JPS58173869A - Manufacture of compound semiconductor fet - Google Patents

Manufacture of compound semiconductor fet

Info

Publication number
JPS58173869A
JPS58173869A JP5528982A JP5528982A JPS58173869A JP S58173869 A JPS58173869 A JP S58173869A JP 5528982 A JP5528982 A JP 5528982A JP 5528982 A JP5528982 A JP 5528982A JP S58173869 A JPS58173869 A JP S58173869A
Authority
JP
Japan
Prior art keywords
layer
type
insulating film
mask
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5528982A
Other languages
Japanese (ja)
Other versions
JPS6242398B2 (en
Inventor
Yasuhiro Ishii
康博 石井
Yoshimoto Fujita
藤田 良基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5528982A priority Critical patent/JPS58173869A/en
Publication of JPS58173869A publication Critical patent/JPS58173869A/en
Publication of JPS6242398B2 publication Critical patent/JPS6242398B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To manufacture a planar type element with high performance and fine construction by a method wherein N<+> layer, the first and second insulating films are laminated on a semiconductor compound substrate and a hole is opened to form N layer while P<+> type layer of the same or different kind of compound semiconductor is laminated to provide gate electrode thereon. CONSTITUTION:Si3N4 film 13, SiO2 film 14 and resist mark 15 are laminated on N<+> epitaxial layer 12 on semi-insulating GaAs substrate 11 and successively etched to open a window with length of Lg'. Firstly, N<+> layer is selectively etched to open another window with length of Lg''. The mask 15 is removed to form N type active layer 16 epitaxially in the hole by means of pyrolysis CVD process of organic metal. Secondly, P<+> layer 17 is formed by means of molecular beam epitaxial process. GaAs or Al GaAs or double layer of them may be selected as necessary. In this case, the molecular beams are projected in the two directions of + or -theta to from the film 14 making its hole length Lgo shorter than Lg i.e. Lg>Lgo. An ohmic gate electrode 18 with Lgm Lgo is formed removing the films 13, 14 further forming the other ohmic source, drain electrodes 19, 20. Through this constitution, a device with short gate length may be manufactured easily and evenly.

Description

【発明の詳細な説明】 この発明L%n形活性層、p 層およびダート′に4i
k金kI4場のそれぞれの相対位駈胸係を自動的κ収足
して構成されるホモめるい鉱へテロ接合を有するブレー
ナ形の高性能な化合物中導体電界効果トランジスタの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention L% n-type active layer, p layer and dart'
The present invention relates to a method for manufacturing a high-performance conductor-in-a-compound field-effect transistor of the Brehner type having a homo-metite heterojunction, which is constructed by automatically κ-consolidating the respective relative positions of the k-gold, kI, and I4 fields.

GaAsあるいtiInPなどの化合物半導体を基板と
する亀界効朱ト2ンジスタ扛、シリコン基板のものに比
べ、超^周波●超高速の傷号処珊の領域で非常に良好な
性能を発揮すること嫁周知の通タである。
Compared to those using silicon substrates, Kamekai effect transistors using compound semiconductors such as GaAs or TiInP as substrates exhibit very good performance in the area of ultra-high frequency and ultra-high speed damage processing. My wife is well known as a connoisseur.

化合物半導体亀界効未トランジスタとしては、ダート接
合にショットキ振合を使用し九ショットキ振合形が一般
的であるが、n形活性麺に対してホモp+一n振合ある
いはへテロp+  n接合のダート構造を有するp+ 
 n振合形本子紘障鰍電位差が大きく許容入力信号レベ
ルが大きい特徴がある。
For compound semiconductor tortoise-effect transistors, a nine-Schottky type is generally used, using a Schottky type for the dart junction, but a homop+1n type or a hetero p+n type is used for an n-type active noodle. p+ has a dart structure of
It is characterized by a large potential difference and a large permissible input signal level.

しかし p+  n接合形の構成鉱ショットキ接合形と
比較してはるかに困難であって、従来の試作発表例も非
常に少なく、ソースおよびドレイン域Oiオームaie
Oためのエピタキシャルa&n”層を設けた構造は未だ
全く報告された実例がない。
However, it is much more difficult to construct the p+n junction type than the Schottky junction type, and there are very few prototypes published in the past.
No example of a structure in which an epitaxial a&n'' layer for O is provided has yet been reported.

また、^性能・?j!J缶度集積度集積化には、微細構
造のp−n&合ダートの製作、素子構造のル−ナ化など
の素子構成上の多くの困難な部組があシ、全<tr規な
発想に基づく飛緬が必要である。
Also, ^ performance? j! Integration: Integration requires many difficult steps in the device configuration, such as manufacturing fine structure p-n & composite darts, making the device structure lunar, etc., and requires completely new ideas. It is necessary to fly Myanmar based on .

第1図は、従来のp −E1m合形の化合物中導体電界
効果トランジスタの構造を示すものであり、半絶縁性G
aAa基板1にエピタキシャル成長によpn形GaAg
活性層2およびp 形半導体NI3を&層し、ダート接
合域を覆うレジストマスクによりp+形半導体鳩を選択
エツチングしてメサ状のp”−nr−)接合を形成し、
p 形半導体層に対してオーム性接触のダート電極4、
n形活性論に対してオーム性接触のソースt&5および
ドレイン亀&6を設けたものである。
Figure 1 shows the structure of a conventional p-E1m compound conductor field effect transistor.
pn type GaAg is grown on the aAa substrate 1 by epitaxial growth.
The active layer 2 and the p-type semiconductor NI3 are layered, and the p+-type semiconductor dot is selectively etched using a resist mask covering the dart junction area to form a mesa-shaped p''-nr-) junction.
a dart electrode 4 in ohmic contact with the p-type semiconductor layer;
A source t&5 and a drain tom &6 of ohmic contact are provided for n-type activation.

このような従来構造には次のような重要な欠点かめる。This conventional structure has the following important drawbacks.

すなわち、W、1−の構造では、ソースおよびドレイン
電極がn形活性層上にa接オーム性接触されており、か
かる構造では低抵抗なオームt!E接触が得られず素子
の島性能化の大きな障害になっている。
That is, in the W,1- structure, the source and drain electrodes are in a-contact ohmic contact on the n-type active layer, and such a structure has a low resistance ohm t! E-contact cannot be obtained, which is a major obstacle to improving the island performance of the device.

ショットキ接合形の素子#&では、半絶縁性GJLAI
基板上にn形活性鳩とnNIIとt積層した基板から出
発してダート域のn十場を遇択堀込みエツチングする従
来公知の+法により、ソースおよびドレイン域のn 鳩
の#!i、友が可能であるか、p”−nk会合形素子構
造でn Naをエピタキシャル成長法で般社ることは、
n形活性層に対してソースおよびドレイン域でtin+
論、ダート域ではp+牛牛体体層いう全く異なる半導体
層が接しなけれはならないために、通常の8を鳩エピタ
キシャル基板からのl1iIt成が本質的に不Tl]能
となっている。
For Schottky junction type device #&, semi-insulating GJLAI
Starting from a substrate laminated with n-type active layer, nNII, and t on the substrate, the n layer of the source and drain region is selectively etched by digging and etching the n layer of the dirt region. Is it possible to grow nNa in a p''-nk association type device structure by epitaxial growth?
tin+ in the source and drain regions for the n-type active layer
However, in the dirt region, completely different semiconductor layers, namely the p+ body layer, must be in contact with each other, so that the usual formation of 8 from an epitaxial substrate is essentially impossible.

1次、第1図の従来構造では、p半導体層を選択エツチ
ングしてメサ状のp+  nグー1合を形成する友めに
、ゲート−極とソースおよびドレイン′tlL極との間
に少なくともp 半導体場厚さ以上の段差を本質的に生
じ、各−極の形成の微細構造化の障害になるのみならず
、集検化本子構成の揚台の重大な欠点となっている。
In the conventional structure shown in FIG. 1, at least a p-type layer is formed between the gate electrode and the source and drain electrodes by selectively etching the p-semiconductor layer to form a mesa-like p+n group. This essentially creates a step difference greater than the thickness of the semiconductor field, which not only becomes an obstacle to the fine structuring of the formation of each pole, but also constitutes a serious drawback of the platform having a multi-sensor configuration.

さらに、nNIIを設定し易い従来の構造でn1p+ 
 nゲート接合に対するソースおよびドレインの相対位
随関係がソース・ゲート間およびダート・ドレイン間の
厘りV付加抵抗に関与するために、この相対位麹@係を
確保するための11[1J精度のマスク合せ技術が必要
であり、素子の短ゲート長微細構造化に対して入電な制
約を与えるとともに製品性能の均一化の障害になってい
る。
Furthermore, with the conventional structure that makes it easy to set nNII, n1p+
Since the relative positional relationship between the source and the drain with respect to the n-gate junction is involved in the additional resistance between the source and the gate and between the dart and the drain, it is necessary to Mask alignment technology is required, which imposes restrictions on the short gate length and fine structure of devices, and is an impediment to uniform product performance.

この発−明は、上記従来の欠点¥r線除去るためになさ
れた鴨ので、素子5aoijb精度化を達成できるとと
もに、工程のf#I3巣化、高8:能均−化のもとて超
高性能ル−ナ化木子構造が実施でき、集積化素子も容易
にできる化合物牛尋体亀界効朱トランジスタの製造方@
を提供することを目的とする。
This invention was made to eliminate the above-mentioned conventional drawbacks, so it is possible to improve the precision of the element 5aoijb, and also to improve f#I3 nesting and high 8: performance leveling in the process. How to manufacture a compound bullion-like field-effect vermilion transistor that can achieve ultra-high performance lunarized wood structure and easily integrate elements.
The purpose is to provide

以下、この発明の化合物半尋体亀界効果トランジスタの
製造方法の実施例について図面に基づき説明する。第2
図(&)ないし第2図<6)はその一実施例の11!!
親#3図でるる。まず、第2図−)の1輸で1J、半絶
縁性GaAs基板11の表部にn+形導電性を有するn
 層12t−エピタキシャル成長法で設け、さらにその
表面に互いに選択的にエツチングできる二wA類の絶に
験13および141に設け、レソストa布崖光#A画に
よシ、レゾストマスク15を設けて選択エツチングによ
り#!2の絶縁膜14に開口長Lgoのゲート電thr
I@口を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the method for manufacturing a compound semicircular tortoise-effect transistor of the present invention will be described below with reference to the drawings. Second
Figures (&) to Figure 2 <6) are 11! of one example! !
Parent #3 figure appears. First, 1J of 1J in Figure 2-) is applied to the n+ type conductivity on the surface of the semi-insulating GaAs substrate 11.
A layer 12t is formed by epitaxial growth, and furthermore, two layers of the two types 13 and 141, which can be etched selectively to each other, are provided on the surface thereof, and a resist mask 15 is provided on the resist mask 15 for selective etching. By #! A gate voltage thr with an opening length Lgo is applied to the insulating film 14 of No. 2.
I@forms the mouth.

IP、lオヨび第2の絶に&13.14としテ5ilN
4およびStO,膜を過用した一実施例の場合、エツチ
ング液として弗&糸液のように81 s N4に対して
鉱5i(h  よシ極めて遅いエツチング速度を有する
ものを使用する。
IP, the second absolute & 13.14 and the 5ilN
4 and StO, in one embodiment where the membrane is overused, the etching solution used is one having a very slow etching rate as 5i (h) to 81 s N4, such as filtrate solution.

次に、#!2の絶に換13をマスクとして第1の絶縁膜
13に開口長Lg’のf−)域翔口を般ける。
next,#! 2, using the mask 13 as a mask, an opening in the f-) region with an opening length Lg' is opened in the first insulating film 13.

この場合、熱リン酸のように8103に対しては5is
N4と比較してはるかに遅いエツチング速度を有しかつ
GaAsに対してはエツチング作用が線とんどないt&
、を使用する。
In this case, 5is is used for 8103 like hot phosphoric acid.
It has a much slower etching rate than N4 and has very little etching effect on GaAs.
, use.

#p、2融(b) o工程で、前工程で開口し同第1の
絶kk13をマスクとして、たとえd硫酸系エッチング
液によ、!70aAa  n+層の選択−込みエツチン
グを行い、f−)域のn島を除去して長さLg”のf−
)域堀込み部を設ける。
#p, 2 melting (b) In the o process, use the same first aperture kk13 as a mask that was opened in the previous process, even if using d sulfuric acid-based etching solution! 70aAa Selective etching of the n+ layer is performed to remove the n islands in the f-) area to form an f- of length Lg''.
) Provide an area excavation section.

次に、レジストマスク15を除去し、第1および第2の
絶縁族13および14をマスクとしてダート域堀込み部
にn形半導体活性層16を選択埋込みエピタキシャル成
長法で形成する。
Next, the resist mask 15 is removed, and an n-type semiconductor active layer 16 is formed in the dug portion of the dirt region using the first and second insulating groups 13 and 14 as masks by selective embedment epitaxial growth.

この場合の選択エピタキシャル成長法としては、通電の
ハロダン法による気相a層法を適用し得ることは勿論で
あるが、亀1および第2の絶縁膜13゜14の一口よシ
は横方向に広げられ&f−)域堀込み部の周辺にまで良
好なエピタキシャル成長を冥塊し得ること、半絶縁性G
aAs基板とエピタキシャル活性層との境界向の不純物
111[分布の「だれ」が少ないことおよび活性層成長
膜厚の制御性が良好であることなどの理由によシ、有機
金^熱分解CVD法が最適である。
As a selective epitaxial growth method in this case, it is of course possible to apply the vapor phase A-layer method using the halodan method using electricity. &f-) Good epitaxial growth can be achieved even around the trenched area, and semi-insulating G
The impurity 111 in the boundary direction between the aAs substrate and the epitaxial active layer [organic gold^ pyrolytic CVD method] is used for reasons such as less droop in the distribution and better controllability of the active layer growth film thickness. is optimal.

第2図(c)の工程においては、第2の絶縁族14をマ
スクとして分子線エピタキシャル法によ〕、ダート接合
p 半導体層17を形成する。n形GaAa ’@−活
性一とする亀界効釆トランジスタのダート接合p+半4
体階として、ホモp+−nm合形の場合に祉p 形Ga
As  階が、ヘテロp+  n組合形の場合にはp 
形AtGaAs階あるいはp形AtGaAs+−とp 
形QaAa  階との二1階が適用される。
In the step shown in FIG. 2(c), a dart junction p-type semiconductor layer 17 is formed by molecular beam epitaxial method using the second insulating group 14 as a mask. n-type GaAa '@- dart junction p + half 4 of tortoise field effect transistor with active 1
As a body class, in the case of homop+-nm combination, the p form Ga
If the As floor is a heterop+n combination, p
type AtGaAs or p type AtGaAs+- and p
The 21st floor of the form QaAa floor applies.

分子線エピタキシャル法によるp 半4体層の形成にお
いては、第2図(c)に示すように、基板面の無直軸に
対して正および負の方向に傾角θだけ傾けた二方向から
第2の絶に膜14をマスクとして行うことにより、第2
の絶&膜14の開口長Lgoに対してLg > Lgo
なるp半導体層長さLgを得ることができ、このことは
分子線エピタキシャル成長法では真空蒸着法と同様に原
料元本が分子線の杉で直進的に走行して供給されるとい
う他のエピタキシャル成長法と異なる性質を効果的に#
i川したものである。
In the formation of a p-semi-quaternary layer by the molecular beam epitaxial method, as shown in Fig. 2(c), a p-quadram layer is formed from two directions tilted by an angle θ in the positive and negative directions with respect to the non-orthogonal axis of the substrate surface. By using the film 14 as a mask, the second
Lg > Lgo for the gap & opening length Lgo of the membrane 14
It is possible to obtain a p-semiconductor layer length Lg of and different properties effectively #
This is what I did.

#!2図Gi)の工程では、第2の絶縁膜14をマスク
としてp+半導体層に対するオーム性振触となる金^を
真空#層してダート電極18を杉成する。
#! In the step shown in FIG. 2 Gi), a dirt electrode 18 is formed by using the second insulating film 14 as a mask to form a vacuum layer of gold which exhibits ohmic vibration with respect to the p+ semiconductor layer.

この場合、金属の#層方向を近似的に基板向に無血とす
ることによp1ゲート電tj長Lgm線Lgm:Lgo
 < Lg  となる。
In this case, by making the # layer direction of the metal approximately bloodless toward the substrate, the p1 gate voltage tj length Lgm line Lgm:Lgo
<Lg.

#42図(・りの工程では、第2および第1の絶縁族を
除去した後の通常の麺元描−・真空描−リ7トオフ法に
よ、tLnjlに対してオーム性振触のソース電極19
およびドレイン電fik20t−設けた鴨のである。
Figure #42 (In the process, after removing the second and first insulating groups, the source of ohmic vibration for tLnjl is determined by the usual Mengen-drawing-vacuum-writing-Litoff method. Electrode 19
And the drain electric fik20t- is of the duck provided.

上記の読切からも明らかなように、この発明では、半絶
縁性GaAs基板11の表面にn+形導亀性を有するn
@12を設け、この表面に互いに選択的にエツチングで
きる二f11Ir14の#、lおよび第2の絶に膜13
.14を設け、その最外表面のwI2の絶縁ai14に
開口長Lgoのダート電極細口を形成し、第2の絶に展
14をマスクとして第1の絶縁膜13を選択エツチング
して一口長Lg′のf−)域開口t”設け、さらにIg
lの絶縁膜13をマスクとしてGaAsn1iの選択エ
ツチングを行い、r−ト域のn 階を除外して長さLg
“のダート域堀込み部を形成し、この工程にょ多形成さ
れたLg。
As is clear from the above reading, in the present invention, the surface of the semi-insulating GaAs substrate 11 has an n+ type conductivity.
#, l and a second constant film 13 of two f11Ir14 which can be etched selectively to each other on this surface.
.. 14 is provided, a dart electrode narrow opening with an opening length Lgo is formed in the insulation ai14 of wI2 on the outermost surface, and the first insulation film 13 is selectively etched using the second absolutely exposed film 14 as a mask to form a mouth length Lg'. f-) region opening t'' is provided, and further Ig
Using the insulating film 13 of 1 as a mask, selective etching of GaAsn 1i is performed, excluding the
"The dirt area excavation part is formed, and the Lg that was formed in this process.

<Lg’<Lg“の長さを有するダート域堀込み部にn
形GaAs活性116を選択埋込みエピタキシャル成に
味で形成し、次に基板面の無直軸に対して止、負の触角
をなす二方向から第2の絶縁膜をマスクとして分子1エ
ピタキシヤル法にょクホモあるいはヘテHop”−n組
合形ダートをIl&する91層17を杉成し、さらに#
!2の絶に膜14をマスクとして真空#漕法によシLg
m=Lgo < Lg <Lg’< Lg“なるゲート
電極長Lgmを有するゲート電極18t−設けて構成ち
れることにある。
<Lg'<Lg'' in the digging part of the dirt area
A type of GaAs active layer 116 is selectively buried epitaxially formed, and then the second insulating film is used as a mask to form a molecule-1 epitaxial method from two directions that form a fixed and negative angle with respect to the non-perpendicular axis of the substrate surface. Alternatively, form 91 layers 17 of Hete Hop”-n combination type dirt, and further #
! 2. Using the membrane 14 as a mask, use the vacuum method
The gate electrode 18t has a gate electrode length Lgm such that m=Lgo<Lg<Lg'<Lg".

したがって、この発明においては、まず、従来のp+ 
 n接合形化合物半導体電界効果トランジスタで中絶鰍
性基板上の多層エピタキシャルカラの構成では不可能で
あったソースおよびドレイン域のエピタキシャルnil
の設定について、この発明では選択埋込みエピタキシャ
ル成長法を適用して解次し、本子のai性能化を過酸す
ることができる。
Therefore, in this invention, first, the conventional p+
In an n-junction compound semiconductor field effect transistor, it is possible to achieve epitaxial nil in the source and drain regions, which was not possible with a multilayer epitaxial structure on an amorphous substrate.
In this invention, the selective embedding epitaxial growth method is applied to solve the setting, and the main AI performance can be improved.

しかも、この発明の製造方法においては、tl!12の
絶縁族14のゲート11極紬口から順次第1の絶縁膜1
3、n+層へとそれぞれのマスク作用が継続もれて各層
のエツチング成形がなされてダート域1m榛み部が形成
され、それらの絶縁膜マスクがn形活性鳩およびp+半
半導体色選択エピタキシャル成長のマスクとして、また
ダート電極の真空蒸看争リフトオフのマスクとして使用
されるために、ソースおよびドレイ/のn層と活性階と
の境界に対するp”−n層−)接合の相対位置関係、お
よびp+半半導体色f−)電極との相対位#IIL関係
がともに自動的に設定される大きな%値を有する。
Moreover, in the manufacturing method of this invention, tl! Insulating film 1 of 1 in order from the gate 11 of the insulating group 14 of 12
3. Each mask effect continues to leak into the n+ layer, and each layer is etched to form a 1m dirt area, and these insulating film masks are used for the n-type active layer and p+ semi-semiconductor color-selective epitaxial growth. The relative position of the source and drain/p''-n-layer-) junctions to the n-layer and active layer boundaries, and the p+ The relative position #IIL relationship with the semi-semiconductor color f-) electrode both has a large % value that is automatically set.

このことは、蝮ゲート長のgL#1構造化素子の製造の
勘合におけるマスク合せn度の困緬性を解消し、工程の
簡素化、製品の1IiI+性能均一化にll嫉貢献する
This eliminates the difficulty of mask alignment in manufacturing a gL#1 structured device with a short gate length, and contributes to process simplification and uniform product performance.

次に、第1の絶に展13を設けたことの]k艶な効果と
して、LgとLg”との比七遍正な所望の籠に構成でき
るようにする役割シを果たしている。
Next, as an attractive effect of providing the first 13, it plays the role of making it possible to configure a desired cage with a uniform ratio of Lg and Lg''.

すなわち、第1の絶縁膜13を設けないで第20絶縁膜
14の一口をマスクとして直接n層の堀込みエツチング
を行う場合には、深さ方間のエツチング蓋に関係して定
まる横方向エツチング量によって堀込み部の形状すなわ
ちLgoとLg“との比か限定されてしまうのに対して
、この発明の第1と第2の絶縁膜13.14を設けるこ
とにより、第1の絶縁膜13の一口長Lg/鉱Lgo 
(Lg’  で*独に比較的自由に設定でき、このLg
’が鵬込みエツチング量 してLg“はF9T望の麹に設定可能となシ翫子の鮫過
儲造設1tt−可能とする大きな効果を有する。
That is, in the case where the first insulating film 13 is not provided and the n-layer is directly etched using a portion of the twentieth insulating film 14 as a mask, the lateral etching is determined in relation to the etching cover in the depth direction. Whereas the shape of the trenched portion, that is, the ratio between Lgo and Lg'' is limited depending on the amount, by providing the first and second insulating films 13 and 14 of the present invention, the first insulating film 13 Bite length Lg/Mineral Lgo
(Lg' can be set relatively freely, and this Lg
``Lg'' has the great effect of making it possible to set the amount of inset etching to the desired koji of F9T, and to make it possible to create a large amount of heat.

また、p+半尋体階に対するゲート電極の設定について
も、触角を付けた分子線エピタキシャル法を適用するこ
とと、同じに2の絶縁膜をマスクとして使用することの
ために、短ダート長木子に対してもLgm < Lg 
(DlnI密な設定および自動的な相対位wIL関係の
設定が可能となシ、ダート電極によるp+  n形ゲー
ト接合の組絡事故などの間−が発生しない。
In addition, regarding the setting of the gate electrode for the p + half-body scale, we applied the molecular beam epitaxial method with antennae attached and also used the insulating film in 2 as a mask, so we decided to use a short dart Nagiko. Even if Lgm < Lg
(DlnI can be precisely set and the relative position wIL relationship can be set automatically, so that problems such as combination accidents of p+n type gate junctions due to dart electrodes do not occur.

さらに、n形活性鳩およびp半部体層の設定厚さの和に
対してゲート域権込み深さを近似的に吟じいように設計
することによりs n”N上のソースおよびドレイン電
極とダート電極とをtよ#猿同−十拘とするブレーナ形
の素子構造を実現でき、このことは個別素子は勿論のこ
と特に集積化素子構成の場合には極めて効果的である。
Furthermore, by designing the depth of implantation in the gate region to be approximately the same as the sum of the predetermined thicknesses of the n-type active layer and the p-half body layer, the source and drain electrodes on the s n''N It is possible to realize a Brehner-type device structure in which the dart electrodes and the dirt electrodes are at the same angle as t, which is extremely effective not only for individual devices but especially for integrated device configurations.

以上のこの発明の飯造方法の効果を最過設針の一実施例
で定電的に示すと、n層厚さ0.2μ風、第1および第
2の絶&膜13.14の犀さそれぞれ0.1μ震、Lg
o=0.7μ票の場合について、Lg’== 1.3 
fig 、r −)域堀込み深す=0.25nsi、L
g“= 1.8 μs、n形活性層厚g=Q、l、u襲
、p++導体層厚さ= o、i sμ諷、分子線傾角0
=±30°、Lg”1,4mm、Lgm = 0.7μ
m でToシ、蜘ゲート長でかつソース−ドレイン間の
直夕1j付加抵抗を極度に低減した高性能微細構造木子
が製造可能となる。
The effect of the above-mentioned method of making rice according to the present invention is shown in terms of constant current using an embodiment of the maximum setting needle. Each 0.1 μ earthquake, Lg
For the case of o=0.7μ vote, Lg'==1.3
fig, r −) area digging depth = 0.25 nsi, L
g" = 1.8 μs, n-type active layer thickness g = Q, l, u layer, p++ conductor layer thickness = o, i sμ, molecular line inclination 0
= ±30°, Lg”1.4mm, Lgm = 0.7μ
It becomes possible to manufacture a high-performance microstructured tree with a long gate length and an extremely reduced direct resistance between the source and the drain.

以上に評述したように、この発明の化合物半導体電界効
果トランジスタの製造方法によれは、半絶縁性化合物半
導体基板上にn 形導亀層および累l、第2の絶縁膜を
形成した後これらを選択的にエツチングしてf−)域堀
込み部を形成し、このゲート域堀込み部にn形化合物十
尋体活性*1−形成し、このn形化合物半導体活性階と
同8[あるいは異種の化合物半導体のp+陽を形成して
p+−n振合形ダートを構成するp 層を形成し、この
p 層上にゲート電極を形成するようにしたので、良好
なオーム性接触を得るためのn+層を設定し、そのソー
ス・ドレイン間距離を最小限に短縮した構造においても
p+  n形r−)接合、およびf −ト電極の相対位
置関係を自動的に設定し、亀子構成の?Ib精度化を達
成し、工程の1ilI!l氷化、為性能均一化のもとて
層高性能プレーナ化素子構造が実現でき、集積化素子も
容易にできるなどの優れた効果が得られる。
As described above, according to the method for manufacturing a compound semiconductor field effect transistor of the present invention, after forming an n-type conductive layer, a layer, and a second insulating film on a semi-insulating compound semiconductor substrate, these layers are Selectively etching is performed to form an f-) area excavation part, and an n-type compound semiconductor active layer is formed in this gate area excavation part, and the same 8 [or different type A p+ positive layer of a compound semiconductor is formed to form a p layer constituting a p+-n vibrational dart, and a gate electrode is formed on this p layer, so it is difficult to obtain good ohmic contact. Even in a structure in which an n+ layer is set and the distance between the source and drain is minimized, the relative positional relationship between the p+ n type (r-) junction and the f-to electrode is automatically set, resulting in a Kameko configuration. Achieved Ib accuracy and improved process efficiency! Excellent effects such as a very high performance planar element structure can be realized with uniform performance due to ice formation, and integrated elements can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

帛1崗は従来のp+  n接合形の化合物半導体電界効
果トランジスタの構造を示す断面図、第2図(aJない
し第2図(e)はそれぞれこの発明の化合物牛寺体亀界
効果トランジスタの製造方法の一実施例の工&!貌9i
図である。 11・・・半絶縁性GaAs基板、12−n @、 1
3・・・l!1の絶に膜、14・・・第2の絶に編、1
5・・・レソストマスク、16・・・n杉牛擲体活a鳩
、17・・・ダート接合p 半導体層、18・・・r−
)−極、19・・・ドレインtkszo・・・ソース電
極。 特許出願人 沖−気工業株式会社 手続補正書 昭和57年9月−3日 特許庁長官着#和夫 殿 1、事件の表示 昭和s7年 轡 許 願第 552@9   号2、発
#io名称 化舎物中導体電界効呆トツンジス10義造方法3、補正
をする者 事件との関係      特 許 出願人(0!9)沖
電気工廐株式会社 4、代理人 5、補正命令の日付  昭和  年  月  日(1殆
)する。
Figure 1 is a cross-sectional view showing the structure of a conventional p+n junction type compound semiconductor field effect transistor, and Figures 2 (aJ to 2e) illustrate the manufacture of the compound semiconductor field effect transistor of the present invention, respectively. An embodiment of the method &! Appearance 9i
It is a diagram. 11... Semi-insulating GaAs substrate, 12-n @, 1
3...l! 1 Zononi Membrane, 14...2nd Zononi Hen, 1
5...Resost mask, 16...n cedar oxen body active a pigeon, 17... dart junction p semiconductor layer, 18...r-
)-pole, 19... drain tkszo... source electrode. Patent Applicant Oki-Kikou Co., Ltd. Procedural Amendment Letter Arrived September-3, 1980 by the Commissioner of the Patent Office # Kazuo 1, Indication of the Case 1939, Request for Application No. 552 @ 9 2, Issued #io Name Electric field effect on conductors in buildings 10 Gisei construction method 3, relationship with the case of the person making the amendment Patent Applicant (0!9) Oki Electric Works Co., Ltd. 4, Agent 5, Date of amendment order Month, Showa to spend a day (mostly).

Claims (1)

【特許請求の範囲】[Claims] 中絶に性化合−牛導体基板上Kn  形導電場および互
いに選択的にエツチングできる二種類の第1および第2
の絶縁膜を般け、最外表部の第2の絶縁膜にf−)電極
を設足するための細ロt−設け、第2の絶縁llNをマ
スクとする亀1の絶縁膜の辿択開ロエッチングおよび第
1の絶縁膜をマスクとするn+形導亀層の選択描込みエ
ツチングを行ってダート域來込み部を設け、このダート
域柵込み部にn形化合物半導体活性NiIを形成し、上
記半絶縁性化合物半導体基板内のiii直軸に対して正
、負の触角となる二方向から第2の絶縁膜をマスクとし
てn形牛尋体活性鳩と同極あるいUS株の化合物半導体
のp 層を形成してp+ −n飯台形r−)を構成する
p 階を形成し、上記半絶縁性化合物半導体基板内に対
して′はは!&!良方同方向第2の絶縁1111−マス
クとしてP!I11にオーム性級触となるゲート電極金
#1NjIを形成することを特徴とする化合物半導体電
界効果トランジスタの製造方法。
Sexual compounding for abortion - Kn-type conductive field on a conductive substrate and two types of first and second types that can selectively etch each other
Insulating film of 1 is formed, a narrow hole T- is provided for installing an electrode on the second insulating film at the outermost surface, and the insulating film of Figure 1 is traced using the second insulating film as a mask. Open etching and selective writing etching of the n + -type conductive layer using the first insulating film as a mask are performed to provide a dirt region entry portion, and an n-type compound semiconductor active NiI is formed in this dirt region fence portion. , using the second insulating film as a mask from two directions, which serve as positive and negative antennae with respect to the vertical axis of the semi-insulating compound semiconductor substrate iii, using a compound of the same polarity as the n-type bovine body active pigeon or the US strain. A p-layer of semiconductor is formed to form a p-layer constituting a p+-n trapezoid (r-), and a p-layer is formed inside the semi-insulating compound semiconductor substrate. &! Good side same direction second insulation 1111 - P as mask! A method for manufacturing a compound semiconductor field effect transistor, which comprises forming a gate electrode gold #1NjI as an ohmic contact on I11.
JP5528982A 1982-04-05 1982-04-05 Manufacture of compound semiconductor fet Granted JPS58173869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5528982A JPS58173869A (en) 1982-04-05 1982-04-05 Manufacture of compound semiconductor fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5528982A JPS58173869A (en) 1982-04-05 1982-04-05 Manufacture of compound semiconductor fet

Publications (2)

Publication Number Publication Date
JPS58173869A true JPS58173869A (en) 1983-10-12
JPS6242398B2 JPS6242398B2 (en) 1987-09-08

Family

ID=12994417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5528982A Granted JPS58173869A (en) 1982-04-05 1982-04-05 Manufacture of compound semiconductor fet

Country Status (1)

Country Link
JP (1) JPS58173869A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197176A (en) * 1983-04-22 1984-11-08 Nec Corp Manufacture of junction gate field-effect transistor
JPS6149479A (en) * 1984-08-18 1986-03-11 Fujitsu Ltd Semiconductor device
US5867171A (en) * 1993-05-25 1999-02-02 Casio Computer Co., Ltd. Face image data processing devices
JP2008240742A (en) * 2007-03-23 2008-10-09 Showa Corp Damping force generating device
JP2012523697A (en) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション Enhancement mode GaN HEMT device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197176A (en) * 1983-04-22 1984-11-08 Nec Corp Manufacture of junction gate field-effect transistor
JPS6149479A (en) * 1984-08-18 1986-03-11 Fujitsu Ltd Semiconductor device
US5867171A (en) * 1993-05-25 1999-02-02 Casio Computer Co., Ltd. Face image data processing devices
US6226013B1 (en) 1993-05-25 2001-05-01 Casio Computer Co., Ltd. Face image data processing devices
JP2008240742A (en) * 2007-03-23 2008-10-09 Showa Corp Damping force generating device
JP2012523697A (en) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション Enhancement mode GaN HEMT device and manufacturing method thereof
US8890168B2 (en) 2009-04-08 2014-11-18 Efficient Power Conversion Corporation Enhancement mode GaN HEMT device

Also Published As

Publication number Publication date
JPS6242398B2 (en) 1987-09-08

Similar Documents

Publication Publication Date Title
JPS5837949A (en) Integrated circuit device
JPS58173869A (en) Manufacture of compound semiconductor fet
US4437925A (en) Etched-source static induction transistor
JP2662879B2 (en) Method of manufacturing insulated gate field effect transistor
JP2869653B2 (en) Semiconductor device and manufacturing method thereof
US4458259A (en) Etched-source static induction transistor
JP2757872B2 (en) Semiconductor device and manufacturing method thereof
JPH0240924A (en) Manufacture of semiconductor device
JPS6110280A (en) Junction type fet
JPS61163664A (en) Manufacture of semiconductor device
JPS6261371A (en) Field effect transistor and manufacture thereof
JPS63250864A (en) Vertical schottky field-effect transistor
RU795311C (en) Method of manufacturing transistor structures
JP2003163225A (en) Semiconductor device and manufacturing method therefor
JPH01225177A (en) Field effect transistor
JPH02191345A (en) Manufacture of field-effect transistor
JPS62224082A (en) Manufacture of compound semiconductor device
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS61198672A (en) Manufacture of semiconductor device of lateral structure
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPH01273353A (en) Bipolar transistor and manufacture thereof
JPS6177373A (en) Manufacture of semiconductor device
JPH02191344A (en) Manufacture of field-effect transistor
JPS62122276A (en) Manufacture of compound semiconductor device
JPS63181477A (en) Manufacture of semiconductor device