JPS58171833A - Wiring connection by laser beam - Google Patents

Wiring connection by laser beam

Info

Publication number
JPS58171833A
JPS58171833A JP5381782A JP5381782A JPS58171833A JP S58171833 A JPS58171833 A JP S58171833A JP 5381782 A JP5381782 A JP 5381782A JP 5381782 A JP5381782 A JP 5381782A JP S58171833 A JPS58171833 A JP S58171833A
Authority
JP
Japan
Prior art keywords
wiring
laser
layer
resistance part
low resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5381782A
Other languages
Japanese (ja)
Other versions
JPH0318335B2 (en
Inventor
Mikio Hongo
幹雄 本郷
Takeoki Miyauchi
宮内 建興
Takao Kawanabe
川那部 隆夫
Osamu Minato
湊 修
Toshiaki Masuhara
増原 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5381782A priority Critical patent/JPS58171833A/en
Publication of JPS58171833A publication Critical patent/JPS58171833A/en
Publication of JPH0318335B2 publication Critical patent/JPH0318335B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To realize wiring connection with high quality and high yield without damage on the wirings by changing the wiring portion to the conductive condition from non-conductive condition through irradiations of laser beam in plural times at a low power intensity. CONSTITUTION:The wiring portion insulated from a substrate 1 by a SiO2 film deposited on the substrate 1 is composed of low resistance layers 3, 4 and a high resistance layer 5 and moreover it is configurated with formation of insulating films 8, 9, 10 in addition to them. In case of connecting this connecting portion, the laser beam is condensed and irradiated to the high resistance layer 5 and the low resistance layers 3, 4 in both side thereof with the not indicated optical system, in view of changing the high resistance layer 5 into the low resistance layer. The laser beam is irradiated pulsively for several times in such a density as 3/4 or less of the minimum value of the power density which is enough for cutting the Si wiring with one pulse. Thereby, wiring connection can be realized with high quality and yield without generating any damage on the wiring portion even if the laser oscillator output is fluctuated.

Description

【発明の詳細な説明】 本発明は、半導体集積回路内の配線を接続する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for connecting wiring within a semiconductor integrated circuit.

集積回路の配線の一部を切断または接続(短絡)するこ
とにより、製作済の集積回路チップにプログラム(回路
変更)′を行うことができる。
By cutting or connecting (short-circuiting) a portion of the wiring of the integrated circuit, it is possible to program (circuit change)' on a manufactured integrated circuit chip.

従来このプログラムは、例えば読み出し専用メモリ (
ROM )のプログラム、あるいは最近アはメモリ素子
の欠陥セルの救済に利用されている。
Traditionally, this program was run in read-only memory (
Programming of ROM (ROM), or recently, ROM is used to repair defective cells in memory devices.

これらの従来法として以下の方法が知られている○ (1)電流により、PoIy−8iあるいはAI、ニク
ロム等の配線の特定部(フユーズ)を切断する。
The following methods are known as these conventional methods: (1) Cutting specific portions (fuses) of wiring made of PoIy-8i, AI, nichrome, etc. using electric current.

(1)  レーザによシ、外部から光学的に、エネルギ
を与えてPoIy−8tあるいは、AI、ニクロム等の
配線の特定部を切断する。
(1) A specific portion of the wiring of PoIy-8t, AI, nichrome, etc. is cut by applying energy to a laser or optically from the outside.

これらは、いずれも配線の一部を切断するもので大きな
エネルギを必要とし、とけ九PoIy−81や配線金属
が、近傍のSiO,膜を損傷したり、レーザビームが基
板を損傷したりし易い。またEJIinがパッシベーシ
ョン膜(81(h 、 81N ナト)で覆われている
場合には配線切断時に、その上のパッシベーション駿の
一部を除去してしまうため、再g、 パッシベーション
膜をコートしなければならないなどの欠点があった。
These both cut a part of the wiring and require a large amount of energy, and the PoIy-81 and wiring metal can easily damage nearby SiO and films, and the laser beam can easily damage the substrate. . Also, if the EJIin is covered with a passivation film (81(h, 81N)), part of the passivation film on it will be removed when cutting the wiring, so it is necessary to re-coat the passivation film. There were some drawbacks such as not being able to do so.

一方、これらの欠点をなくする方法として、第1図に示
す様に、配線の特定部を接続(短絡)する方法が提案さ
れている。即ち、第1図囚は&基板1に被着し九〇10
2層2により基板1と絶aされた2 つON十形PoI
y−8l  (多結晶81 )層3゜4がきわめて高抵
抗の(例えば5ooKQ由以上)PoIy−81層(不
純物がドープされていなくても嵐い)からなる1眉墨を
介在して、対向している配線構造である。これに6の如
きレーザ、スポットを照射し、十分にエネルギを与える
ことにより、n十形層S、4から拡散を生ぜしめ、第1
wA<8)の様に高抵抗眉墨を低抵抗層1に変換するも
のである。以上によシ、レーザ照射前はn十形層3と4
は非導通状態であったが、照射後は+形層3と4唸導通
状態に変化し、配線の接続(短絡)が完了する。
On the other hand, as a method for eliminating these drawbacks, a method has been proposed in which specific portions of the wiring are connected (short-circuited), as shown in FIG. That is, the cap in Figure 1 is adhered to the &substrate 1 and 9010
2 ON 10-shaped PoI isolated from substrate 1 by layer 2
The y-8l (polycrystalline 81) layers 3 and 4 are opposed to each other with an intervening layer consisting of an extremely high resistance (e.g., 5ooKQ or higher) PoIy-81 layer (strong even if not doped with impurities). The wiring structure is By irradiating this with a laser spot such as 6 and giving sufficient energy, diffusion is caused from the n-domain layer S, 4, and the first
wA<8), high-resistance eyebrow ink is converted into a low-resistance layer 1. According to the above, before laser irradiation, the n-domain layers 3 and 4 are
were in a non-conductive state, but after irradiation, the +-type layers 3 and 4 changed to a conductive state, completing the wiring connection (short circuit).

しかしながらこの方法においては、切断法に比べてレー
ザの照射パワー密度は低くて済むものの、短時間で不純
物拡散を生じさせる必要があるため、1層6、およびそ
れに接しているn+十形oIy−81層3.4をかな如
高温に刀l熱しなければならない。一方、あtb高温に
しすき゛るとPoIy−Si層にダメージを生じ、極端
な場合には切断されてしまう◇このため、接続(短絡)
を行うレーザ条件(照射パワー密度)範囲は極めて狭い
。即ち、レーザ出力のばらつきのために、接続(短絡)
の歩留りが低いという欠点があつ九。
However, in this method, although the laser irradiation power density is lower than in the cutting method, it is necessary to cause impurity diffusion in a short time. Layer 3.4 must be heated to a very high temperature. On the other hand, if the Atb temperature is too high, it will damage the PoIy-Si layer, and in extreme cases it will break.◇For this reason, the connection (short circuit)
The range of laser conditions (irradiation power density) for performing this is extremely narrow. i.e. due to variations in laser power, connections (short circuits)
The disadvantage is that the yield is low.

本発明の目的は、上記し九従来技術の欠点をなくし、R
OM  (Bead O!IIF M@rmory )
  、 P Lム(ProgramabI* Logi
nムtray )のプログラム、あるいはメモリ素子を
はじめ半導体装置の欠陥救済に適用可能な配線接続(短
絡)を高歩留シで実施できる方法を提供することにある
The object of the present invention is to eliminate the above-mentioned nine drawbacks of the prior art, and to
OM (Bead O!IIF M@rmory)
, PLM (ProgramabI* Logi
It is an object of the present invention to provide a method that can perform wiring connections (short circuits) with high yield, which can be applied to programming a memory device or relieving defects in semiconductor devices including memory elements.

即ち本発明は、レーザ出力に多少のばらつ亀が存在して
も、配線部(PoIy−81層)にダメージの生ずる恐
れのない低パワー密度で複数回(望まし01回以上)照
射することによシ、配線部にダメージの生じない、高品
質な接続を高歩留pに行うものである。
That is, the present invention provides irradiation multiple times (preferably 01 times or more) at a low power density that does not cause damage to the wiring part (PoIy-81 layer) even if there is some variation in laser output. Additionally, high-quality connections can be made at a high yield without causing any damage to the wiring section.

以下に本発明の実施例を図に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は母基板菖上に被着した8102  層禽によシ
基板1と絶縁され九1つのn十形PoIy−1!11 
 (多結晶シリコン)層3.4がきわめて高抵抗のく例
えば1・”Q/口以上) P@Iy−111層(不純物
がドープされていなくて屯良い)からなる11を介在し
て対向している配線構造を持ち、それらの上に絶縁膜魯
、絶縁膜會および絶縁層重・が形成されている配線接貌
部であるC!ζ仁でn+形層3.4および1層易は厚さ
が16?−11層11mであシ、n十形層1.4はリン
ま九紘ヒ素が不純物l#1度1 (1” /cj以上に
ドープされている。また絶縁11!口は厚さが■〜…1
鵬0IilO*膜、絶縁−。
Figure 3 shows 8102 layers coated on the mother substrate iris and 91 n-type PoIy-1!11 insulated from the substrate 1.
The (polycrystalline silicon) layer 3.4 has an extremely high resistance (for example, 1."Q/gate or higher) and faces each other with a P@Iy-111 layer 11 (not doped with impurities and very thick) interposed therebetween. The N+ type layer 3.4 and the 1st layer are connected to the C! The thickness of the 16?-11 layer is 11 m, and the n-type layer 1.4 is doped with phosphorus or arsenic to an impurity of 1 degree 1 (1"/cj or more. Also, the insulating layer is 11 m thick. The thickness is ■~...1
Peng0IilO* film, insulation-.

は1〜10we IX のリンを含む10111−、、
=1 @・・亀wa (01〜1−)のリンガラス膜(
P 11 G膜)、絶縁層重・は厚堪がI I 1%−
4@ @ omm (o s−4μm)の81(htた
は81Nあるいはそれらの1層から成ってい;b最終的
な絶縁属(FlnaI Passivallom l[
)である。
contains 1 to 10we IX of phosphorus, 10111-,
=1 @...Kamewa (01~1-) phosphorus glass film (
P 11 G film), the thickness of the insulating layer is 1%-
4@@omm (os-4μm) of 81 (ht or 81N or one layer thereof; b final insulating material (FlnaI Passivalom l [
).

第黛図に示した配am絖部に対して、−第3図に示す光
学系を用いてレーずを照射する。即ち第3図に示す光学
系はレーザ発振l!(図示せず)よシ発振され水レーザ
光11を任意の寸法に変化できる可変スリット■によシ
配lI形状rc f駅し九矩形に成形され、対物レンズ
■によシ可変スリツ)11の実俸が結ぶ位置に置かれた
配線接続部(第3図に示した様に基板’ * 5i02
 層8上に形成されたn十形P・IF−81層3.4と
、それらにはさまれ九!層S)に絶縁膜1.#、1・を
透過して、対物レンズtSO倍率の逆数の大11さて集
光・照射される構成になっている。絶縁膜l。
A laser beam is irradiated onto the beam distribution section shown in Fig. 3 using the optical system shown in Fig. 3. That is, the optical system shown in FIG. 3 emits laser oscillation l! (not shown) A variable slit (not shown) that can change the oscillated water laser beam 11 to any size is arranged in a rectangular shape, and the variable slit (11) is formed into a rectangular shape by the objective lens (not shown). Wiring connection part placed at the position where the actual wiring is connected (as shown in Figure 3, the board' * 5i02
Sandwiched between the n-type P/IF-81 layer 3.4 formed on layer 8 and 9! Insulating film 1. The structure is such that the light passes through the light beams # and 1, and is focused and irradiated by the reciprocal of the objective lens tSO magnification. Insulating film l.

9、菫・の合計の厚さ14 (1,1−@fi111 
 であり、可視領域の波長に対して透明であり、吸収ロ
スはほとんど無視することができる。
9, total thickness of violet 14 (1,1-@fi111
It is transparent to wavelengths in the visible range, and absorption loss can be almost ignored.

jls図に示した光学系により、PoIy−81配線a
、a、s  (配線巾!71111.i層Sの長さ4μ
ma)に対して、3声mX1@J1m  の領域にレー
ザを照射した。この場合、i層易の長さが4μmMある
から、その両側のn十形PoIy−8層層(低抵抗層)
にもそれぞれ杓−ずつ、レーザが照射される。
With the optical system shown in the jls diagram, PoIy-81 wiring a
, a, s (wiring width!71111.i layer S length 4μ
For ma), the laser was irradiated to the area of 3 voices mX1@J1m. In this case, the length of the i-layer layer is 4 μmM, so the n-domain PoIy-8 layer (low resistance layer) on both sides
The laser beam is irradiated to each ladle.

パルス巾fnms波長it@B@のレーザを用い九照射
結果を第4図に示す0縦軸に相対ノ(ワー書度、横軸に
照射パワー密度をとり、それらの条件でレーザを照射し
た場合の、配III接続部の状態を示している0即ち曲
線1暴より上の条件では照射されたレーザのエネルギー
が過剰な丸め、配線が着しい損傷を受け、断線あるいは
断線に近い状態になっている。また曲III!1−よシ
下の条件では照射されたレーザのエネルギーが過少なた
め、配線は非導通、即ち接続されない状態であった。曲
線1mと16にはさまれ九条件範H(斜線部)で、接続
が行え丸。ここで、接続された状態とは、高抵抗PoI
y−81層m  (1層)の抵抗値が101Ω以下に低
下し良状態を言う。これは、レーザ照射前の高抵抗Po
1y−81層l0抵抗値10−Ω以上と比較すると10
4以上の変化であ択完全に短絡状態と見なして差支えな
い。高抵抗PoIy−81層(五層)5がレーザ照射に
よシ低抵抗化するのは 01層易およびその両側のn”ffi PoIy−8層
層1゜4がレーザ光によシ高温と彦り、n’jlPoI
y−81層14の不純物(リン)が1層易に拡散して1
眉墨がn層に変化する。
Figure 4 shows the irradiation results using a laser with a pulse width of fnms and a wavelength of 1. The vertical axis shows the relative power density, and the horizontal axis shows the irradiation power density. In the case of conditions above 0, that is, curve 1, which indicates the state of the wiring III connection, the energy of the irradiated laser causes excessive rounding, and the wiring is severely damaged, resulting in a disconnection or near disconnection. In addition, under the conditions below in Song III! (The shaded area) indicates that the connection can be made.Here, the connected state means a high resistance PoI
The resistance value of y-81 layer m (1 layer) decreased to 101Ω or less, indicating a good condition. This is due to the high resistance Po before laser irradiation.
1y-81 layer l0 resistance value 10-Ω or more compared to
If the change is 4 or more, it can be considered as a complete short-circuit condition. It is easy for the high resistance PoIy-81 layer (5 layers) 5 to lower its resistance by laser irradiation because the 01 layer and the n”ffi PoIy-8 layer 1゜4 on both sides of it are high temperature when exposed to laser light. ri, n'jlPoI
The impurity (phosphorus) in the y-81 layer 14 easily diffuses into the 1 layer.
Eyebrow ink changes to n layer.

fわ 1層易およびその両側の1形PoIy−81層3
゜4がレーザ光により高温となり、それらに接している
絶縁膜−9会も高温となって、絶縁膜會の中のリンがそ
の下の1層易に拡散して1層易がn層に変化する。
fwa 1 layer and 1 type PoIy-81 layer 3 on both sides
゜4 becomes high temperature due to the laser beam, and the insulating film -9 that is in contact with them also becomes high temperature, and the phosphorus in the insulating film easily diffuses into the layer below it, causing the layer 1 to become the n layer. Change.

のいずれか、あるいは両方が起きているためと考えられ
る。
This is thought to be due to one or both of the following.

第4図から明らかな様に、1パルス照射では接続が行え
かかった。即ち、相対ノくワー密度凰以上では、Po1
y−81層が切断されてしまい、相対パワー密度1以下
ではリンの拡散が十分に起らないためである。2パルス
照射では相対ノくワー密度Q、9で接続が行えたが、一
般にレーザ嗜ノ(ルス出力は安定性の良いものでも±s
X程度ばらつくため、PoIy−8層層が切断されたり
、接続されなかったりして、接続の歩留りは低い。Sパ
ルス照射では、相対パワー密度をQ、?意に設定するこ
とにより、高い歩留ヤで接続が行えた。
As is clear from FIG. 4, connection could not be established with one pulse irradiation. That is, when the relative density is higher than Po1
This is because the Y-81 layer is cut and phosphorus does not diffuse sufficiently when the relative power density is less than 1. With 2-pulse irradiation, connection could be made with a relative power density of Q, 9, but in general, depending on the laser preference (the pulse output is ±s even if it is stable)
Because of the variation of about X, the PoIy-8 layer may be cut or not connected, resulting in a low connection yield. For S pulse irradiation, the relative power density is Q, ? By setting it as desired, we were able to connect with a high yield rate.

さらに、照射パルス数を増加させた場合には、より低い
相対パワー密度で接続でき、しかも許容されるレーザ・
パルスのばらつきの巾が大きい。一般的にハ、パルスレ
ーザではパルス間のばらつきは±l・に和度以よであシ
、それに時間的な変化も加わる。さらにプロセス上のば
らつき、即ち各種膜厚や不純物濃度がウェハ間、あるい
はロット関でばらつく丸め、相対的にレーザ・パルスの
出力がそれ以上に変動したのと同じ効果をもたらす。そ
のため、相対パワー密度を低く設定し、多数のパルスを
照射した方がより安定な接続を行うことができる。例え
ば、!パルスでPoIy−8層層を切断できる最低のパ
ワー密度の1/!、即ち相対パワー密度(1,1で、2
0パルス照射した場合には、レーザ・パルスが±30%
以上ばらついても確実に接続を行う仁とができる。また
、相対パワー密度0,4.10g1パルス照射では、十
〇X以上のばらつきが許容される。
Furthermore, if the number of irradiation pulses is increased, connections can be made with lower relative power densities while still allowing acceptable laser
The width of pulse variation is large. In general, in a pulsed laser, the variation between pulses is more than ±l·, and temporal variations are also added to this. Additionally, process variations, ie, variations in film thickness and impurity concentrations from wafer to wafer or from lot to lot, have the same effect as relative variations in laser pulse output. Therefore, a more stable connection can be achieved by setting the relative power density low and irradiating a large number of pulses. for example,! 1/ of the lowest power density that can cut the PoIy-8 layer with a pulse! , that is, the relative power density (1,1, 2
When irradiating 0 pulses, the laser pulse is ±30%
It is possible to reliably connect even if there are variations above. Furthermore, in the case of irradiation with a relative power density of 0 and 4.10g one pulse, a variation of 10X or more is allowed.

以上述べて来た様に、第4図に示した結果は1層6の巾
が冨μm、長さが4μmの場合についてであシ、1層の
長さが長くなると、より太き表パワー密度、あるいはパ
ルス数を必要とし、第4図における曲線1・は右上にシ
フトする。一方、1層の厚さ、巾が変らなゆれば曲m1
llBはそのままであシ、結果的に接続可能な条件範囲
は狭くなる。しかし、1眉墨の長さがto pHの場合
でも、相対パワー密度04.1@・パルス照射に!D、
十分な接続が行なえ、レーザ・パルスのばらつきが±1
0XMjで許容され九。ま九1層Sの厚さが変化した場
合は、曲線1sがシフトする。即ち、厚さが大きくなれ
ば、曲線IIは右上へ、小さく唸れば左下へシフトする
。しかし、1層6の厚さが■・nm4度以上であれば、
十分な接続を行うことができる。
As mentioned above, the results shown in Figure 4 are for the case where the width of one layer 6 is 0 μm and the length is 4 μm. The density or number of pulses is required, and the curve 1 in FIG. 4 shifts to the upper right. On the other hand, if the thickness and width of one layer do not change, the curve m1
If llB is left as is, the range of conditions under which it can be connected becomes narrower. However, even if the length of one eyebrow ink is to pH, the relative power density is 04.1 @ pulse irradiation! D.
Adequate connections and laser pulse variation of ±1
9 allowed with 0XMj. When the thickness of the first layer S changes, the curve 1s shifts. That is, if the thickness increases, the curve II shifts to the upper right, and if the thickness increases, the curve II shifts to the lower left. However, if the thickness of one layer 6 is ■・nm4 degrees or more,
Enough connections can be made.

以上に述べて来た実施例は第1図に示し九光学系を用い
た場合についてであシ、この光学系により、レーザ照射
領域はほぼ均一なパワー密度分布が得られ、配線部以外
の部分にレーザが照射されるのを防ぐことができるが、
本発明はこの光学系によって限定されるものではない。
The embodiments described above are based on the case in which the nine optical systems shown in FIG. It is possible to prevent the laser from being irradiated on the
The present invention is not limited to this optical system.

以下に第3の実施例を示す。第S図はn十形PoIy−
81層8.4とそれらにはさまれ九五層暴から成る配線
接続部の平面図(簡略化するために絶縁l11g、  
・、1Gは省略した)であるが、レーザ光を対物レンズ
によシ微細なスポット1yK集光して照射する方法が通
常用いられている。この橡な方法においても、集光スポ
ラ)llの中心と1眉墨の中心をほぼ一致させ、集光ス
ポット1丁が少なくともn十形PoIy−8t jll
 s 、 aに重ナル様に照射することによシ、接続を
行うことができる。
A third example will be shown below. Figure S is n-decade PoIy-
A plan view of the wiring connection section consisting of the 81st layer 8.4 and the 95th layer sandwiched between them (for simplicity, insulation l11g,
., 1G are omitted), but a method is usually used in which a laser beam is focused on a fine spot 1yK by an objective lens and irradiated. Even in this sophisticated method, the center of the condensing spora )ll and the center of the 1st eyebrow ink are made to almost match, and each condensing spot is at least n-shaped PoIy-8t jll
Connection can be made by irradiating s and a in a double-null-like manner.

この場合においては、第4図に示した条件範囲に比べて
、良好な接続が行える範囲は狭い。即ち、集光スポット
1丁におけるパワー密度分布はガウス形の分布であシ、
平均パワー密度に対して中心部はよシ高く、周辺部はよ
り低い蟹廐であるため、曲1!IIは左下方へ、曲線l
・は右上方へシフトする。しかしながら、スポット径約
重・μmに集光したレーザ光を平均パワー密度(相対値
)0.4でgoパルス、平均パワー密度(相対値)0.
3で100パルス照射することにより、十分な接続を行
?ことができた。
In this case, the range in which a good connection can be made is narrower than the condition range shown in FIG. In other words, the power density distribution at one focused spot is a Gaussian distribution,
The average power density is higher in the center and lower in the periphery, so song 1! II to the lower left, curve l
・Shifts to the upper right. However, when a laser beam focused to a spot diameter of approximately .mu.m is used as a go pulse with an average power density (relative value) of 0.4, the average power density (relative value) is 0.4.
Is there enough connection by irradiating 100 pulses at 3? I was able to do that.

次に別な実施例を示す0第6図は1lls図と同様に、
。手彫PoIy−8i層1.4とそれらに社さまれ九1
層Sから成る配−接続部の平面図であシ、レーザ光を対
物レンズにょシ黴細なスポット1魯に集光して照射する
。この場合、集光スポット重−は配線部の巾と同程度、
即ち配線部の巾と位置決め精度を考慮し九寸法である。
Next, Figure 6 showing another example is similar to Figure 1lls,
. Hand-carved PoIy-8i layer 1.4 and their 91
This is a plan view of a wiring connection section made of a layer S. A laser beam is focused on a fine spot 1 by an objective lens and irradiated thereon. In this case, the focused spot weight is about the same as the width of the wiring section,
In other words, the width of the wiring portion and the positioning accuracy are taken into consideration.

本実施例において紘、配線巾が冨μmであシ、位置決め
精度は±1μmが可能であるから、スポット径として1
〜4μmφが最適である。この集光スポラ)■を、例え
ばl1l−図に示す橡に、n十形PoIy−81層1か
も11を通過してn十形PeIy−81層4へ相対的に
走査する。走査手段として祉、ウェハ(アルーはチップ
状態)を載置し九X−Yxテージの移動、あるいはガル
バノミラ−1囲転多面鏡等の手段によるレーザ光の走査
とも可能である。レーザとしてQスイッチYAGレーザ
〇第8高調波(波長182nnl、パルス巾3軸畠)を
用い、 平均パワー密度(相対値)0.4で約4μmφ
のスポットに集光して、IKH,の繰返し数で、スポッ
ト間かく (ピッチ)が1μmとなる橡に走査した。走
査距離を6μm(−走査Tパルス)とし九ところ、i層
酪の長さがり鵬の場合には、3回以上走査することで良
好な接続が得られた。
In this example, the wiring width is 0 μm and the positioning accuracy can be ±1 μm, so the spot diameter is 1 μm.
~4 μmφ is optimal. This light condensing spora) (1) is scanned relatively to the nx type PeIy-81 layer 4 through the nx type PoIy-81 layer 1 or 11, for example, in the area shown in the figure. As a scanning means, it is also possible to move a 9X-Yx stage on which a wafer (in the form of a chip) is placed, or to scan with a laser beam using a means such as a galvanometer mirror or a rotating polygon mirror. A Q-switched YAG laser with 8th harmonic (wavelength: 182 nnl, pulse width: 3 axes) is used as a laser, and the average power density (relative value) is approximately 4 μmφ with an average power density (relative value) of 0.4.
The light was focused on a spot and scanned over a square with a spot pitch of 1 μm at a repetition rate of IKH. When the scanning distance was 6 .mu.m (-scan T pulse), good connection was obtained by scanning three or more times in the case of a long I-layer.

一定方向の走査だけでなく、往復させて照射(−往復は
2回走査と見なす)し九場合も、はぼ同様の結果が得ら
れた。1層Sの長さが長い場合には、パワー密度を上げ
るが、走査回数を増やすことによシ接続を行うことが可
能で、i層Sの畏さが重・μmの場合に、平均パワー密
度(相対値)  o、s、 @回走査で十分な接続が行
え九。
Similar results were obtained not only by scanning in a fixed direction but also by reciprocating irradiation (-reciprocating is considered as two scans). If the length of the first layer S is long, the power density will be increased, but it is possible to connect by increasing the number of scans. Density (relative value) o, s, @sufficient connections can be made with @times of scanning.

本実施例では第10夾施例と同様に、配II接続部に対
してはぼ均一なレーザ・パワーで照射され、しかも配I
I接続部以外の部分にレーザが照射されるのを防ぐこと
ができる効果もある。
In this embodiment, as in the 10th embodiment, the connection part of wiring line II is irradiated with almost uniform laser power, and
This also has the effect of preventing laser irradiation to parts other than the I-connection part.

以上、述べて来た実施例においてはn十形Po1y−8
i −1NFn十形PoIy−81層(n+−5−n+
 )の構成についてのみ説明して来たが、P十形PoI
y−81層−1層−P十形−PoIy−8l層(p+−
t−p+ )の構成でも全く同じ効果を得ることができ
る。良だし、この場合、絶縁膜−としてボqンガラスI
I (BSGj[)の方が]1itLい。を九P十形P
oIy−81層−1層−n十形PoIy−81層(p+
−ト詭+)の構成によJ)P−nダイオードを形成する
ことによっても目的を適することができる。この場合、
絶縁膜−としてはリンガラスあるいはボロンガラスのど
ちらでも良い。
In the embodiments described above, n-type Po1y-8
i -1NFn decagonal PoIy-81 layer (n+-5-n+
), but we have only explained the structure of
y-81 layer-1 layer-P decaoid-PoIy-8l layer (p+-
Exactly the same effect can be obtained with the configuration t-p+). In this case, Bone glass I is used as the insulating film.
I (BSGj [) is] 1itL. 9P 10P
oIy-81 layer-1 layer-n decadal PoIy-81 layer (p+
The purpose can also be achieved by forming a Pn diode according to the configuration of J). in this case,
The insulating film may be either phosphor glass or boron glass.

さらに、レーずとしてn2レーず励起D7・レーfTo
るいは、QスイッチYAGレーザの第3高調波を用いた
場合について説明して来九が、QスイッチYAGレーザ
の第2高調波でパルス巾がso@HIB前後のもの、あ
るいはQスイッチパルスYAGレーずの基本波@ xe
レーザ、金属蒸気レーダ、エキシマレーザ、ルビーレー
ザ、キャビティダンピングパルスArあるいはKrレー
ザ。
Furthermore, as a laser, n2 laser excitation D7・ray fTo
First, we will explain the case of using the third harmonic of a Q-switched YAG laser. Zuno fundamental wave @xe
laser, metal vapor radar, excimer laser, ruby laser, cavity damping pulsed Ar or Kr laser.

各種パルスレーザ励起あるいはフラッシュランプ励起り
、・レーず等、絶縁膜1,1,1・に対して透明なレー
ずを用いることにより、同様な好来が得られることは明
らかである0 以上述べて来た様に、本発明によれば、レーザ発振器の
出力があるStdらついても、配線部にダメージを生じ
させることなく高品質にかつ高歩留りで、接続を実施で
きる効果がある。
It is clear that similar advantages can be obtained by using a transparent laser for the insulating film 1, 1, 1, etc. using various types of pulsed laser excitation or flash lamp excitation. As described above, according to the present invention, even if the output Std of the laser oscillator fluctuates, the connection can be performed with high quality and high yield without causing damage to the wiring portion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は配線の特定部を接続する従来技術の説明F、第
8図は本発明が実施される配線接続部の一般的な構成を
示す図、第1図は本発明を実施するための光学系を示す
図、第4図は適正な条件範囲を示す図、第S邑へ6図は
本発明O別な実施例を示す説明図である。 1・・・81基板 2・・・8102層 3.4・・・
ぬ十形PoIy−St層 S・・・高抵抗層(1層) 
 6・・・レーザビーム 8・・・5to2膜 9・・
・PIG膜 10・・・最終的な絶縁膜(FlnaI 
Passivatiom膜)  1ト・・可変矩形スリ
ット 13・・・対物レンズ第 1 図 (A) (B) 唱 2.(U 車  4  図 !! 討 バ1し又政 凰  5  図 1孔   ら    図
FIG. 1 is an explanation F of a conventional technique for connecting specific parts of wiring, FIG. 8 is a diagram showing a general configuration of a wiring connection part in which the present invention is implemented, and FIG. FIG. 4 is a diagram showing the optical system, FIG. 4 is a diagram showing an appropriate condition range, and FIG. 6 is an explanatory diagram showing another embodiment of the present invention. 1...81 substrate 2...8102 layers 3.4...
Ten-shaped PoIy-St layer S...High resistance layer (1 layer)
6... Laser beam 8... 5to2 film 9...
・PIG film 10... Final insulating film (FlnaI
Passivation film) 1. Variable rectangular slit 13. Objective lens Figure 1 (A) (B) Singing 2. (U car 4 figure!!

Claims (1)

【特許請求の範囲】 1 禾純物がドープされ且低抵抗部の多結1組配線の一
部に形成された高抵抗部により非導通状態にある配線部
に対して、レーザ光を上記配線部の高抵抗部と、少なく
ともその両側の低抵抗部の一部分を覆う橡に、1パルス
で多結晶81配線を切断するのに資するパワー一度の最
低値のμ以下のパワー11J1で同一部所に画数パルス
集光・照射し、上記配線部を非導゛過状態から導通状態
に変化させて半導体装置内の配m接続を行うことを特徴
とするレーずによる配線接続方法。 形スリットによシ、任意の寸法の矩形に成形し、対物レ
ンズによシ上記矩形スリットの縮少像として集光・照射
する光学系を用いて、配置1!I続を行うことを4II
Ikとする、請求範囲jllE1項記載のレーザによる
配線接続方法03 不純物がドープされ且低抵抗部の多
結晶&配線の一部に形成された高抵抗部により非導通状
態にある配線部に対して、レーザ光を上記配線部の高抵
抗部と、少なくともその両側の低抵抗部の一部分を覆う
様に、1パルスで多結晶&配線を切断するのに要するパ
ワー密度の最低値の1以下のパワー密度に集光したスポ
ットを、少なくと片方の低抵抗部からφ他方の低抵抗部
まで、このスポット径以下のピッチャ複数回、相対的に
走査して集光・照射して上記配線部を非導通状態から導
通状態に変化させて半導体装置内の配線接続を行うこと
を特徴とするレーザによる配線接続方法。
[Scope of Claims] 1. Laser light is applied to the wiring part doped with a hydrogen impurity and which is in a non-conducting state due to the high resistance part formed in a part of the multi-connection set of wiring in the low resistance part. Apply a power of 11J1, which is less than the minimum value of μ at a time, to the same part of the high-resistance part and at least a part of the low-resistance part on both sides of the same part. A wire connection method using a laser, characterized in that the wire connection within a semiconductor device is performed by concentrating and irradiating stroke pulses to change the wiring portion from a non-conducting state to a conductive state. A shaped slit is formed into a rectangular shape of arbitrary size, and an objective lens is used to collect and irradiate light as a reduced image of the rectangular slit.Arrangement 1! 4 II to carry out a continuation
Wiring connection method 03 using a laser according to claim jllE1, where Ik is applied to a wiring part that is doped with impurities and is in a non-conducting state due to a high resistance part formed in a part of the polycrystalline & wiring in the low resistance part. , so that the laser beam covers the high resistance part of the wiring part and at least a part of the low resistance part on both sides, with a power of 1 or less, which is the lowest power density required to cut the polycrystalline & wiring with one pulse. The densely focused spot is relatively scanned, focused and irradiated from at least one low resistance part to the other low resistance part with a pitcher with a diameter of this spot or less several times to remove the above wiring part. 1. A wiring connection method using a laser, which connects wiring within a semiconductor device by changing the state from a conductive state to a conductive state.
JP5381782A 1982-04-02 1982-04-02 Wiring connection by laser beam Granted JPS58171833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5381782A JPS58171833A (en) 1982-04-02 1982-04-02 Wiring connection by laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5381782A JPS58171833A (en) 1982-04-02 1982-04-02 Wiring connection by laser beam

Publications (2)

Publication Number Publication Date
JPS58171833A true JPS58171833A (en) 1983-10-08
JPH0318335B2 JPH0318335B2 (en) 1991-03-12

Family

ID=12953338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5381782A Granted JPS58171833A (en) 1982-04-02 1982-04-02 Wiring connection by laser beam

Country Status (1)

Country Link
JP (1) JPS58171833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149513A (en) * 2018-02-28 2019-09-05 新日本無線株式会社 Intermediate for forming resistance element and manufacturing method of resistance element using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650531A (en) * 1979-10-01 1981-05-07 Hitachi Ltd Semiconductor integrated circuit and programming method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650531A (en) * 1979-10-01 1981-05-07 Hitachi Ltd Semiconductor integrated circuit and programming method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149513A (en) * 2018-02-28 2019-09-05 新日本無線株式会社 Intermediate for forming resistance element and manufacturing method of resistance element using the same

Also Published As

Publication number Publication date
JPH0318335B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US6911622B2 (en) Laser processing
JPS6122650A (en) Relief for defect and device thereof
US20070117227A1 (en) Method And System for Iteratively, Selectively Tuning A Parameter Of A Doped Workpiece Using A Pulsed Laser
CN104923919B (en) In the method that liquid film transparent material interface prepares loop configuration or dimpling lens
CN108604540A (en) The manufacturing method of laser doping device and semiconductor device
JPS6267834A (en) Laser processing
JPS58171833A (en) Wiring connection by laser beam
JPS59103346A (en) Method of selectively heating insulator layer on semiconductor device
JPS6234131B2 (en)
JPS59107579A (en) Manufacture of photoelectric conversion device
JPH0140500B2 (en)
JPH0783006B2 (en) Thin film processing method
JPS58171834A (en) Wiring connection by laser beam
JPS59178748A (en) Laser processing method
JPH065778B2 (en) Method for manufacturing optical semiconductor device
JP2524049B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPS63253674A (en) Manufacture of photovoltaic device
JPH0426219B2 (en)
JPH0516182B2 (en)
JP3374889B2 (en) Thin film processing method
JP2633306B2 (en) Laser processing method
JPH03136299A (en) Manufacture of circuit board
JPS61108150A (en) Manufacture of semiconductor device
CN118016737A (en) Solar cell and preparation method thereof
JPS63110747A (en) Semiconductor integrated circuit device