JPS58171258A - Method and apparatus for grinding ball bearing - Google Patents

Method and apparatus for grinding ball bearing

Info

Publication number
JPS58171258A
JPS58171258A JP57050922A JP5092282A JPS58171258A JP S58171258 A JPS58171258 A JP S58171258A JP 57050922 A JP57050922 A JP 57050922A JP 5092282 A JP5092282 A JP 5092282A JP S58171258 A JPS58171258 A JP S58171258A
Authority
JP
Japan
Prior art keywords
ball bearing
inner ring
grinding
rotating member
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57050922A
Other languages
Japanese (ja)
Other versions
JPS6247668B2 (en
Inventor
Hideo Matsuhashi
松橋 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP57050922A priority Critical patent/JPS58171258A/en
Publication of JPS58171258A publication Critical patent/JPS58171258A/en
Publication of JPS6247668B2 publication Critical patent/JPS6247668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races

Abstract

PURPOSE:To increase the production efficiency of a ball bearing and to make possible the quality uniform, by making the operation automated and continuous, in adjusting and grinding means for adjusting and grinding the end surfaces of an inner or outer ring of a ball bearing. CONSTITUTION:In the flow chart of the method of grinding, GA and GB are values that will be obtained by measuring the end surfaces of the inner ring and outer ring of the ball bearing to be machined by a measuring apparatus. At every definite short interval, sampling values of GA and GB are digitized to obtain the average values at every rotation. These average values GA and GB are calculated at every rotation of a work head, and the difference GAV=the average GB-the average GA is also calculated at every rotation. Based upon the calculated difference GAV, the feeding rate of the grind stone is determined to grind the end surfaces of the inner ring of the ball bearing. Thus, the operation for improving the accuracy of the differential width is made automated and continuous, so that the production efficiency can be improved and the quality can be made uniform.

Description

【発明の詳細な説明】 (3) 本発明は玉軸受の研削方法及び装置に係り特に玉軸受の
内輪又は外輪の端面を調整研削する方法及び装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (3) The present invention relates to a method and apparatus for grinding a ball bearing, and more particularly to a method and apparatus for adjusting and grinding an end face of an inner ring or an outer ring of a ball bearing.

玉軸受は転がり軸受の中で最も代表的な軸受であり一般
には2つ以上組合せて用いられている。この組合せの際
軸のラジアル方向およびアキシャル方向の位置決めを正
確にすると共に軸の振れを抑えるため、軸受の剛性を高
めるだめ、軸方向の振動および共振による異音を防11
するため及び軌道輪に対して転動体を正しい位置に保つ
だめ等の目的のだめ軸受を組付けたとき、軸受内にあら
かじめ内部応力を発生させることがある。このような使
い方を予圧法という。組合わせ軸受の予圧法には定位置
予圧法があり、この方法は対向した軸受の軸方向の相対
位置が軸受使用中にも変化しない方法である。この定位
置予圧方法により軸受を組合せ、締結させるためには軸
受を実際に使用する予圧を付与したとき軸受の内輪と外
輪との端面位置が一致するように(4) 製作しなければならない。しかし一般に玉軸受は外輪、
内輪及び転動体が別々に製造され製造された外輪、内輪
及び転動体を組合わせて製作されている。製造された外
輪、内輪及び転動体し、lそJlぞJ1製作精度が異っ
ているため組合わされた軸受も組立二梢度がバラツキ、
それは特に軸受の内輪の端面位置と外輪の端面位置間の
距離(以下差幅という)において太きい。しかし高い精
度が要求される玉軸受においては軸受の差幅精度のバラ
ツキは致命的な欠陥となる。そこで従来より差幅精度を
向上させるため以下の方法により内輪又は外輪の端面を
調整研削していた。それぞれ別々に製造した内輪、外輪
及び転動体を玉軸受として組合わせてから内輪、外輪間
に一定の予圧(約5乃至10Ai7程度)をかけながら
手動で内輪及び外輪を相対的に回転し転動体の内外輪に
対する位置を安定化させ(以下なじませ回転という)る
Ball bearings are the most typical type of rolling bearings, and two or more are generally used in combination. In this combination, in order to accurately position the shaft in the radial and axial directions and to suppress vibration of the shaft, the rigidity of the bearing must be increased to prevent abnormal noise due to axial vibration and resonance.
When a bearing is assembled for purposes such as keeping the rolling elements in the correct position with respect to the bearing ring, internal stress may be generated in the bearing in advance. This type of usage is called the preload method. There is a fixed position preloading method as a preloading method for a combination bearing, and this method is a method in which the relative positions of opposing bearings in the axial direction do not change even when the bearings are in use. In order to assemble and fasten bearings using this fixed-position preload method, the bearings must be manufactured so that the end face positions of the inner and outer rings of the bearing match when the preload is applied to the bearing (4). However, ball bearings generally have an outer ring,
The inner ring and rolling elements are manufactured separately, and then the outer ring, inner ring, and rolling elements are combined. Because the manufactured outer ring, inner ring, and rolling elements differ in manufacturing accuracy, the assembled bearing also has variations in the assembly degree.
It is particularly large in the distance between the end face position of the inner ring and the end face position of the outer ring (hereinafter referred to as the difference width). However, in ball bearings that require high precision, variations in bearing differential width precision are a fatal flaw. Therefore, conventionally, in order to improve the width difference accuracy, the end face of the inner ring or outer ring has been adjusted and ground by the following method. After combining the inner ring, outer ring, and rolling elements that were manufactured separately into a ball bearing, the inner ring and outer ring are manually rotated relative to each other while applying a certain preload (approximately 5 to 10 Ai7) between the inner ring and outer ring to form the rolling elements. The position of the wheel relative to the inner and outer rings is stabilized (hereinafter referred to as blending rotation).

このなじませ回転を行なったのち、前記一定の予圧を内
輪、外輪間にかけながら内輪、及び外輪の各端面位置を
測定しその測定値にもとすき実際の使用の際の予圧をか
けた際差幅がゼロとなるように研削すべき量を算出し、
この算出された値だけ指定された面を熟練工がロータリ
ー研削盤で手動研削していた。そl〜で手動研削ののち
再び軸受の内輪及び外輪の端面(i’f、置を測定し差
幅が所定の範囲内にあるかどうかを調べ、測定した差幅
が所定の範囲内にないときは再び上に述べた方法で研削
を繰返していた。
After performing this familiarization rotation, measure the position of each end face of the inner ring and outer ring while applying the above-mentioned constant preload between the inner ring and outer ring, and apply the preload to the measured value. Calculate the amount to be ground so that the width is zero,
A skilled worker manually grinds the specified surface by this calculated value using a rotary grinder. Then, after manual grinding, measure the end faces (i'f) of the inner and outer rings of the bearing and check whether the difference width is within the specified range. Then, the grinding process was repeated again using the method described above.

しかしこの方法では作業工程が、手動のなじませ回転、
手動による内輪及び外輪の端面位置の測定、研削すべき
量の算出、熟練工に、Lる研削等と多いため生産効率が
悪く又位置の測定、研削すべき量の算出、及び研削が人
手に頼っているため作業能率がわるく研削作業には熟練
を必要とするという欠点があり、かつ作業が人手に頼っ
ているため高精度が望めずさらに研削の際軸受をロータ
リーテープルにマグネットチャックするため軸受が磁化
し脱磁が必要となるが組立状態における完全なる脱磁は
むずかしいという欠点があった。
However, with this method, the work process involves manual blending and rotation,
Production efficiency is poor because manual measurement of the end face position of the inner ring and outer ring, calculation of the amount to be ground, calculation of the amount to be ground, and grinding requires skilled workers. This has the disadvantage that work efficiency is low and grinding requires skill, and since the work relies on manual labor, high precision cannot be expected.Furthermore, the bearing is magnetically chucked to a rotary table during grinding, so the bearing is It requires magnetization and demagnetization, but it has the disadvantage that complete demagnetization is difficult in the assembled state.

上記欠点を解消すべく上に述べた各工程すべてを自動化
1〜かつflln機を利用して連続的に行ない得る自動
研削装置を開発した。この自動研削装置を用いることに
より容易に差幅精度の高い玉軸受の太は生産が可能とな
る。
In order to eliminate the above-mentioned drawbacks, we have developed an automatic grinding device that can perform all of the above-mentioned steps continuously using an automated machine and a flln machine. By using this automatic grinding device, it is possible to easily produce thick ball bearings with high accuracy in differential width.

本発明の目的は従来人手により種々に分割して行なって
いた−1”: 1lll受の差+lIl精度向、Hのだ
めの作業を自動化、連続化することにより生産効率の向
上、差幅精度向上、品質の均一化を可能にする玉軸受研
削装置を提供することにある。
The purpose of the present invention is to automate and serialize the work of 1": 1lll receiver difference + 111 accuracy, H nozzle, which was conventionally done manually by dividing it into various parts, improve production efficiency, improve difference width accuracy, An object of the present invention is to provide a ball bearing grinding device that enables uniform quality.

本発明においては、従来自動化困難とされていたなじ1
せ回転を自動化することを特徴とする。
In the present invention, the same 1
It is characterized by automating the rotation.

さらに本発明においては、玉軸受の内輪、外輪間に一定
の予圧を加えながら研削できる装置を備えていることを
特徴とする。
Furthermore, the present invention is characterized in that it includes a device that can grind the ball bearing while applying a constant preload between the inner ring and the outer ring.

(7) さらに本発明においては、玉軸受の内輪及び外輪の端面
位置を求める際端面位置の測定値をディジタルサンプリ
ングし、かつ内輪及び外輪の端面位置をワークヘッド1
回転毎に平均して求めることを特徴とする。
(7) Furthermore, in the present invention, when determining the end face positions of the inner ring and outer ring of a ball bearing, the measured values of the end face positions are digitally sampled, and the end face positions of the inner ring and outer ring are measured using the work head 1.
It is characterized by being averaged for each rotation.

さらに本発明においては軸受の内輪又は外輪の端面の研
削の際同時に内輪及び外輪の端面位置を測定し、目標値
に対しオープンループで研削を行うことを特徴とする。
Furthermore, the present invention is characterized in that when grinding the end faces of the inner ring or outer ring of the bearing, the positions of the end faces of the inner ring and outer ring are simultaneously measured, and the grinding is performed in an open loop to a target value.

さらに本発明においてはその他多くの特徴を有するがそ
れ等は図示した一実施例について説明する以下の記述よ
り明らかになるものと思われる。
Furthermore, the present invention has many other features which will become apparent from the following description of the illustrated embodiment.

第1図は本発明の玉軸受研削装置で研削する玉軸受で図
に示すδが差幅である。第2図は第1図に示す玉軸受を
2つ背面組合わせしている状態を示してありこの軸受の
差幅は各々δ鞠である。このような状態で組合わせ軸受
の内輪を軸方向にFaoO力で給飼けると軸受イ、口は
それぞれδa6だけ変化して内輪間(8) のすきま2δa(1がなくなる。この状態において軸受
にFa(1の予圧がかかったことになる。
FIG. 1 shows a ball bearing ground by the ball bearing grinding device of the present invention, and δ shown in the figure is the difference width. FIG. 2 shows a state in which two ball bearings shown in FIG. 1 are assembled back to back, and the difference in width between the bearings is δmari. If the inner ring of the combination bearing is fed in the axial direction with a FaoO force in this state, the bearing openings will change by δa6, and the gap 2δa (1 will disappear) between the inner rings (8).In this state, the bearing This means that a preload of Fa(1) is applied.

さらにこれ以上Faoを増加しても軸受にかかる予圧量
は増加しない。又予圧量を必要以上大きくすると異常発
熱、摩擦モーメントの増大、疲れ寿命の低下を招くので
予圧量を適正に定めることが必要となってくる。そして
その予圧量は上に述〜二だ、しうに差幅寸法に依存して
いるため差幅のりj−法精度を向上することが必要とな
る。
Further, even if Fao is increased further, the amount of preload applied to the bearing will not increase. Furthermore, if the amount of preload is increased more than necessary, it will cause abnormal heat generation, an increase in frictional moment, and a decrease in fatigue life, so it is necessary to set the amount of preload appropriately. As mentioned above, the amount of preload depends on the width difference dimension, so it is necessary to improve the accuracy of the difference width gluing method.

第3図は本発明の装置における被加工玉軸受を装着する
ワークヘットを示している。符号1は主軸であシその中
には流体の流体供給穴が4本別々に形成しである。各流
体供給穴にそれぞれ流体を供給できるように流体供給用
回転継手(図示せず)を主軸1に装着しである。さらに
その回転継手の他端には電磁弁(図示せず)を介し外部
の流体供給源を接続しである。ξの電磁弁の切換により
各流体供給穴へ流体の圧力供給圧力開放、及び圧力の切
換えを可能としている。
FIG. 3 shows a work head in which a ball bearing to be machined is mounted in the apparatus of the present invention. Reference numeral 1 denotes a main shaft in which four fluid supply holes are separately formed. A fluid supply rotary joint (not shown) is attached to the main shaft 1 so that fluid can be supplied to each fluid supply hole. Furthermore, an external fluid supply source is connected to the other end of the rotary joint via a solenoid valve (not shown). By switching the solenoid valve ξ, it is possible to release the fluid pressure to each fluid supply hole and switch the pressure.

この主軸の前面(第3図においては右側)にはチャック
取付板2が取り付けである。さらにチャック取付板2の
前面には図示の如くクランプリング5を保持するだめの
クランプリング保持用リング3と、被加工玉軸受の内輪
、外輪間に予圧をかけるための負荷ピストン4とが取り
付けである。予圧をかける方法は実開昭56−1263
47号に詳細に説明しである。
A chuck mounting plate 2 is attached to the front surface of this main shaft (on the right side in FIG. 3). Further, on the front surface of the chuck mounting plate 2, as shown in the figure, a clamp ring holding ring 3 for holding the clamp ring 5 and a load piston 4 for applying preload between the inner ring and outer ring of the ball bearing to be machined are attached. be. The method of applying preload is based on Utility Model Application No. 56-1263.
It is explained in detail in No. 47.

負荷シリンダ6は低負荷で回転自在にかつ軸方向に摺動
自在に相対運動のできるエアベアリングで負荷ピストン
の外側に係合されでいる。クランプリング5は軸方向に
摺動自在でありかつ回転方向には1体回転するようなキ
一手段10で負荷シリンダに係合されそしてクランプリ
ング保持用リング3と低負荷で回転自在でかつ軸方向に
摺動自在なエアベアリング13でクランプリング保持用
リング3の内側に係合しである。さらに負荷シリンダ6
とチャック取付板2とにより図示の如く被加工玉軸受の
装置への装着、取りはすしの際に使用する突き出し用シ
リンダ室Aを形成し、このシリンダ室Aに流体圧を供給
するための流体供給穴aをチ・17ツク取付板2に形成
しである。そしてこの流体供給穴aは前記主軸1に形成
した4本の流体供給穴の1つに連通され、流体供給用回
転継手(図示せず)及び電磁弁(図示せず)を介し外部
流体圧供給源(図示せず)と接続され、シリンダ室Aへ
の流体圧の供給及び圧力開放を可能としている。
The load cylinder 6 is engaged with the outside of the load piston by means of an air bearing capable of relative movement such that it can rotate freely under low load and can freely slide in the axial direction. The clamp ring 5 is slidable in the axial direction and engaged with the load cylinder by a key means 10 that rotates as one unit in the rotational direction, and is connected to the clamp ring retaining ring 3 so that the clamp ring 5 can freely rotate under low load and is connected to the shaft. An air bearing 13 that is slidable in this direction is engaged with the inside of the clamp ring holding ring 3. Furthermore, load cylinder 6
As shown in the figure, the chuck mounting plate 2 forms an ejecting cylinder chamber A used for mounting and removing the ball bearing to be machined, and a fluid for supplying fluid pressure to the cylinder chamber A. A supply hole a is formed in the mounting plate 2. This fluid supply hole a is communicated with one of the four fluid supply holes formed in the main shaft 1, and external fluid pressure is supplied via a fluid supply rotary joint (not shown) and a solenoid valve (not shown). It is connected to a power supply (not shown) and enables supply of fluid pressure to the cylinder chamber A and release of the pressure.

また負荷シリンダ6と負荷ピストン4とにより図示の如
く、被加工玉軸受の内輪、外輪に予圧を付与するための
予圧付与用シリンダ室Bを形成し、このシリンダ室Bに
流体圧を供給するだめの流体供給穴すを負荷ピストン4
内に形成しである。そしてこの流体供給穴すは前記主軸
1に形成した流体供給穴aが連通しているものとは別の
1つの流体供給穴に連通され流体供給用回転継手(図示
せず)及び電磁弁及び圧力調整弁(図示せず)を介し外
部流体供給源(図示せず)と接続され、シリンダ室Bへ
の流体圧の高圧供給、低圧供給及び圧力開放を可能とし
ている。
Further, as shown in the figure, the load cylinder 6 and the load piston 4 form a preload applying cylinder chamber B for applying preload to the inner ring and outer ring of the ball bearing to be machined, and a cylinder chamber B for supplying fluid pressure to the cylinder chamber B. The fluid supply hole of the load piston 4
It is formed inside. This fluid supply hole is communicated with another fluid supply hole other than the one with which the fluid supply hole a formed in the main shaft 1 is connected, and is connected to a fluid supply rotary joint (not shown), a solenoid valve, and a pressure It is connected to an external fluid supply source (not shown) via a regulating valve (not shown), allowing high pressure supply, low pressure supply, and pressure release of fluid pressure to the cylinder chamber B.

クランプリング5とクランプリング保持用リング3とに
より軸受の内輪と外輪とを一体で回転させたり、別々に
回転させたりの切換のためのクランプ用シリンダ室Cが
形成され、このシリンダ室Cに流体圧を供給するだめの
流体供給穴Cをクランプリング保持用リング3及びチャ
ック取付板2内に形成しである。
The clamp ring 5 and the clamp ring holding ring 3 form a clamp cylinder chamber C for switching between rotating the inner and outer rings of the bearing together or separately. A fluid supply hole C for supplying pressure is formed in the clamp ring holding ring 3 and the chuck mounting plate 2.

そしてこの流体供給穴Cは流体供給穴a、  bが連通
しているものとは別の主軸1に形成された流体供給穴に
連通され流体供給用回転継手(図示せず)及び電磁弁(
図示せず)を介し外部流体供給源(図示せず)に接続さ
れ、シリンダ室Cへの流体圧の供給、圧力開放を可能と
している。・ まださらに負荷ピストン4と負荷シリンダ6とを相互に
低負荷で回転自在にかつ軸方向に摺動自在に供給するだ
めのエアベアリング11.12が負荷ピストン4内に形
成してあり、このエアベアリング11..12へ流体圧
を供給するだめの流体圧供給穴dが負荷ピストン4及び
チャック取付板2内に形成しである。またクランプリン
グ保持用リング3とクランプリング5とを低負荷で回転
自在にかつ軸方向に摺動自在に係合するだめのエアベア
リング13をクランプリング保持用リング3内に形成し
である。このコーアベアリング13.14へ流体圧を供
給するための流体供給穴eがチャック取付板2内に形成
しである。そしてこの流体供給穴d及びθは流体供給穴
a1b及びCが連通しているものとは別の主軸に形成さ
れた流体供給穴に連通され、流体供給用回転継手(図示
せず)及び圧力調整弁(図示せず)を介し外部流体供給
源に接続されエアベアリング11.12及び13への流
体圧の供給圧力開放をpl’ fit:とじている。こ
のように各流体供給穴を回転体の中に形成するととは当
業者には周知の技術である。
The fluid supply hole C is communicated with a fluid supply hole formed in the main shaft 1, which is different from the one with which the fluid supply holes a and b communicate, and is connected to a fluid supply rotary joint (not shown) and a solenoid valve (
It is connected to an external fluid supply source (not shown) via an external fluid supply source (not shown), making it possible to supply fluid pressure to the cylinder chamber C and release the pressure. Further, air bearings 11, 12 are formed in the load piston 4 to supply the load piston 4 and the load cylinder 6 with each other in a freely rotatable and axially slidable manner with a low load. Bearing 11. .. A fluid pressure supply hole d for supplying fluid pressure to the load piston 4 and the chuck mounting plate 2 is formed in the load piston 4 and the chuck mounting plate 2. Further, an air bearing 13 is formed in the clamp ring retaining ring 3 to engage the clamp ring retaining ring 3 and the clamp ring 5 so that the clamp ring retaining ring 3 and the clamp ring 5 can rotate freely and slidably in the axial direction with a low load. A fluid supply hole e for supplying fluid pressure to the core bearings 13, 14 is formed in the chuck mounting plate 2. The fluid supply holes d and θ are communicated with a fluid supply hole formed in a main shaft other than the one with which the fluid supply holes a1b and C are communicated, and are connected to a fluid supply rotary joint (not shown) and a pressure adjustment hole. It is connected to an external fluid supply source through a valve (not shown) to close the supply pressure release of fluid pressure to the air bearings 11, 12 and 13. Forming each fluid supply hole in a rotating body in this manner is a technique well known to those skilled in the art.

前記負荷ピストンの前端にはバッキングプレート7が交
換可能に図示の如く装着してあって、そのボス部15に
被加工玉軸受Wの内輪孔が嵌入しバッキングプレート7
上の座面18に」二記被711工玉軸受Wの内輪の正面
側端面が密接する。また前記負荷シリンダ6の前端には
外筒8が例えば実開昭56−123467に開示された
如き掛止機構によって着脱自在に取付けである。この外
筒8に環状の押工板9が固着してあって前記被加工玉軸
受Wの外輪の背面側端面を押え得るようになっている。
A backing plate 7 is replaceably attached to the front end of the load piston as shown in the figure, and the inner ring hole of the ball bearing W to be machined is fitted into the boss portion 15 of the backing plate 7.
The front end surface of the inner ring of the machined ball bearing W in the second cover 711 is in close contact with the upper seating surface 18. Further, an outer cylinder 8 is detachably attached to the front end of the load cylinder 6 by means of a locking mechanism as disclosed in, for example, Japanese Utility Model Application No. 56-123467. An annular pressing plate 9 is fixed to the outer cylinder 8 so as to be able to press the rear end surface of the outer ring of the ball bearing W to be machined.

この押え板9は弾性材として上記加工玉軸受Wの外輪の
背面側端面を弾性的に押え得るのが好ましい。また前記
バッキングプレート7は前記負荷ピストン4に一体に形
成したものでもよい。
It is preferable that the presser plate 9 is made of an elastic material and can elastically press the rear end surface of the outer ring of the machined ball bearing W. Further, the backing plate 7 may be formed integrally with the load piston 4.

以上の構成になる本発明の装置において被加工玉軸受W
を装着する際突き出し用シリンダ室Aに流体供給穴aを
介し圧力調整されだ流体圧を供給する。これにより負荷
シリンダ6が前方(第3図において右側)に押される。
In the apparatus of the present invention having the above configuration, the ball bearing W to be processed is
When installing the ejection cylinder chamber A, a regulated fluid pressure is supplied to the ejection cylinder chamber A through the fluid supply hole a. This pushes the load cylinder 6 forward (to the right in FIG. 3).

次に被加工玉軸受Wを図示の如くその正面側端面をバッ
キングプレート7に向けて装荷し次にクランプ用シリン
ダ室Cに流体供給穴Cを介し圧力調整した流体を供給し
クランプリング5の端面19をチャック数例板2に押し
付はクランプリング5を回転しないようにし、このクラ
ンプリング5とキー10を介し1体となっている負荷シ
リンダを回転しないようにする。そして被加工玉軸受W
の外輪端面押えリング9と外筒8とを負荷シリンダ6に
掛止する。この掛止方法は実開昭56−126347号
に詳細に述べである。
Next, the ball bearing W to be machined is loaded with its front end face facing the backing plate 7 as shown in the figure, and then pressure-adjusted fluid is supplied to the clamping cylinder chamber C through the fluid supply hole C, and the end face of the clamp ring 5 is 19 is pressed against the chuck plate 2 to prevent the clamp ring 5 from rotating, and to prevent the load cylinder, which is integrated with the clamp ring 5 through the key 10, from rotating. And the ball bearing W to be machined
The outer ring end face pressing ring 9 and the outer cylinder 8 are hooked to the load cylinder 6. This latching method is described in detail in Utility Model Application No. 56-126347.

以上の作業により核力1ピ1瞠I工軸受Wが本研削装置
に装着される。
By the above-mentioned operations, the nuclear force 1-pin 1-hole I-engine bearing W is installed in the present grinding machine.

次に本装置のサイクルスタートボタン(図示せず)を押
下する。このサイクルボタンの押下によりなじませ回転
、差幅の測定、内外輪間への予圧付与及び内輪又は外輪
の研削が以下に述べる順序で自動的に行なわれる。
Next, press the cycle start button (not shown) on the device. When this cycle button is pressed, the following operations are automatically performed in the order described below: smooth rotation, measurement of the difference width, application of preload between the inner and outer rings, and grinding of the inner or outer ring.

サイクルスタートボタンの押下げにより上に述べたクラ
ンプ用シリンダ室Cへの圧力供給が停止しかつ流体穴C
を介しリークしてクランプリング5とチャック取付板2
との間の固着を解除する。常時負荷シリンダ6及びクラ
ンプリング外周支持板3内のエアベアリングに調整され
た流体圧を供給し負荷シリンダ4と負荷ピストン6との
間を低負荷で回転自在及び軸方向に摺動自在にしかつク
ランプリング5とクランプリング外周支持板3との間も
低負荷で回転自在及び軸方向摺動自在になっている。次
に突き出し用シリンダ室A内の圧力を流体供給穴aを介
してリークさせ予圧付与用シリンダ室B内に圧力調整さ
れた低圧(被加工玉軸受にかかる負荷が5乃至20kg
程度となる流体圧71)を供給1〜負荷シリンダ6を左
方に押し、外筒8及び外輪端面押工リング9を介し軸受
の外輪を左方に押し、内輪はバッキングプレート7で支
持されているた(15) め被加工玉軸受の内外輪間に負荷がかかる。
Pressing down the cycle start button stops the pressure supply to the clamp cylinder chamber C mentioned above and closes the fluid hole C.
leaks through the clamp ring 5 and chuck mounting plate 2.
Release the bond between the Adjusted fluid pressure is constantly supplied to the air bearing in the load cylinder 6 and the clamp ring outer peripheral support plate 3, and the load cylinder 4 and the load piston 6 are made rotatable and axially slidable under low load, and are clamped. The ring 5 and the clamp ring outer peripheral support plate 3 are also rotatable and slidable in the axial direction with a low load. Next, the pressure in the ejection cylinder chamber A is leaked through the fluid supply hole a, and the pressure is regulated to a low pressure in the preloading cylinder chamber B (the load on the ball bearing to be machined is 5 to 20 kg).
Supply fluid pressure 71) to push the load cylinder 6 to the left, push the outer ring of the bearing to the left via the outer cylinder 8 and the outer ring end pressing ring 9, and the inner ring is supported by the backing plate 7. (15) A load is applied between the inner and outer rings of the ball bearing being machined.

そこで主軸を低速(200rpm程度)で回転させる。Therefore, the main shaft is rotated at a low speed (about 200 rpm).

このとき、被加工玉軸受の内輪、バッキングプレート7
、負荷ピストン4、チャック取付板2及び主軸1(以下
内輪)は一体となり同心軸で回転しそして被加工玉軸受
の外輪、外輪押工板9、外筒8、負荷シリンダ6、及び
クランプリング5(以下外輪)は内輪とはエアベアリン
グにより低負荷で回転自在に係合されているため慣性に
より内輪におくれで廻り出し外輪と内輪との間で相対回
転しそしてその結果内輪、外輪夫々と一体回転している
被加工玉軸受の内輪と外輪との間に相対回転が生じる。
At this time, the inner ring of the ball bearing to be processed, the backing plate 7
, the load piston 4, the chuck mounting plate 2, and the main shaft 1 (hereinafter referred to as the inner ring) are integrally rotated on a concentric axis, and the outer ring of the ball bearing to be processed, the outer ring pressing plate 9, the outer cylinder 8, the load cylinder 6, and the clamp ring 5 The outer ring (hereinafter referred to as the outer ring) is engaged with the inner ring so that it can rotate freely under low load through an air bearing, so it rotates behind the inner ring due to inertia, rotates relative to the outer ring and the inner ring, and as a result, the inner ring and outer ring are integrated with each other. Relative rotation occurs between the inner ring and outer ring of the rotating workpiece ball bearing.

これによりなじませ回転が行なわれる。This performs a blending rotation.

一定時間主軸1を低速で回転させた後クランプ用シリン
ダ室Cに流体供給穴Cを介し調整された流体圧力を供給
しクランプリング5の端面19をチャック取付板に押し
つけ、この押し付は面の摩擦力により内輪と外輪とは(
16) 一体となって回転する。
After rotating the main shaft 1 at a low speed for a certain period of time, the adjusted fluid pressure is supplied to the clamping cylinder chamber C through the fluid supply hole C to press the end surface 19 of the clamp ring 5 against the chuck mounting plate. Due to frictional force, the inner ring and outer ring (
16) Rotates as one.

次にシリンダ室Bに流体供給穴bX L+’を介し調整
された高い流体圧力(被加工玉軸受の内外輪間に必要な
大きさの負荷が作用する圧力)を供給し被加工玉軸受の
内外輪間に予圧を付与、する。
Next, a regulated high fluid pressure (pressure that applies a load of the required magnitude between the inner and outer rings of the ball bearing to be machined) is supplied to the cylinder chamber B through the fluid supply hole b Apply preload between the wheels.

次に測定器16を自動的に図示の如く被加工玉軸受の内
輪及び外輪の端面に接触させ端面位置を測定しはじめる
。研削を行う際、本発明の装置では以下に述べる方法を
用いている。
Next, the measuring instrument 16 is automatically brought into contact with the end faces of the inner ring and outer ring of the ball bearing to be machined as shown in the figure, and the position of the end faces begins to be measured. When performing grinding, the apparatus of the present invention uses the method described below.

第4図に研削方法のフローチャート図が示しである。第
4図においてGA、GB  は被加工玉軸受Wの内輪及
び外輪端面の測定器16による測定値である。GJ、G
Bはアナログ値であるだめ計算処理を容易ならしめるた
めデジタル値にA−D変換器を用いて変換する。
FIG. 4 shows a flowchart of the grinding method. In FIG. 4, GA and GB are values measured by the measuring device 16 of the inner ring and outer ring end faces of the ball bearing W to be machined. G.J., G.
Since B is an analog value, it is converted to a digital value using an AD converter to facilitate calculation processing.

上で述べたように測定器16が被加工玉軸受Wの内輪及
び外輪の端面に接触した後内輪及び外輪が1回転してい
る間GAXGllを測定し、一定微少時間ごとにQA及
びG8をサンプリングしそのサンプリング値をディジタ
ル化して1回転毎に平均値をとる。ここで1回転の検知
は近接スイッチにより行う。このことは第5図に示しで
ある。微少時間毎に測定しだGA及びGBがGAIXG
A2、− GAn XG11l I GB2、・−QB
nとすると求める平均値GA及びG 17 FiGAI
 +GA2− G’n/n XGB1+GII2 ・−
GBn/nとなる。この平均値GA及びQ/jをワーク
ヘッド1回転毎に算出しそして平均値間の差Qip =
Qt+−Qiも1回転毎に算出する。この算出さJLだ
GAVにもとすき研削砥石の送りliを定め軸受の内輪
端面を研削する。
As described above, after the measuring device 16 contacts the end surfaces of the inner ring and outer ring of the ball bearing W to be machined, GAXGll is measured while the inner ring and outer ring are making one revolution, and QA and G8 are sampled at regular minute intervals. The sampled values are digitized and the average value is taken every rotation. Here, one rotation is detected by a proximity switch. This is illustrated in FIG. GA and GB are measured every minute time and are GAIXG.
A2, -GAn XG11l I GB2, -QB
When n is the average value GA and G 17 FiGAI
+GA2- G'n/n XGB1+GII2 ・-
GBn/n. These average values GA and Q/j are calculated for each rotation of the work head, and the difference between the average values Qip =
Qt+-Qi is also calculated for each rotation. Based on this calculated JL and GAV, the feed li of the grinding wheel is determined and the inner ring end face of the bearing is ground.

このように本装置において端面位置を平均化することに
より、バッキングプレートにより支持されていない非研
削面(第3図の実施例においては外輪端面)が大きくふ
れ測定誤差を大きく含み差幅精度力(向上しないという
欠点を解消することができた。また本装置の研削には荒
研削と仕上げ研削との2種類有り(19) 第4図のフローチャート図の後段に示す如く平均値QA
Vがある一定の値γ以上であるときは荒研削送り速度で
研削し正がγより小さくなった時点で仕上げ研削量りに
送り速度を変更し仕上げ研削を行ない、さらに扉がある
一定値δより小さくなった時点で研削砥石送りを停止し
て、スパークアウト研削で研削を続行しGAV≦ε(ε
は所望の差幅値)となった時点で研削砥石17を被加工
玉軸受より離脱させかつ測定器16も内輪及び外輪の端
面より自動的に取りはずし研削終了ランプ(図示せず)
を点灯し装置を停止する。
By averaging the end face positions in this device in this way, the non-ground surface that is not supported by the backing plate (the outer ring end face in the embodiment shown in Fig. 3) has a large runout, which causes a large measurement error and the difference in width accuracy ( We were able to eliminate the drawback of not improving the performance.Also, there are two types of grinding with this device: rough grinding and finish grinding.(19) As shown in the latter half of the flow chart in Figure 4, the average value
When V is above a certain value γ, grinding is performed at the rough grinding feed rate, and when the positive becomes smaller than γ, the feed rate is changed to the finish grinding rate and finish grinding is performed, and furthermore, the door is lower than the constant value δ. When the size becomes smaller, stop the grinding wheel feed and continue grinding with spark-out grinding until GAV≦ε(ε
When the desired difference width value is reached, the grinding wheel 17 is removed from the ball bearing to be machined, and the measuring device 16 is also automatically removed from the end faces of the inner and outer rings, and a grinding completion lamp (not shown) is displayed.
lights up and stops the device.

ここにおいて内輪端面の平面位置の算出はバッキングプ
レートにより1方に押しつけられ固定されているのでふ
れ廻りが小さく平均値を算出せずに瞬間値を用いてもよ
い。以上により被加工玉軸受Wの差幅の自動研削は終了
する。次に被加工玉軸受Wを装置より取りはずす。
Here, the planar position of the inner ring end face can be calculated by using an instantaneous value without calculating an average value because the inner ring end face is pressed and fixed in one direction by the backing plate, so there is little wobbling. With the above steps, the automatic grinding of the difference width of the ball bearing W to be machined is completed. Next, the ball bearing W to be processed is removed from the device.

さらに第6図に示す実施例は正面差幅を−(20) 定にするだめの彼方1ビ[玉軸受の外輪端面を研削する
研削装置である。第6図に示しである。
Furthermore, the embodiment shown in FIG. 6 is a grinding device for grinding the outer ring end face of a 1-bit ball bearing in order to set the frontal difference width to -(20). This is shown in FIG.

さらに本発明の装置を研削装置としてではなく玉軸受の
内輪又は外輪の測定のみを行なう測定装置として使用す
ることも可能である。
Furthermore, it is also possible to use the device of the present invention not as a grinding device but as a measuring device for measuring only the inner ring or outer ring of a ball bearing.

叙述のごとく、本発明の装置はなじませ回転測定及び研
削を自動的にかつ連続的に行ない作業工程数をすくなく
しかつ測定しながら研削するため、差幅精度の高い軸受
の大量生産を可能とする。また、作業が自動化されてい
るため非熟練者でも高精度な加工が可能である。さらに
被加工玉軸受に所定の予圧を付与したままの状態で背面
幅を調整研削できるのでより実際の使用状態に応じた加
工が可能となり圧力調整により予圧が容易に変更可能で
ありかつ加工中に被加工玉軸受の内外輪は一体回転であ
って相t1的な動きがなく軸受軌道面や転動体(球)を
砥石の脱落粉等によって損傷することがないから、加工
前後において軸受精度が変化せず前記の如き面倒な工程
管理の必要もなく精密アンギュラ玉軸受のコスト低減、
生産性向上、精度向上に多大な効果を有する。さらに軸
受の使用上では内外輪間にスペーサを入れて差幅調整を
行う方法もあるが、その場合スペーサを同一寸法に製作
すればよいのでそのような調整用スペーサは不要となる
As described above, the device of the present invention automatically and continuously performs measurement of rotation and grinding to reduce the number of work steps, and grinds while measuring, making it possible to mass produce bearings with high precision in differential width. do. Furthermore, since the work is automated, even unskilled workers can perform highly accurate processing. Furthermore, the back width can be adjusted and ground while applying a predetermined preload to the ball bearing to be machined, making it possible to perform machining more suited to the actual usage conditions.The preload can be easily changed by adjusting the pressure, and during machining. The inner and outer rings of the ball bearing to be machined rotate as one unit, and there is no phase t1 movement, so the bearing raceway surface and rolling elements (balls) are not damaged by falling particles from the grindstone, etc., so the bearing accuracy changes before and after machining. Reduces the cost of precision angular contact ball bearings without the need for troublesome process control as described above.
It has a great effect on improving productivity and accuracy. Furthermore, when using a bearing, there is a method of inserting a spacer between the inner and outer rings to adjust the width difference, but in that case, the spacers need only be manufactured to the same dimensions, so such an adjustment spacer is not necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は玉軸受における差幅の説明図;第2図は玉軸受
の背面組合わせ状態の説明図; 第3図は本発明に従う研削盤のワークヘッド説明図、 第4図は本発明に従う研削量及び研削方法を示すフロー
チャート図、 第5図は本発明に従う被加工玉軸受の内輪、外輪の平均
値算出の説明図、 第6図は本発明に従う別の実施例の説明図、〔主要部分
の符号の説明〕 内輪回転部材・・・・・・1.2.3.4.7.15外
輪回転部材・・・・・・5.6.8.9回転自在に係合
する手段・・・・・・11.12.13切換える手段・
・・・・・C,c 出願人 日本精工株式会社 (23) 第1図 第2図
Fig. 1 is an explanatory diagram of the difference width in ball bearings; Fig. 2 is an explanatory diagram of the back-to-back combination of ball bearings; Fig. 3 is an explanatory diagram of the work head of a grinding machine according to the present invention; Fig. 4 is an explanatory diagram of the work head according to the present invention A flowchart showing the amount of grinding and the grinding method. FIG. 5 is an explanatory diagram of calculating the average value of the inner ring and outer ring of a ball bearing to be machined according to the present invention. FIG. 6 is an explanatory diagram of another embodiment according to the present invention. Explanation of part symbols] Inner ring rotating member...1.2.3.4.7.15 Outer ring rotating member...5.6.8.9 Means for rotatably engaging ...11.12.13 Switching means・
...C, c Applicant NSK Ltd. (23) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1゜ 玉軸受組立品の内外輪間に一定のアキシャル方向
負荷を付与し 前記内外輪の夫々の平面位置を検出し 前記検出した値に基すき研削すべき量を算出し 内外輪のいずれかの一方の平面を前記研削すべき量だけ
研削し内輪と外輪との平面位置の差を所定の値になるよ
うにする玉軸受研削方法において 研削中破加工玉軸受1回転毎に内外輪の夫々の各平面位
置の平均値を算出し前記平均値にもとすき研削すべき量
を算出し研削することを特徴とする玉軸受研削方法。 2、特許請求の範囲第1項記載の玉軸受研削方法におい
て 前記平均値にもとすき研削すべき量を算出する際、非研
削面の平面位置の平均値と研削すべき面の瞬間平面位置
の検出値との差に基すいて研削量を算出することを特徴
とする玉軸受研削力F、!e。 3、特許請求の範囲第1項記載の玉軸受研削方法におい
て 前記平均値に基すき研削すべき量を算出する際、内輪及
び外輪の夫々の平面位置の夫々の平均値間の差に基すい
て研削すべき量を算出することを特徴とする玉軸受研削
方法。 4、玉軸受組立品の内外輪間に研削中一定のアキシャル
方向負荷を付与する手段を含む玉軸受研削装置において 玉軸受の内輪と1体で回転する内輪回転部材と 玉軸受の外輪と1体でかつ前記内輪回転部口と同心で回
転する外輪回転部材と;前記内輪回転部材と前記外輪回
転部材とを低負荷で回転自在に係合する手段と;前記内
輪回転部材と前記外輪回転部材とを1体で回転させるか
別々に回転させるかを切換える手段と;を含み 前記切換える手段で前記内輪回転部材と前記外輪回転部
材とを別々に回転できるようにし、前記負荷を伺与する
手段により内外輪間に一定のアキシャル方向負荷を付与
し、前記内輪回転部材及び前記外輪回転部材のいずれか
一方のみ回転し前記内輪回転部材と前記外輪回転部材と
を相対回転させ、以って玉軸受の内輪及び外輪を互に相
対回転し、なじませ次に前記内輪回転部材と前記外輪回
転部材とを前記切換え手段を切換えることにより1体と
して回転し軸受の内輪又は外輪のいずれか一方を研削す
ることを特徴とする玉軸受研削装置。 5 特許請求の範囲第4項記載の玉軸受研削装置におい
て 前記係合する手段がエアベアリングであることを特徴1
1する玉軸受研削装置。
[Claims] 1° A constant axial load is applied between the inner and outer rings of a ball bearing assembly, the plane positions of the inner and outer rings are detected, and the amount to be ground is calculated based on the detected values. In a ball bearing grinding method in which one of the flat surfaces of the inner and outer rings is ground by the amount to be ground so that the difference in plane position between the inner ring and the outer ring becomes a predetermined value, every rotation of a partially ground ball bearing is performed. A method for grinding a ball bearing, characterized in that the average value of each plane position of the inner and outer rings is calculated, and the amount to be ground is calculated and ground based on the average value. 2. In the ball bearing grinding method according to claim 1, when calculating the amount to be ground based on the average value, the average value of the plane position of the non-grinded surface and the instantaneous plane position of the surface to be ground A ball bearing grinding force F, which is characterized by calculating the amount of grinding based on the difference between the detected value and the detected value. e. 3. In the ball bearing grinding method according to claim 1, when calculating the amount to be ground based on the average value, the amount to be ground is calculated based on the difference between the respective average values of the planar positions of the inner ring and the outer ring. A ball bearing grinding method characterized by calculating the amount of grinding to be performed. 4. In a ball bearing grinding device that includes means for applying a constant axial load between the inner and outer rings of a ball bearing assembly during grinding, an inner ring rotating member that rotates as one unit with the inner ring of the ball bearing and an outer ring of the ball bearing. an outer ring rotating member that rotates concentrically with the inner ring rotating portion opening; means for rotatably engaging the inner ring rotating member and the outer ring rotating member with a low load; the inner ring rotating member and the outer ring rotating member; means for switching whether to rotate the inner ring rotating member and the outer ring rotating member separately; A constant axial load is applied between the rings, and only one of the inner ring rotating member and the outer ring rotating member rotates, thereby causing the inner ring rotating member and the outer ring rotating member to rotate relative to each other, thereby reducing the inner ring of the ball bearing. and the outer rings are rotated relative to each other so that they become familiar, and then the inner ring rotating member and the outer ring rotating member are rotated as one body by switching the switching means to grind either the inner ring or the outer ring of the bearing. Features of ball bearing grinding equipment. 5. The ball bearing grinding device according to claim 4, characterized in that the engaging means is an air bearing.
1 ball bearing grinding device.
JP57050922A 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing Granted JPS58171258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050922A JPS58171258A (en) 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050922A JPS58171258A (en) 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing

Publications (2)

Publication Number Publication Date
JPS58171258A true JPS58171258A (en) 1983-10-07
JPS6247668B2 JPS6247668B2 (en) 1987-10-08

Family

ID=12872286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050922A Granted JPS58171258A (en) 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing

Country Status (1)

Country Link
JP (1) JPS58171258A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046747A (en) * 2008-08-21 2010-03-04 Okamoto Machine Tool Works Ltd Jig for grinding bearing
JP2010052087A (en) * 2008-08-28 2010-03-11 Okamoto Machine Tool Works Ltd Bearing grinding tool
CN103692302A (en) * 2013-12-23 2014-04-02 河南金鑫精密轴承制造有限公司 Precision angular contact ball bearing excircle grinding process
CN104191334A (en) * 2014-07-01 2014-12-10 宁波固特轴承有限公司 Bearing outer ring groove grinding process
WO2019163799A1 (en) * 2018-02-23 2019-08-29 Ntn株式会社 Grinding system and grinding method
CN112828741A (en) * 2019-11-22 2021-05-25 浙江翔宇密封件有限公司 Bearing grinding assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018358A1 (en) * 2012-08-20 2014-02-20 Liebherr-Verzahntechnik Gmbh tooling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046747A (en) * 2008-08-21 2010-03-04 Okamoto Machine Tool Works Ltd Jig for grinding bearing
JP2010052087A (en) * 2008-08-28 2010-03-11 Okamoto Machine Tool Works Ltd Bearing grinding tool
CN103692302A (en) * 2013-12-23 2014-04-02 河南金鑫精密轴承制造有限公司 Precision angular contact ball bearing excircle grinding process
CN104191334A (en) * 2014-07-01 2014-12-10 宁波固特轴承有限公司 Bearing outer ring groove grinding process
WO2019163799A1 (en) * 2018-02-23 2019-08-29 Ntn株式会社 Grinding system and grinding method
CN112828741A (en) * 2019-11-22 2021-05-25 浙江翔宇密封件有限公司 Bearing grinding assembly
CN112828741B (en) * 2019-11-22 2021-12-21 浙江翔宇密封件有限公司 Bearing grinding assembly

Also Published As

Publication number Publication date
JPS6247668B2 (en) 1987-10-08

Similar Documents

Publication Publication Date Title
CN104942699B (en) Grinding device and grinding method
JPS58171258A (en) Method and apparatus for grinding ball bearing
CN205927207U (en) Fixed turning attachment
CN114670085A (en) Machining fixture and machining method for plug valve seat
JPH077086Y2 (en) Equipment for grinding and lapping packing surfaces such as sliding valves in place or at the factory
US4468158A (en) Inplace ball valve repair apparatus
CN207952976U (en) A kind of automatic rotating and clamping device of precision steel product
JPH09234655A (en) Taper matching jig for re-grinding taper hole
CN102513834B (en) Method for assembling high-precision rotary worktable of vertical milling-turning center
US20140141697A1 (en) Tool and method for machining a dovetail
CN112935949A (en) Valve fine conical surface grinding machine
JP4147387B2 (en) Super finishing device for ball bearing race
JPS6156048B2 (en)
US2688826A (en) Method and means for preparing true surfaces
JP3330722B2 (en) Processing method of turbine blade blade root
WO1995021728A1 (en) Method and apparatus for correcting diametrical taper on a workpiece
JPH06262620A (en) Blade deflection detecting method and device for slicing device and blade deflection control device
CN215092486U (en) Valve fine conical surface grinding machine
JP2748569B2 (en) Grinding method
CN214080871U (en) Vacuum chuck clamping main shaft and wafer thinning machine
JPS626951B2 (en)
JP2000042867A (en) Rotary positioning device
JP2003311610A (en) Grinder, and grinding method using it
CN203918782U (en) Equipment for grinding
JPS6311282A (en) Diamond or cbn wheel