でよい。コバルト表面処理後は、通常、混合液を
ろ過後、ろ取物を乾燥することにより目的物が得
られる。
The method for bringing the ferrite powder into contact with the Co ion-containing solution is usually to mix the powder into the Co ion-containing solution and stir the resulting solution. Alternatively, the mixed solution may be brought into contact by shaking. However, the treatment is not limited to these treatments, and methods such as immersion and standing, spray drying, and filling and water passage may also be used. When stirring or shaking, the treatment temperature is usually 0 to 50°C, and the treatment time may be about several minutes. After the cobalt surface treatment, the desired product is usually obtained by filtering the mixed solution and drying the filtered product.

以上のように、本発明は、水熱合成法又は共沈
法等で製造された六方晶フエライト粉末をCoイ
オン含有溶液中に分散してコバルト表面処理する
ことにより、フエライト粉末表面に過剰に存在す
るBa等のイオンを除去し、該表面にCoを吸着さ
せて、フエライトの磁気特性、特に飽和磁化を改
善するものである。
As described above, in the present invention, by dispersing hexagonal ferrite powder produced by a hydrothermal synthesis method or coprecipitation method in a solution containing Co ions and treating the surface with cobalt, the amount of cobalt present in excess on the surface of the ferrite powder can be improved. This method improves the magnetic properties of ferrite, especially its saturation magnetization, by removing ions such as Ba that cause ferrite and adsorbing Co to the surface.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、従来方法と同程度の保持
力を維持しつつ、飽和磁化の改善された高密度記
録用磁性粉を提供することができる。また、粒度
分布のバラツキがない好適な粒子径を有する粉末
を製造することが可能である。
According to the method of the present invention, it is possible to provide magnetic powder for high-density recording with improved saturation magnetization while maintaining a coercive force comparable to that of the conventional method. Further, it is possible to produce powder having a suitable particle size without variation in particle size distribution.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 2.0MFeCl3水溶液1000ml、1.0MBaCl2水溶液
210ml、1.0MCoCl2水溶液154mlおよび1.0MTiCl4
水溶液154mlを混合した後、液温を20℃以下に冷
却した。次いでこの混合溶液を10MNaOH水溶
液1000ml中に添加して得た褐色沈澱を含むPH13以
上の溶液をオートクレーブ中にて200℃で1時間
加熱し、Ba−フエライトの粒子を沈澱として得
た(水熱合成法)。かくして得た沈澱粒子につい
て水洗、乾燥処理を順次実施してから、ロータリ
ーキルン式焼成炉中900℃で45分間焼成してBaO
(Fe,Co,Ti)2O3のBa−フエライト結晶粒子を
得た。
Example 1 1000ml of 2.0MFeCl 3 aqueous solution, 1.0MBaCl 2 aqueous solution
210ml, 154ml of 1.0MCoCl2 aqueous solution and 1.0MTiCl4
After mixing 154 ml of the aqueous solution, the liquid temperature was cooled to 20°C or less. Next, this mixed solution was added to 1000 ml of a 10M NaOH aqueous solution, and a solution with a pH of 13 or higher containing a brown precipitate was heated in an autoclave at 200°C for 1 hour to obtain Ba-ferrite particles as a precipitate (hydrothermal synthesis). law). The precipitated particles thus obtained were sequentially washed with water and dried, and then calcined for 45 minutes at 900°C in a rotary kiln to form BaO.
(Fe, Co, Ti) 2 O 3 Ba-ferrite crystal particles were obtained.

上記Ba−フエライト結晶粒子200gについて、
CcCl2・6H2O重量濃度0〜5%の水溶液1000ml
を用いて、10分間攪拌処理を行なつた。その後ろ
過・乾燥して得られたBa−フエライトの飽和磁
化についてU.S.M測定器にて測定したところ、第
1図に示した結果が得られた。また保磁力につい
ても測定し、その結果を第1図に併記した。尚、
0.5%溶液で処理した結晶粒子は板状比も10以上
で粒度分布が狭かつた。尚、濃度0のところは、
比較例として見ることができる。
Regarding the 200g of Ba-ferrite crystal particles mentioned above,
1000 ml of CcCl 2 6H 2 O aqueous solution with a weight concentration of 0-5%
The mixture was stirred for 10 minutes. Thereafter, the saturation magnetization of the Ba-ferrite obtained by filtering and drying was measured using a USM measuring device, and the results shown in FIG. 1 were obtained. The coercive force was also measured, and the results are also shown in FIG. still,
The crystal grains treated with the 0.5% solution had a platelet ratio of over 10 and a narrow particle size distribution. In addition, where the concentration is 0,
It can be seen as a comparative example.

実施例 2 2.0MFeCl2水溶液1000ml、1.0MBaCl3水溶液
210ml、1.0MCoCl2水溶液154mlおよび1.0MTiCl4
水溶液154mlを混合した後、液温を20℃以下に冷
却した。次いでこの混合溶液を10MNaOH水溶
液400ml及び1.0MNa2CO3水溶液400mlの混合溶液
中に添加して得た褐色沈澱を含むPH8以上の溶液
を攪拌しFe,Ba,Co,Tiの水酸化物または炭酸
塩の沈澱として得た。かくして得た沈澱粒子につ
いて水洗、乾燥処理を順次施してから流通層焼成
炉中920℃で2時間焼成してBa−フエライト結晶
粒子を得た(共沈法)。
Example 2 1000ml of 2.0M FeCl 2 aqueous solution, 1.0MBaCl 3 aqueous solution
210ml, 154ml of 1.0MCoCl2 aqueous solution and 1.0MTiCl4
After mixing 154 ml of the aqueous solution, the liquid temperature was cooled to 20°C or less. Next, this mixed solution was added to a mixed solution of 400 ml of 10 M NaOH aqueous solution and 400 ml of 1.0 M Na 2 CO 3 aqueous solution, and the obtained solution containing a brown precipitate with a pH of 8 or higher was stirred to form Fe, Ba, Co, Ti hydroxides or carbonic acid. Obtained as a salt precipitate. The precipitated particles thus obtained were sequentially washed with water and dried, and then calcined in a flow-bed calcining furnace at 920°C for 2 hours to obtain Ba-ferrite crystal particles (co-precipitation method).

上記Ba−フエライト結晶粒子200gについて、
実施例1と同様にCoCl2・6H2O重量濃度0〜5
%の水溶液1000mlを用いて、10分間攪拌処理を行
なつた。その後ろ過・乾燥して得られたBa−フ
エライト各粉末の飽和磁化及び保磁力について測
定したところ、第2図に示した結果が得られた。
尚、濃度0のところは、比較例として見ることが
できる。
Regarding 200g of the above Ba-ferrite crystal particles,
CoCl 2 6H 2 O weight concentration 0 to 5 as in Example 1
Using 1000 ml of % aqueous solution, stirring treatment was performed for 10 minutes. Thereafter, the saturation magnetization and coercive force of each Ba-ferrite powder obtained by filtering and drying were measured, and the results shown in FIG. 2 were obtained.
Note that the area where the density is 0 can be seen as a comparative example.

上記実施例から明らかである様に、Co化合物
の溶液で処理することにより、磁気特性、特に飽
和磁化が改善されたBa−フエライト結晶粒子を
得ることができる。
As is clear from the above examples, Ba-ferrite crystal particles with improved magnetic properties, particularly saturation magnetization, can be obtained by treatment with a solution of a Co compound.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水熱合成法で得られたBa−フエライ
トを本発明方法で処理したときのコバルト化合物
の濃度とBa−フエライトの飽和磁化値A及び保
磁力Bとの関係曲線を示した図、第2図は、共沈
法で得られたBa−フエライトを本発明方法で処
理したときのコバルト化合物の濃度とBa−フエ
ライトの飽和磁化値A及び保磁力Bとの関係曲線
を示した図である。
FIG. 1 is a diagram showing a relationship curve between the concentration of a cobalt compound and the saturation magnetization value A and coercive force B of Ba-ferrite when Ba-ferrite obtained by hydrothermal synthesis is treated by the method of the present invention; Figure 2 is a diagram showing the relationship curve between the concentration of cobalt compounds and the saturation magnetization value A and coercive force B of Ba-ferrite when Ba-ferrite obtained by the coprecipitation method is treated by the method of the present invention. be.

Claims (1)

【特許請求の範囲】 1 次式: AO・n(Fe1−mMm)2O3 (式中、AはBa,Sr及びCaから選ばれる1種
以上の元素を表わし;MはCo,Ti,In,Zn,
Mn,Ni,Ge及びNbから選ばれる1種以上の元
素を表わし;mは0〜0.2の数を表わし;nは5.4
〜6.0の数を表わす) で示される六方晶フエライト粉末を、Coイオン
含有溶液に接触させて、該粉末表面にCoを吸着
せしめることを特徴とする高密度記録用磁性粉の
製造方法。
[Claims] Primary formula: AO・n(Fe 1 −mMm) 2 O 3 (wherein A represents one or more elements selected from Ba, Sr, and Ca; M represents Co, Ti, In, Zn,
Represents one or more elements selected from Mn, Ni, Ge and Nb; m represents a number from 0 to 0.2; n is 5.4
A method for producing magnetic powder for high-density recording, which comprises bringing a hexagonal ferrite powder represented by the following formula into contact with a Co ion-containing solution to cause Co to be adsorbed onto the surface of the powder.
JP57208396A 1982-11-30 1982-11-30 Production of magnetic powder for high-density recording Granted JPS59102823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208396A JPS59102823A (en) 1982-11-30 1982-11-30 Production of magnetic powder for high-density recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208396A JPS59102823A (en) 1982-11-30 1982-11-30 Production of magnetic powder for high-density recording

Publications (2)

Publication Number Publication Date
JPS59102823A JPS59102823A (en) 1984-06-14
JPH0341412B2 true JPH0341412B2 (en) 1991-06-24

Family

ID=16555559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208396A Granted JPS59102823A (en) 1982-11-30 1982-11-30 Production of magnetic powder for high-density recording

Country Status (1)

Country Link
JP (1) JPS59102823A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139124A (en) * 1985-12-12 1987-06-22 Toda Kogyo Corp Fine plate ba ferrite corpuscle powder for magnetic recording and its production
DE10244040C1 (en) * 2002-09-21 2003-12-18 Schott Glas Material for forming surfaces in contact with glass melts comprises an outer layer having fine silica glass particles, and an inner layer joined to the outer layer and having coarse silica glass particles
JP5316522B2 (en) * 2010-11-30 2013-10-16 戸田工業株式会社 Magnetic particle powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149137A (en) * 1979-05-11 1980-11-20 Tdk Corp High performance high coercive force powder and its manufacture
JPS56160328A (en) * 1980-05-08 1981-12-10 Toshiba Corp Manufacture of ba-ferrite powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149137A (en) * 1979-05-11 1980-11-20 Tdk Corp High performance high coercive force powder and its manufacture
JPS56160328A (en) * 1980-05-08 1981-12-10 Toshiba Corp Manufacture of ba-ferrite powder

Also Published As

Publication number Publication date
JPS59102823A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
JPH0725553B2 (en) Method for producing plate-like magnetic powder
KR860000485B1 (en) Process for producing ferromagnetic metallic particles
JPS6348810B2 (en)
JPS62100417A (en) Fine isometric hexaferrite pigments
JPS62216922A (en) Hexagonal ferrite fine powder for magnetic recording medium and its production
JPH0341412B2 (en)
JPH05254845A (en) Preparation of hexaferrite particle
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
KR0136152B1 (en) Manufacturing method of hematite powder
JPS589772B2 (en) Gamma - Sankatetsu (3) Noseihou
US5487878A (en) Method for preparing perpendicularly magnetizable material usable on magnetic recording media
JPS5841728A (en) Manufacture of fine ferrite powder
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
JPS6132259B2 (en)
KR920006822B1 (en) Ba-ferrite magnetic materials and making method thereof
JP2577945B2 (en) Barium ferrite magnetic powder and method for producing the same
JPS6334609B2 (en)
EP0310682B1 (en) Fine ferromagnetic powder for magnetic recording
KR0136167B1 (en) Manufacturing method of iron oxide
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH04362019A (en) Ferritic magnetic powder and its production
JPS6151401B2 (en)
JPH0425686B2 (en)
JPH0419169B2 (en)
JPS60112626A (en) Manufacture of dense rod-shaped iron oxyhydroxide