JPS59107579A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPS59107579A
JPS59107579A JP57217569A JP21756982A JPS59107579A JP S59107579 A JPS59107579 A JP S59107579A JP 57217569 A JP57217569 A JP 57217569A JP 21756982 A JP21756982 A JP 21756982A JP S59107579 A JPS59107579 A JP S59107579A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor
photoelectric conversion
conversion device
defective position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57217569A
Other languages
Japanese (ja)
Other versions
JPS6331952B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57217569A priority Critical patent/JPS59107579A/en
Publication of JPS59107579A publication Critical patent/JPS59107579A/en
Publication of JPS6331952B2 publication Critical patent/JPS6331952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve yield on manufacture and reliability by irradiating a visible light when there is a defective position in the photoelectric conversion device, detecting the position, irradiating trimming pulse beams of coaxial beams, and instantaneously evaporating and erasing an electrode and a semiconductor at the defective position. CONSTITUTION:A light-transmitting first electrode 3 is attached onto a light- transmitting glass substrate 2, a hydrogen added nonsingular crystal semiconductor layer 4 with a P-N or P-I-N or hetero-junction is formed onto the electrode 3, and the layer 4 is coated with an Al second electrode 5. The visible radiation, such as He-Ne Ar or the like is irradiated on the exposed surface side of the substrate 2, and the defective position of the photoelectric conversion device is inspected. When the defective position 14 where the electrodes 3 and 4 are in contact is discovered at that time, a YAG laser 12, a spot diameter thereof is made 50mumphi, is irradiated similarly from the exposed surface side of the substrate 2, and the layer 4 and the electrode 5 at the defective position 14 are burnt off instantaneously and evaporated. The whole surface is coated with a passivation film made of Si3N4, etc. while burying the defective position.

Description

【発明の詳細な説明】 本発明は、透光性基板上K PIN接合、PN接合また
はへテロ接合を少なくとも1つ有する光電変換装置にお
いて、この半導体の接合をはさむ第1および第2の電極
間の短絡(ショート〕またはリークをする箇所または領
域を、透光性基板側よシパルス光ヲ照射してレーザトリ
ミングにて除去することにより、半導体装置特に光電変
換装置(pvaという)としての効率の白土を計ること
を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a photoelectric conversion device having at least one K PIN junction, PN junction, or heterojunction on a light-transmitting substrate, in which a contact between first and second electrodes sandwiching this semiconductor junction is provided. By irradiating the light-transmitting substrate side with a pulsed light and removing the points or areas where short circuits or leaks occur by laser trimming, white clay can be used efficiently as semiconductor devices, especially photoelectric conversion devices (PVA). The purpose is to measure.

本発明は透光性基板上に形成された第1の電極PNまた
はP工N接合またはへテロ接合を少なくとも1つ有する
半導体および第2の電極よ抄なる積光性基板側よりのレ
ーザ光照射により行ない、スクライブ後に上下の第1お
よび第2の電極が互いにショートまたはリークが発生し
ない−ようにするlのX とともに、分割されたセル状光電変換装置を電気的に分
離することを目的としている。
The present invention relates to a first electrode formed on a light-transmitting substrate, a semiconductor having at least one PN or P-N junction, or a heterojunction, and a second electrode that is irradiated with laser light from the side of a light-stacked substrate. The purpose of this method is to electrically isolate the divided cellular photoelectric conversion device, as well as to prevent the upper and lower first and second electrodes from short-circuiting or leaking from each other after scribing. .

この発明は、不良箇所(ショートまたはリークをしてい
る箇所才たは領域を以下単に不良箇所という)を検出用
に、可視光例えばHe−Neレーザ光の照射を行ない、
この不良箇所がその他の正常な領域に比べて電気的出力
が低いことを利用して所定の水力以下の不良箇所の第2
の電極をその下の半導体とをパルス光を照射して除去し
てしまい゛  対をなす電極間のショートまたはリーク
箇所を除去してしまわんとするものである。即ち出力の
少ない不良箇所をマイクロコンピュータ匠より記憶し、
さらにトリミング用レーザ(例えばYAGレーザ)K信
号を与えて、1〜100I一般には30〜60μ中の円
形のパルス光(波長約1μ)を透光性基板のガラス面側
よシ照射して、第2の電極とその下側の半導体を気化除
去することにより、上下の第2第1の電イ計間でのショ
ートまたはリークの存在を除去してしまうことを目的と
する。
This invention irradiates visible light, for example, He-Ne laser light, to detect defective locations (hereinafter simply referred to as defective locations).
Using the fact that this defective area has a lower electrical output than other normal areas,
The electrode and the semiconductor underneath are removed by irradiating pulsed light to remove short-circuits or leakage points between the pair of electrodes. In other words, the microcomputer memorizes the defective parts with low output,
Furthermore, a trimming laser (for example, a YAG laser) K signal is applied, and a circular pulsed light (wavelength of about 1μ) of 1 to 100μ, generally 30 to 60μ, is irradiated onto the glass surface side of the transparent substrate. By vaporizing and removing the second electrode and the semiconductor below it, the purpose is to eliminate the presence of short circuits or leaks between the upper and lower second and first electric meters.

従来光電変4(ζ・L装置とはその真性効率用面積が0
.1〜5%/CmLであったこともあり、その製造歩留
りにはあまり大きな進歩がみられていなかった。
Conventional photoelectric converter 4 (ζ・L device has an area for intrinsic efficiency of 0)
.. Partly because it was 1 to 5%/CmL, there was not much progress in the manufacturing yield.

しかし本発明人はこのpvaの1つのノシネルが20X
 40 c mLまたは20 X 60 c m’と大
きくすると、この面積中に小さなピンホールが4ヶ以上
、大きなピンホールが1ヶ以上あると、その部分でpv
cの開放電圧の低下、さらにまたは短絡電流がリークに
より所定の値を有さす、特KFF(曲線因子)が一般の
0.6〜0゜73から0.2〜0゜4になってし甘うこ
とに気かついた。このように、かかるpvcを調べた結
果、ゴミ、突起等の汚物または異物の付着により、上下
の電極が互いに電気的にショートしてし祉っていること
がわかった。捷たこのようなO講化イ1蓄 不良箇所があると前記した如くの特性′を耳Hヨ乏′じ
、PvCパネルとし一〇の所定の特性を得ることができ
ず、さらに前記した20cm以上のパネルにあっては、
その製造歩留りが20−40%しかなく、90係以上を
有さなければならない製造ラインを全く満たしていない
。結果として製品のコストアップまた信頼性の低下をも
たらしてしまった0本発明はかかる欠点を除去するため
、不良箇所に可視光を照射して検出し、同軸光のトリミ
ングパルス光を照射してその箇所の電極と半導体または
上下の電極およびその間の半導体を瞬時にして気化し消
去してしまうレーザトリミングを行なうことにより、結
果として製造歩留りを向上させ、さらにその信頼性を向
上せしめることを目的としている。
However, the inventor of the present invention found that one nocinel of this pva was 20X
If the area is enlarged to 40 cm mL or 20 x 60 cm, and there are 4 or more small pinholes and 1 or more large pinholes in this area, the PV
In addition, the short circuit current has a predetermined value due to leakage, and the KFF (fill factor) has changed from the general 0.6 to 0.73 to 0.2 to 0.4. I noticed something. As a result of examining such PVC, it was found that the upper and lower electrodes were electrically short-circuited to each other due to the adhesion of dirt or foreign matter such as dust and protrusions. If there is a defective part like this, the characteristics as described above will be poor, and the PvC panel will not be able to obtain the specified characteristics of 10, and furthermore, the 20 cm In the above panels,
Its manufacturing yield is only 20-40%, which does not meet the requirements of a manufacturing line that must have 90 or more parts. As a result, the cost of the product increased and the reliability decreased. In order to eliminate these drawbacks, the present invention detects the defect by irradiating it with visible light and then irradiating it with coaxial trimming pulse light to detect the defect. By performing laser trimming, which instantaneously vaporizes and erases the electrode and semiconductor at a location, or the upper and lower electrodes, and the semiconductor in between, the aim is to improve manufacturing yield and reliability. .

付着することを防ぐため、酸化物よシなる透光性電極側
即ち第1の電極側より不良箇所を噴出させる如くにして
すべて放出させてしまうことを目的どしている。このた
め本発明は上側に金属よりなるトリミングしにくい第2
の電極側よりトリミング用パルス光を照射するのではな
く、逆にガラス基板側より第]の電極、半導体および第
2の電極を形成してしまった後に行なうことを特徴とし
ている。
In order to prevent the adhesion, the purpose is to eject all the defective parts from the transparent electrode side, ie, the first electrode side, which is made of oxide. For this reason, the present invention provides a second layer on the upper side that is made of metal and is difficult to trim.
The trimming pulse light is not irradiated from the electrode side, but is performed from the glass substrate side after forming the second electrode, the semiconductor, and the second electrode.

以下にその実施例を図面に従って説明する。Examples thereof will be described below with reference to the drawings.

第1図においてレーザトリミングをされる半導体(]−
)は基板(2)、第1の電極(3)、PNまたはP工N
接合またはへテロ接合を少なくとも1つ有する水素また
は・・ロゲン元素が添加された非単結晶半導体(4)例
えばP型S i XCp、((0< x< 1)  I
型5i−N型(μC−3i)よりなる半導体で0.4〜
0.6μの厚さを有せしめている。またへテロ接合にあ
っては、第1の電極のCTF−X型半導体−N型(μC
−8i)よりなっている。さらにこの上面に第2の電極
(5)即ち金属電極にあっては、Or (500−20
0OA) +Al(0,5μ)#j、たはOTFおよび
金属の2層電硬にあ2ては、例えばITO(900〜1
zooX) +AI (500〜10000x)十N1
(1000〜4000λ)ヲ設ケタモノテある。この光
電変換装置作製の後において、He−Neレーザ光(8
)を照射すると、との光電変換装置における0、1〜1
0μの大きさの異物かプロセス中またはプロセス前につ
いていると、この部分に半導体層または電極が形成され
なくなってし捷う。
In Figure 1, a semiconductor (]-
) are the substrate (2), the first electrode (3), PN or P-N
Non-single crystal semiconductor doped with hydrogen or... rogen element having at least one junction or heterojunction (4) For example, P-type Si XCp, ((0<x< 1) I
Semiconductor consisting of type 5i-N type (μC-3i) 0.4~
It has a thickness of 0.6μ. In addition, in the case of a heterojunction, the first electrode is CTF-X type semiconductor-N type (μC
-8i). Further, on this upper surface, a second electrode (5), that is, a metal electrode, is arranged at Or (500-20
For example, ITO (900-1
zooX) +AI (500~10000x) 10N1
(1000-4000λ) There are many options. After producing this photoelectric conversion device, a He-Ne laser beam (8
), 0, 1 to 1 in the photoelectric conversion device with
If foreign matter with a size of 0 μm is present during or before the process, the semiconductor layer or electrode will not be formed in this area and will be destroyed.

即ち凹部を形成してしまう。またこれらの異物が残存す
ると凸部を作9、その結果この異物との境界または凹部
にて上下の一対の電極間Y電気的に連結し、リークまた
はショートしてしまうことが判明した。このためこの不
良箇所を2つの電極(2)(4)K連結した外部引出し
電極(6)、(7)より検出器α3により検出し、この
信号をマイクロコンピュータ04にて制御した後、信号
をYAGレーザ(9)K与え、このレーザよりトリミン
グ光坪均出力1〜IOW例えば5Wの出力)を与えて、
ノ・−フミラー(10)を介しミラー0+)をへてトリ
ミングレーザα2により30〜50μ′の照射光により
不良箇所を蒸発除去する。
In other words, a recess is formed. It has also been found that if these foreign substances remain, they form convex portions 9, and as a result, the pair of upper and lower electrodes are electrically connected at the boundary with the foreign matter or at the concave portions, resulting in leaks or short circuits. Therefore, this defective point is detected by the detector α3 from the external extraction electrodes (6) and (7) connected to the two electrodes (2), (4), and the signal is controlled by the microcomputer 04. A YAG laser (9)K is applied, and this laser gives a trimming light average output of 1 to IOW (for example, an output of 5 W),
The defective portion is evaporated and removed by irradiation light of 30 to 50 .mu.' from the trimming laser .alpha.2 through the nof mirror 10 and the mirror 0+).

不良箇所の検出用には30〜100μtの可視光例えば
He−NeレーザまたはArレーザ(8)を用いた。
Visible light of 30 to 100 μt, such as a He-Ne laser or an Ar laser (8), was used to detect defective locations.

かくして不良箇所のレーザトリミングを行なった。In this way, the defective areas were laser trimmed.

第2図は第1図のトリミング捷たはスクライブ装置にて
そのたて断面図をもつと詳しく示したものである。
FIG. 2 shows in detail the trimming or scribing device shown in FIG. 1 in a vertical sectional view.

図面(A)において、基板(2)は透光性のガラスを用
い、可視レーザ光0■を走査して不良箇所04を検出し
た。PVO(1)は基板(2)上に透光性の第1の電極
(3)非単結晶半道体(4)、第2の電極(例えば半導
体」=に900〜1300λ例えば1050^の工To
よりなるCTFさらにその上Ksiまたはクロムが添加
されたA1を薄く形成したものを用いた。外部引出し電
極(6)、(7)との接触用にその上KNi″!lたは
A1+Niの多層膜を0.5〜1.5μ形成してもよい
)(5)を設けている。
In drawing (A), a transparent glass was used as the substrate (2), and a defective portion 04 was detected by scanning with visible laser light 0. PVO (1) has a transparent first electrode (3) a non-single-crystal semiconductor (4) on a substrate (2), and a second electrode (e.g. semiconductor) with a thickness of 900 to 1300λ, e.g. 1050^. To
A thin layer of CTF consisting of CTF and A1 to which Ksi or chromium was added was used. For contact with the external extraction electrodes (6) and (7), a multilayer film of KNi''!1 or A1+Ni may be formed thereon to a thickness of 0.5 to 1.5 μm) (5).

図面(A)のα→では第1、第2の電極(3)、(5)
がリーク電流を流してし捷う不良箇所となり、光電変換
装置の特性劣化の原因になっている0 かかる不良箇所を可視光を走歪し、その出力を検出し、
出力(開放電圧または0.5〜0゜6■の電流値)が所
定の値に比べて30〜60係以上劣化している箇所を検
出した。さらにここK YAGレーザスポット(50μ
))を照射し、第2図(B) K示す如く半導体および
上部の電極を蒸発せしめ除去した。
In α→ of drawing (A), the first and second electrodes (3) and (5)
This becomes a defective point where a leakage current flows and becomes a cause of deterioration of the characteristics of the photoelectric conversion device.
We detected locations where the output (open-circuit voltage or current value of 0.5 to 0°6) was degraded by a factor of 30 to 60 or more compared to a predetermined value. Furthermore, here K YAG laser spot (50μ
)), and the semiconductor and the upper electrode were evaporated and removed as shown in FIG. 2(B)K.

この時第2図に示す如く、透屍性基板を上側とし電極(
5)を下側として配置した。そして積層した電極、半導
体の内部を最初にレーザー光により加熱し、表面部の第
2の電極を噴出する如くにして除去してしまうことが重
要である。特に内部を加熱すると、この部分の半導体が
溶融または気化状態となり、第2の電極(5)を切断す
る如くに除去することかできる。
At this time, as shown in Figure 2, with the transparent substrate on the upper side, the electrode (
5) was placed on the bottom side. It is important to first heat the inside of the stacked electrodes and semiconductor with a laser beam, and then remove the second electrode on the surface in a jetting manner. In particular, when the inside is heated, the semiconductor in this portion becomes melted or vaporized, and the second electrode (5) can be removed as if by cutting.

他方もしこの逆向きに装置(])を配置すると、レーザ
光は第2電極(金属)に最初照射される。するととのレ
ーザ光の熱エネルギは電極の横方向に熱伝導し、金属の
溶融を主としたプロセスとなり気化プロセスがない。そ
の結果このリーク箇所で逆にさらに第2電極と第1電極
とが豆に接触をし合金化してしまいやすいことが判明し
た。
On the other hand, if the device (]) is placed in the opposite direction, the second electrode (metal) is first irradiated with the laser light. The thermal energy of the laser beam is then thermally conducted in the lateral direction of the electrode, resulting in a process that primarily involves melting the metal, with no vaporization process. As a result, it was found that at this leakage point, the second electrode and the first electrode were likely to come into contact with the beans and form an alloy.

即ち本発明の如く2つの薄膜状電極とその間に0.3〜
0.7μというきわめて薄い半導体層が形成されるいわ
ゆるザンドウイッチ状+14造を有する半導体において
は、内部にし2ザ光により熱エネルギを蒸積し一瞬のう
ちにふきとばしてしまう方法が重要であることが判明し
た。
That is, as in the present invention, there are two thin film electrodes and a 0.3~
For semiconductors with a so-called Sandwich-like +14 structure, in which an extremely thin semiconductor layer of 0.7 μm is formed, it is important to use a method that evaporates heat energy internally using double laser light and then blows it off in an instant. found.

かくして半導体(4)はその側面または表面(ハ)が露
出する。
Thus, the side surface or surface (c) of the semiconductor (4) is exposed.

この後図示していないがこの第2図(B)のpvc(→
をこの全面(てわたって窒化珪素絶縁物Q1)を500
〜2000大の厚さにコーティングをしてノくツシペー
ション膜を作った。これはプラズマ気相法により200
〜350°C代表的には280°Cで形成させた。さら
にこの上面にポリイミド樹脂を1〜3.すの厚さにコー
ティングをして、耐湿性の向上およびこのトリミング部
でのPN間での1層側面でのリーク電流を防止した。
Although not shown below, the pvc (→
This entire surface (silicon nitride insulator Q1) was
The coating was applied to a thickness of ~2,000 mm to form a coating film. This is 200% by plasma vapor phase method.
Formation was performed at ~350°C, typically 280°C. Furthermore, 1 to 3 coats of polyimide resin is applied to this upper surface. The coating was applied to the thickness of the glass to improve moisture resistance and prevent leakage current on the side of the first layer between the PNs at this trimmed portion.

第2図において、領域a9に関してはスクライププロセ
スを示している。即ち不良箇所ではなく大面積の半導体
装置を多数の小面積の装置に分割しようとする時、特に
上下の電極および半導体が形成されてし甘った後に分割
しようとする時、レーザ光は(功と透光性基板側より照
射し、かつこの+せしめたものである。かくすることに
より、例えば20cmX40cmの装置(1)を1cm
X5cmC光電変換装置としたり、1cmX5〜8mm
の小面積に分割せしめることも可能となった。
In FIG. 2, a scribing process is shown for area a9. In other words, when trying to divide a large-area semiconductor device into many small-area devices rather than a defective part, especially when trying to divide it after the upper and lower electrodes and semiconductors have been formed, the laser beam is irradiated from the translucent substrate side, and this + is applied.By doing this, for example, the 20cm x 40cm device (1) can be irradiated with a 1cm
X5cmC photoelectric conversion device or 1cmX5~8mm
It is now possible to divide the area into smaller areas.

この図面は一断面を示しているが、このスクライブ工程
では第1の電極Dv分を含めてそれぞれを分割除去する
必要があるためYAGレーザのパルス光は8〜12Wと
大きくさせた。
Although this figure shows one cross section, in this scribing process, it is necessary to remove each part including the first electrode Dv, so the pulsed light of the YAG laser was set to be as large as 8 to 12 W.

以上の如くにして本発明のPVOυておいては、その内
部においてスポット状に少なくとも基板とは反対側の電
極を除去し、2つの相対する電極間のリーク、ショート
の不良箇所を除去することにより、従来の30〜40チ
しかその製造歩留りがなかったのが、この不良イー正を
行なうことにより、その変換装置用のボードを作ろうと
する際、即ち2゜X40cmを6枚組合わせる、寸たけ
20X60cmを4枚組合わせる等の実用化を刷る際、
それぞれのパネルの歩留を2倍以上にできたこと、この
ボードの製造価格を〜500ドレ′Wで得ることができ
、捷だその変換効率もこれまで10〜1%叉=4%であ
ったものを10〜4係叉・6%とすることができ、効率
の向」二においてもきわめてすぐれたものであっ/こ。
As described above, in the PVOυ of the present invention, at least the electrode on the side opposite to the substrate is removed in spots inside the PVOυ, and defective points such as leaks and short circuits between two opposing electrodes are removed. In the past, the production yield was only 30 to 40 inches, but by correcting this defect, when trying to make a board for the conversion device, it is necessary to combine six 2 When printing practical applications such as combining 4 sheets of 20x60cm,
We were able to more than double the yield of each panel, the manufacturing cost of this board was ~500 DW, and the conversion efficiency of the board was 10~1% = 4%. The efficiency can be reduced to 10-4.6%, which is extremely good in terms of efficiency.

サラに本発明においては、とのレーザトリミング捷たは
スクライビングを成功率をさらに高めるためには、第2
の電極を金属のみとするのではなく、OTF (透光性
導電膜)例えば’700〜130OAの厚さのITOと
し、その土を金属電極でおおうことが重要である。かく
すると電極のみの場合トリミング歩留が90%であった
が、これを99.98%(lcf’スポットして7ケの
不良)Kまで高めることができるようになった。これは
工業上きわめて重要なことであり、ITO等の酸化物を
介在させることにより、パルス光照射の熱エネルギか内
部に蒸積されるためにより一瞬のうちに気化除去させ得
ることによるものと思われる。
Furthermore, in the present invention, in order to further increase the success rate of laser trimming or scribing, a second
It is important to use OTF (transparent conductive film), for example, ITO with a thickness of 700 to 130 OA, and cover the soil with a metal electrode, rather than using only metal as the electrode. In this way, the trimming yield was 90% in the case of electrodes only, but it became possible to increase this to 99.98% (7 defects in lcf' spot). This is extremely important industrially, and is thought to be due to the fact that by interposing an oxide such as ITO, the thermal energy of the pulsed light irradiation can be vaporized and removed in an instant. It will be done.

捷だ60cmX20cmの大きさの基板より]、cmX
5cmの電卓用の太陽電池を作ろうとすると、240ケ
ものものを一度に作ることができる。さらにこのセルの
内には9mmX8mmのセルが5ヶ直列に電気的に連結
されておシ、これらのセル間の分離を本発明は行なうこ
とを可能にしている。この様に従来のマスク法に比べて
使用面側においてこのスクライブラインが30〜60μ
と細く肉眼で見えないためきわめて商品価値を高めるこ
とができた。
From a board with a size of 60cm x 20cm], cmX
If you try to make solar cells for a 5cm calculator, you can make 240 of them at once. Further, within this cell, five cells of 9 mm x 8 mm are electrically connected in series, and the present invention makes it possible to separate these cells. In this way, compared to the conventional mask method, this scribe line is 30 to 60μ on the use side.
Because it is so thin that it cannot be seen with the naked eye, it has greatly increased its commercial value.

本発明においてトリミング用レーザはYAGレーザを用
いた。しかしこれはCOレーザその他を用ることが可能
である。
In the present invention, a YAG laser was used as a trimming laser. However, it is also possible to use a CO laser or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザトリミング装置の概略を示す。 第2図は本発明のレーザトリミングをされた光電変換装
置を示す。 l弘 第1図
FIG. 1 schematically shows a laser trimming device of the present invention. FIG. 2 shows a laser-trimmed photoelectric conversion device of the present invention. l hong figure 1

Claims (1)

【特許請求の範囲】 1、トリミング用パルス光を照射できるレーザトリミン
グまたはスクライブ装置により透光性基板上の透光性導
電膜よりなる第1の電極と、該電極上に設けられた非単
結晶半導体層と、該半専体層土の導電性の第2の電極と
を有する光電変換装置をトリミングまたはスクライブす
る作製方法において、パルス光ヲ前記透光性基板側より
照射することによシ、前轟電極と該電極下の半導体、前
記第2の電極と該電極下の半導体および第147)電廖
を除去することにより、トリミング捷たはスクライブす
ることを特徴とする光電変換装置の作製方法。 2、特許請求の範囲第1項において、半導体上の第2の
電極は前記半導体上に透光性導電膜と該膜上に金属膜と
の2層構造を有して設けられたことを特徴とする光電変
換装置の作製方法。
[Claims] 1. A first electrode made of a transparent conductive film on a transparent substrate and a non-single crystal provided on the electrode by a laser trimming or scribing device capable of irradiating pulsed light for trimming. In a manufacturing method for trimming or scribing a photoelectric conversion device having a semiconductor layer and a conductive second electrode of the semi-dedicated layered soil, by irradiating pulsed light from the transparent substrate side, 147) A method for producing a photoelectric conversion device, characterized in that trimming or scribing is performed by removing the front electrode, the semiconductor under the electrode, the second electrode and the semiconductor under the electrode, and the 147th electric wire. . 2. In claim 1, the second electrode on the semiconductor is provided with a two-layer structure of a transparent conductive film on the semiconductor and a metal film on the film. A method for manufacturing a photoelectric conversion device.
JP57217569A 1982-12-11 1982-12-11 Manufacture of photoelectric conversion device Granted JPS59107579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217569A JPS59107579A (en) 1982-12-11 1982-12-11 Manufacture of photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217569A JPS59107579A (en) 1982-12-11 1982-12-11 Manufacture of photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS59107579A true JPS59107579A (en) 1984-06-21
JPS6331952B2 JPS6331952B2 (en) 1988-06-27

Family

ID=16706317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217569A Granted JPS59107579A (en) 1982-12-11 1982-12-11 Manufacture of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS59107579A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114727A (en) * 1984-06-29 1986-01-22 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPS6142971A (en) * 1984-08-06 1986-03-01 Sanyo Electric Co Ltd Manufacture of semiconductor device
US4700463A (en) * 1985-09-09 1987-10-20 Fuji Electric Company Ltd. Non-crystalline semiconductor solar battery and method of manufacture thereof
US4728615A (en) * 1984-10-17 1988-03-01 Fuji Electric Company Ltd. Method for producing thin-film photoelectric transducer
US4734379A (en) * 1985-09-18 1988-03-29 Fuji Electric Corporate Research And Development Ltd. Method of manufacture of solar battery
JP2009500788A (en) * 2005-06-30 2009-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for forming electrode layer pattern on organic functional device
JP2009195968A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Laser scribing apparatus
JP2010012519A (en) * 2001-08-10 2010-01-21 First Solar Inc Method and apparatus for laser scribing glass sheet substrate coatings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114727A (en) * 1984-06-29 1986-01-22 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPS6142971A (en) * 1984-08-06 1986-03-01 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH0566758B2 (en) * 1984-08-06 1993-09-22 Sanyo Electric Co
US4728615A (en) * 1984-10-17 1988-03-01 Fuji Electric Company Ltd. Method for producing thin-film photoelectric transducer
US4700463A (en) * 1985-09-09 1987-10-20 Fuji Electric Company Ltd. Non-crystalline semiconductor solar battery and method of manufacture thereof
US4734379A (en) * 1985-09-18 1988-03-29 Fuji Electric Corporate Research And Development Ltd. Method of manufacture of solar battery
JP2010012519A (en) * 2001-08-10 2010-01-21 First Solar Inc Method and apparatus for laser scribing glass sheet substrate coatings
JP2009500788A (en) * 2005-06-30 2009-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for forming electrode layer pattern on organic functional device
JP2009195968A (en) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp Laser scribing apparatus

Also Published As

Publication number Publication date
JPS6331952B2 (en) 1988-06-27

Similar Documents

Publication Publication Date Title
US6455347B1 (en) Method of fabricating thin-film photovoltaic module
US4892592A (en) Thin film semiconductor solar cell array and method of making
US4965655A (en) Interconnected semiconductor devices
JP4201241B2 (en) Method for manufacturing integrated thin film photoelectric conversion module
US4873201A (en) Method for fabricating an interconnected array of semiconductor devices
US4783421A (en) Method for manufacturing electrical contacts for a thin-film semiconductor device
US20030180983A1 (en) Method of manufacturing thin film photovoltaic modules
EP2169724A1 (en) Integrated thin film solar cell and method for fabricating the same
US20120164782A1 (en) Method and device for producing a photovoltaic thin-film module
US20080289683A1 (en) Thin-Film Solar Cell Interconnection
US4854974A (en) Electrical contacts for a thin-film semiconductor device
KR20100015811A (en) Method and apparatus for the laser scribing of ultra lightweight semiconductor devices
JP2005515639A (en) Method for manufacturing thin film photovoltaic module
JPS59107579A (en) Manufacture of photoelectric conversion device
JPS6154681A (en) Manufacture of thin-film photovoltaic element
JPH10303444A (en) Manufacture of solar battery
JPS6184074A (en) Semiconductor device
JPS5986269A (en) Manufacture of photoelectric converter
JPS5994884A (en) Manufacture of photoelectric conversion device
KR101169455B1 (en) Fabrication method for a solar cell
JPS6258685A (en) Manufacture of amorphous semiconductor solar cell
JPH055187B2 (en)
KR101697589B1 (en) Apparatus for repairing thin film solar cell and method for repairing the same
US20130240028A1 (en) Method of manufacturing solar cell element and solar cell element
JP2001168355A (en) Defect repair method of thin film photoelectric conversion module and manufacturing method thereof