JPS6247668B2 - - Google Patents

Info

Publication number
JPS6247668B2
JPS6247668B2 JP57050922A JP5092282A JPS6247668B2 JP S6247668 B2 JPS6247668 B2 JP S6247668B2 JP 57050922 A JP57050922 A JP 57050922A JP 5092282 A JP5092282 A JP 5092282A JP S6247668 B2 JPS6247668 B2 JP S6247668B2
Authority
JP
Japan
Prior art keywords
inner ring
outer ring
ball bearing
ring
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57050922A
Other languages
Japanese (ja)
Other versions
JPS58171258A (en
Inventor
Hideo Matsuhashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP57050922A priority Critical patent/JPS58171258A/en
Publication of JPS58171258A publication Critical patent/JPS58171258A/en
Publication of JPS6247668B2 publication Critical patent/JPS6247668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

【発明の詳細な説明】 発明利用分野 本発明は玉軸受の研削装置に係り特に玉軸受の
内輪又は外輪の端面を調整研削する装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a ball bearing grinding device, and more particularly to a device for adjusting and grinding the end face of an inner ring or an outer ring of a ball bearing.

発明の背景及び従来の技術 玉軸受は転がり軸受の中で最も代表的な軸受で
あり一般には2つ以上組合せて用いられている。
この組合せの際軸のラジアル方向およびアキシヤ
ル方向の位置決めを正確にすると共に軸の振れを
抑えるため、軸受の剛性を高めるため、軸方向の
振動および共振による異音を防止するため及び軌
道輪に対して転動体を正しい位置に保つため等の
目的のため軸受を組付けたとき、軸受内にあらか
じめ内部応力を発生させることがある。このよう
な使い方を予圧法という。組合わせ軸受の予圧法
には定位置予圧法があり、この方法は対向した軸
受の軸方向の相対位置が軸受使用中にも変化しな
い方法である。この定位置予圧法により軸受を組
合せ、締結させるためには軸受を実際に使用する
予圧を付与したとき軸受の内輪と外輪との端面位
置が一致するように製作しなければならない。し
かし一般に玉軸受は外輪、内輪及び転動体が別々
に製造され製造された外輪、内輪及び転動体を組
合わせて製作されている。製造された外輪、内輪
及び転動体はそれぞれ製作精度が異つているため
組合わされた軸受も組立精度がバラツキ、それは
特に軸受の内輪の端面位置と外輪の端面位置間の
距離(以下差幅という)において大きい。しかし
高い精度が要求される玉軸受においては軸受の差
幅精度のバラツキは致命的な欠陥となる。そこで
従来より差幅精度を向上させるため以下の方法に
より内輪又は外輪の端面を調整研削していた。そ
れぞれ別々に製造した内輪、外輪及び転動体を玉
軸受として組合わせてから内輪、外輪間に一定の
予圧(約5乃至10Kg程度)をかけながら手動で内
輪及び外輪を相対的に回転し転動体の内外輪に対
する位置を安定化させ(以下なじませ回転とい
う)る。
BACKGROUND OF THE INVENTION AND PRIOR ART Ball bearings are the most typical type of rolling bearings, and two or more are generally used in combination.
This combination is used to accurately position the shaft in the radial and axial directions, to suppress shaft runout, to increase the rigidity of the bearing, to prevent abnormal noise due to axial vibration and resonance, and to prevent vibrations from the bearing ring. When a bearing is assembled for purposes such as keeping the rolling elements in the correct position, internal stress may be generated in the bearing in advance. This type of usage is called the preload method. There is a fixed position preloading method as a preloading method for a combination bearing, and this method is a method in which the relative positions of opposing bearings in the axial direction do not change even when the bearings are in use. In order to assemble and fasten bearings using this fixed position preload method, the bearings must be manufactured so that the end faces of the inner ring and outer ring are aligned when the preload is applied to the bearing in actual use. However, ball bearings are generally manufactured by combining an outer ring, an inner ring, and rolling elements that are manufactured separately and then assembled together. Because the manufactured outer ring, inner ring, and rolling elements each have different manufacturing precision, the assembled bearing also has variations in assembly precision.This is particularly due to the distance between the end face position of the inner ring and the end face position of the outer ring (hereinafter referred to as the difference width). Large in size. However, in ball bearings that require high precision, variations in bearing differential width precision are a fatal flaw. Therefore, conventionally, in order to improve the width difference accuracy, the end face of the inner ring or outer ring has been adjusted and ground by the following method. After combining the inner ring, outer ring, and rolling elements manufactured separately into a ball bearing, the inner ring and outer ring are manually rotated relative to each other while applying a certain preload (approximately 5 to 10 kg) between the inner ring and outer ring to form the rolling elements. The position of the wheel relative to the inner and outer rings is stabilized (hereinafter referred to as blending rotation).

このなじませ回転を行なつたのち、前記一定の
予圧を内輪、外輪間にかけながら内輪、及び外輪
の各端面位置を測定しその測定値にもとずき実際
の使用の際の予圧をかけた際差幅がゼロとなるよ
うに研削すべき量を算出し、この算出された値だ
け指定された面を熟練工がロータリー研削盤で手
動研削していた。そして手動研削ののち再び軸受
の内輪及び外輪の端面位置を測定し差幅が所定の
範囲内にあるかどうかを調べ、測定した差幅が所
定の範囲内にないときは再び上に述べた方法で研
削を繰返していた。
After performing this familiarization rotation, the position of each end face of the inner ring and outer ring was measured while applying the above-mentioned constant preload between the inner ring and outer ring, and based on the measured values, the preload for actual use was applied. The amount of grinding that should be done so that the difference width is zero is calculated, and a skilled worker uses a rotary grinder to manually grind the designated surface by this calculated value. After manual grinding, the end face positions of the inner and outer rings of the bearing are measured again to check whether the difference width is within the predetermined range. If the measured difference width is not within the predetermined range, repeat the method described above. Grinding was repeated.

しかしこの方法では作業工程が、手動のなじま
せ回転、手動による内輪及び外輪の端面位置の測
定、研削すべき量の算出、熟練工による研削等と
多いため生産効率が悪く又位置の測定、研削すべ
き量の算出、及び研削が人手に頼つているため作
業能率がわるく研削作業には熟練を必要とすると
いう欠点があり、かつ作業が人手に頼つているた
め高精度が望めずさらに研削の際軸受をロータリ
ーテーブルにマグネツトチヤツクするため軸受が
磁化し脱磁が必要となるが組立状態における完全
なる脱磁はむずかしいという欠点があつた。
However, this method has poor production efficiency as it involves many work processes such as manual rotation for smoothing, manual measurement of the end face positions of the inner and outer rings, calculation of the amount to be ground, and grinding by skilled workers. Since calculation of the desired amount and grinding are dependent on manual labor, work efficiency is low and grinding work requires skill. Since the bearing is magnetically chucked to the rotary table, the bearing becomes magnetized and must be demagnetized, but it has the disadvantage that complete demagnetization is difficult in the assembled state.

発明の目的 本発明の目的は上記欠点を解消すべく上に述べ
た各工程すべてを自動化しかつ計算機を利用して
連続的に行ない得る自動研削装置を提供すること
による。この自動研削装置を用いることにより容
易に差幅精度の高い玉軸受の大量生産が可能とな
る。本発明の目的は従人手により種々に分割して
行なつていた玉軸受の差幅精度向上のための作業
を自動化、連続化することにより生産効率の向
上、差幅精度向上、品質の均一化を可能にする玉
軸受研削装置を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide an automatic grinding device that can automate all of the above-mentioned steps and continuously perform them using a computer in order to eliminate the above-mentioned drawbacks. By using this automatic grinding device, it becomes possible to easily mass-produce ball bearings with high precision in differential width. The purpose of the present invention is to automate and serialize the work to improve the precision of the difference width of ball bearings, which was previously done in various parts by workers, thereby improving production efficiency, improving the precision of the difference width, and making quality uniform. The purpose of the present invention is to provide a ball bearing grinding device that enables the following.

本発明においては、従来自動化困難とされてい
たなじませ回転を自動化することを特徴とする。
The present invention is characterized by automating the blending rotation, which has been considered difficult to automate in the past.

さらに本発明においては、玉軸受の内輪、外輪
間に一定の予圧を加えながら研削できる装置を備
えていることを特徴とする。
Furthermore, the present invention is characterized in that it includes a device that can grind the ball bearing while applying a constant preload between the inner ring and the outer ring.

さらに本発明においては、玉軸受の内輪及び外
輪の端面位置を求める際端面位置の測定値をデイ
ジタルサンプリングし、かつ内輪及び外輪の端面
位置をワークヘツド1回転毎に平均して求めるこ
とを特徴とする。
Furthermore, the present invention is characterized in that when determining the end face positions of the inner ring and outer ring of the ball bearing, the measured values of the end face positions are digitally sampled, and the end face positions of the inner ring and outer ring are determined by averaging each rotation of the work head. .

さらに本発明においては軸受の内輪又は外輪の
端面の研削の際同時に内輪及び外輪の端面位置を
測定し、目標値に対しワーク1回転毎の平均値を
算出する間のみオープンループで研削を行うこと
を特徴とする。
Furthermore, in the present invention, when grinding the end face of the inner ring or outer ring of the bearing, the end face positions of the inner ring and outer ring are simultaneously measured, and the grinding is performed in an open loop only while the average value for each rotation of the workpiece is calculated with respect to the target value. It is characterized by

さらに本発明においてはその他多くの特徴を有
するがそれ等は図示した一実施例について説明す
る以下の記述より明らかになるものと思われる。
Furthermore, the present invention has many other features which will become apparent from the following description of the illustrated embodiment.

実施例の説明 差幅の説明 第1図は本発明の玉軸受研削装置で研削する玉
軸受で図に示すδが差幅である。第2図は第1図
に示す玉軸受を2つ背面組合わせしている状態を
示してありこの軸受の差幅は各々δapである。こ
のような状態で組合わせ軸受の内輪を軸方向にF
apの力で締付けると軸受イ,ロはそれぞれδap
け変化して内輪間のすきま2δapがなくなる。こ
の状態においては軸受にFapの予圧がかかつたこ
とになる。さらにこれ以上Fapを増加しても軸受
にかかる予圧量は増加しない。又予圧量を必要以
上大きくすると異常発熱、摩擦モーメントの増
大、疲れ寿命の低下を招くので予圧量を適正に定
めることが必要となつてくる。そしてその予圧量
は上に述べたように差幅寸法に依存していため差
幅の寸法精度を向上することが必要となる。
Description of Examples Explanation of Difference Width FIG. 1 shows a ball bearing ground by the ball bearing grinding device of the present invention, and δ shown in the figure is the difference width. FIG. 2 shows a state in which two ball bearings shown in FIG. 1 are assembled back to back, and the difference width of each bearing is δ ap . In this condition, the inner ring of the combination bearing is axially F.
When tightened with a force of ap , bearings A and B each change by δ ap , and the clearance 2δ ap between the inner rings disappears. In this state, a preload of F ap is applied to the bearing. Furthermore, even if F ap is increased further, the amount of preload applied to the bearing will not increase. Furthermore, if the amount of preload is increased more than necessary, it will cause abnormal heat generation, an increase in frictional moment, and a decrease in fatigue life, so it is necessary to set the amount of preload appropriately. Since the amount of preload depends on the width difference as described above, it is necessary to improve the dimensional accuracy of the width difference.

第3図は本発明の装置における被加工玉軸受を
装着するワークヘツドを示している。符号1は主
軸でありその中には流体の流体供給穴が4本別々
に形成してある。各流体供給穴にそれぞれ流体を
供給できるように流体供給用回転継手(図示せ
ず)を主軸1に装着してある。さらにその回転継
手の他端には電磁弁(図示せず)を介し外部の流
体供給源を接続してある。この電磁弁の切換によ
り各流体供給穴へ流体の圧力供給圧力開放、及び
圧力の切換えを可能としている。
FIG. 3 shows a work head in which a ball bearing to be machined is mounted in the apparatus of the present invention. Reference numeral 1 denotes a main shaft in which four fluid supply holes are separately formed. A fluid supply rotary joint (not shown) is attached to the main shaft 1 so that fluid can be supplied to each fluid supply hole. Furthermore, an external fluid supply source is connected to the other end of the rotary joint via a solenoid valve (not shown). By switching this solenoid valve, it is possible to release the fluid pressure to each fluid supply hole and to switch the pressure.

この主軸の前面(第3図においては右側)には
チヤツク取付板2が取り付けてある。さらにチヤ
ツク取付板2の前面には図示の如くクランプリン
グ5を保持するためのクランプリング保持用リン
グ3と、被加工玉軸受の内輪、外輪間に予圧をか
けるための負荷ピストン4とが取り付けてある。
予圧をかける方法は実開昭56−126347号に詳細に
説明してある。
A chuck mounting plate 2 is attached to the front surface (on the right side in FIG. 3) of this main shaft. Furthermore, as shown in the figure, a clamp ring holding ring 3 for holding a clamp ring 5 and a load piston 4 for applying preload between the inner ring and outer ring of the ball bearing to be machined are attached to the front surface of the chuck mounting plate 2. be.
The method of applying preload is explained in detail in Utility Model Application No. 126347/1983.

負荷シリンダ6は低負荷で回転自在にかつ軸方
向に摺動自在に相対運動のできるエアベアリング
で負荷ピストンの外側に係合されている。クラン
プリング5は軸方向に摺動自在でありかつ回転方
向には1体回転するようなキー手段10で負荷シ
リンダに係合されそしてクランプリング保持用リ
ング3と低負荷で回転自在でかつ軸方向に摺動自
在なエアベアリング13でクランプリング保持用
リング3の内側に係合してある。さらに負荷シリ
ンダ6とチヤツク取付板2とにより図示の如く被
加工玉軸受の装置への装着、取りはずしの際に使
用する突き出し用シリンダ室Aを形成し、このシ
リンダ室Aに流体圧を供給するための流体供給穴
aをチヤツク取付板2に形成してある。そしてこ
の流体供給穴aは前記主軸1に形成した4本の流
体供給穴の1つに連通され、流体供給用回転継手
(図示せず)及び電磁弁(図示せず)を介し外部
流体圧供給源(図示せず)と接続され、シリンダ
室Aへの流体圧の供給及び圧力開放を可能として
いる。
The load cylinder 6 is engaged with the outside of the load piston by means of an air bearing capable of relative movement such that it can freely rotate and slide freely in the axial direction under a low load. The clamp ring 5 is slidable in the axial direction and is engaged with the load cylinder by a key means 10 that rotates as one unit in the rotation direction, and is connected to the clamp ring retaining ring 3 to be freely rotatable under low load and in the axial direction. The clamp ring retaining ring 3 is engaged with the inside of the clamp ring retaining ring 3 by an air bearing 13 which is slidable therein. Furthermore, the load cylinder 6 and the chuck mounting plate 2 form an ejection cylinder chamber A, which is used when installing and removing a ball bearing to be machined from the device, as shown in the figure, and a cylinder chamber A for supplying fluid pressure to this cylinder chamber A. A fluid supply hole a is formed in the chuck mounting plate 2. This fluid supply hole a is communicated with one of the four fluid supply holes formed in the main shaft 1, and external fluid pressure is supplied via a fluid supply rotary joint (not shown) and a solenoid valve (not shown). It is connected to a power supply (not shown) and enables supply of fluid pressure to the cylinder chamber A and release of the pressure.

また負荷シリンダ6と負荷ピストン4とにより
図示の如く、被加工玉軸受の内輪、外輪に予圧を
付与するための予圧付与用シリンダ室Bを形成
し、このシリンダ室Bに流体圧を供給するための
流体供給穴bを負荷ピストン4内に形成してあ
る。そしてこの流体供給穴bは前記主軸1に形成
した流体供給穴aが連通しているものとは別の1
つの流体供給穴に連通され流体供給用回転継手
(図示せず)及び電磁弁及び圧力調整弁(図示せ
ず)を介し外部流体供給源(図示せず)と接続さ
れ、シリンダ室Bへの流体圧の高圧供給、低圧供
給及び圧力開放を可能としている。
In addition, as shown in the figure, the load cylinder 6 and the load piston 4 form a preload applying cylinder chamber B for applying preload to the inner ring and outer ring of the ball bearing to be machined, and to supply fluid pressure to this cylinder chamber B. A fluid supply hole b is formed in the load piston 4. This fluid supply hole b is different from the one with which the fluid supply hole a formed in the main shaft 1 communicates.
It is connected to an external fluid supply source (not shown) through a fluid supply rotary joint (not shown), a solenoid valve, and a pressure regulating valve (not shown), and is connected to an external fluid supply source (not shown) to supply fluid to cylinder chamber B. It enables high pressure supply, low pressure supply and pressure release.

クランプリング5とクランプリング保持用リン
グ3とにより軸受の内輪と外輪とを一体で回転さ
せたり、別々に回転させたりの切換のためのクラ
ンプ用シリンダ室Cが形成され、このシリンダ室
Cに流体圧を供給するための流体供給穴cをクラ
ンプリング保持用リング3及びチヤツク取付板2
内に形成してある。そしてこの流体供給穴cは流
体供給穴a,bが連通しているものとは別の主軸
1に形成された流体供給穴に連通され流体供給用
回転継手(図示せず)及び電磁弁(図示せず)を
介し外部流体供給源(図示せず)に接続され、シ
リンダ室Cへの流体圧の供給、圧力開放を可能と
している。
The clamp ring 5 and the clamp ring holding ring 3 form a clamp cylinder chamber C for switching between rotating the inner and outer rings of the bearing together or separately. The fluid supply hole c for supplying pressure is connected to the clamp ring holding ring 3 and the chuck mounting plate 2.
It is formed inside. The fluid supply hole c is connected to a fluid supply hole formed in the main shaft 1, which is different from the one with which the fluid supply holes a and b are connected, and is connected to a fluid supply rotary joint (not shown) and a solenoid valve (not shown). It is connected to an external fluid supply source (not shown) via an external fluid supply source (not shown), making it possible to supply fluid pressure to the cylinder chamber C and release the pressure.

またさらに負荷ピストン4と負荷シリンダ6と
を相互に低負荷で回転自在にかつ軸方向に摺動自
在に供給するためのエアベアリング11,12が
負荷ピストン4内に形成してあり、このエアベア
リング11,12へ流体圧を供給するための流体
圧供給穴dが負荷ピストン4及びチヤツク取付板
2内に形成してある。またクランプリング保持用
リング3とクランプリング5とを低負荷で回転自
在にかつ軸方向に摺動自在に係合するためのエア
ベアリング13をクランプリング保持用リング3
内に形成してある。このエアベアリング13,1
4へ流体圧を供給するための流体供給穴eがチヤ
ツク取付板2内に形成してある。そしてこの流体
供給穴d及びeは流体供給穴a,b及びeが連通
しているものとは別の主軸に形成された流体供給
穴に連通され、流体供給用回転継手(図示せず)
及び圧力調整弁(図示せず)を介し外部流体供給
源に接続されエアベアリング11,12及び13
への流体圧の供給圧力開放を可能としている。こ
のように各流体供給穴を回転体の中に形成するこ
とは当業者には周知の技術である。
Further, air bearings 11 and 12 are formed in the load piston 4 for supplying the load piston 4 and the load cylinder 6 mutually with a low load so as to be rotatable and slidable in the axial direction. A fluid pressure supply hole d for supplying fluid pressure to the load piston 4 and the chuck mounting plate 2 is formed in the load piston 4 and the chuck mounting plate 2. In addition, an air bearing 13 is attached to the clamp ring retaining ring 3 for rotatably and slidably engaging the clamp ring retaining ring 3 and the clamp ring 5 under low load.
It is formed inside. This air bearing 13,1
A fluid supply hole e is formed in the chuck mounting plate 2 for supplying fluid pressure to the chuck mounting plate 2. The fluid supply holes d and e communicate with a fluid supply hole formed in a main shaft other than the one with which the fluid supply holes a, b, and e communicate, and are connected to a fluid supply rotary joint (not shown).
and air bearings 11, 12 and 13 connected to an external fluid supply via pressure regulating valves (not shown).
It is possible to release the supply pressure of fluid pressure to. Forming each fluid supply hole in a rotating body in this manner is well known to those skilled in the art.

前記負荷ピストンの前端にはバツキングプレー
ト7が交換可能に図示の如く装着してあつて、そ
のボス部15に被加工玉軸受Wの内輪孔が嵌入し
バツキングプレート7上の座面18に上記被加工
玉軸受Wの内輪の正面側端面が密接する。また前
記負荷シリンダ6の前端には外筒8が例えば前述
の実用新案公報に開示された如き掛止機構によつ
て着脱自在に取付けてある。この外筒8に環状の
押エ板9が固着してあつて前記被加工玉軸受Wの
外輪の背面側端面を押え得るようになつている。
この押え板9は弾性材として上記加工玉軸受Wの
外輪の背面側端面を弾性的に押え得るのが好まし
い。また前記バツキングプレート7は前記負荷ピ
ストン4に一体に形成したものでも良い。
A bucking plate 7 is replaceably attached to the front end of the load piston as shown in the figure, and the inner ring hole of the ball bearing W to be machined is fitted into the boss portion 15 of the bucking plate 7, and the seat surface 18 on the bucking plate 7 is fitted into the boss portion 15. The front end face of the inner ring of the ball bearing W to be machined is in close contact with each other. Further, an outer cylinder 8 is detachably attached to the front end of the load cylinder 6 by a locking mechanism such as that disclosed in the above-mentioned utility model publication. An annular pressing plate 9 is fixed to the outer cylinder 8 and can press the rear end surface of the outer ring of the ball bearing W to be machined.
It is preferable that the presser plate 9 is made of an elastic material and can elastically press the rear end surface of the outer ring of the machined ball bearing W. Further, the bucking plate 7 may be formed integrally with the load piston 4.

以上の構成になる本発明の装置において被加工
玉軸受Wを装着する際突き出し用シリンダ室Aに
流体供給穴aを介し圧力調整された流体圧を供給
する。これにより負荷シリンダ6が前方(第3図
において右側)に押される。次に被加工玉軸受W
を図示の如くその正面側端面をバツキングプレー
ト7に向けて装荷し次にクランプ用シリンダ室C
に流体供給穴cを介し圧力調整した流体を供給し
クランプリング5の端面19をチヤツク取付板2
に押し付けクランプリング5を回転しないように
し、このクランプリング5とキー10を介し1体
となつている負荷シリンダを回転しないようにす
る。そして被加工玉軸受Wの外輪端面押えリング
9と外筒8とを負荷シリンダ6に掛止する。この
掛止方法は実開昭ダ56−126347号に詳細に述べて
ある。
In the apparatus of the present invention having the above structure, when the ball bearing W to be machined is mounted, a regulated fluid pressure is supplied to the ejection cylinder chamber A through the fluid supply hole a. This pushes the load cylinder 6 forward (to the right in FIG. 3). Next, the ball bearing W to be machined
is loaded with its front end face facing the bucking plate 7 as shown in the figure, and then loaded into the clamping cylinder chamber C.
A pressure-adjusted fluid is supplied to the end face 19 of the clamp ring 5 through the fluid supply hole c to the chuck mounting plate 2.
This prevents the clamp ring 5 from rotating, and prevents the load cylinder, which is integrated with the clamp ring 5 through the key 10, from rotating. Then, the outer ring end face pressing ring 9 and the outer cylinder 8 of the ball bearing W to be machined are hooked to the load cylinder 6. This latching method is described in detail in Utility Model Application Publication No. 56-126347.

以上の作業による被加工玉軸受Wが本研削装置
に装着される。
The ball bearing W to be machined obtained through the above operations is mounted on the present grinding apparatus.

装置の作動説明 次に本装置のサイクルスタートボタン(図示せ
ず)を押下する。このサイクルボタンの押下によ
りなじませ回転、差幅の測定、内外輪間への予圧
付与及び内輪又は外輪の研削が以下に述べる順序
で自動的に行なわれる。
Description of operation of the device Next, press the cycle start button (not shown) of the device. When this cycle button is pressed, the smoothing rotation, the measurement of the difference width, the application of preload between the inner and outer rings, and the grinding of the inner or outer ring are automatically performed in the order described below.

サイクルスタートボタンの押下げにより上に述
べたクランプ用シリンダ室Cへの圧力供給が停止
しかつ流体穴cを介しリークしてクランプリング
5とチヤツク取付板2との間の固着を解除する。
常時負荷シリンダ6及びクランプリング外周支持
板3内のエアベアリングに調整された流体圧を供
給し負荷シリンダ4と負荷ピストン6との間を低
負荷で回転自在及び軸方向に摺動自在にしかつク
ランプリング5とクランプリング外周支持板3と
の間も低負荷で回転自在及び軸方向摺動自在にな
つている。次に突き出し用シリンダ室A内の圧力
を流体供給穴aを介してリークさせ予圧付与用シ
リンダ室B内に圧力調整された低圧(被加工玉軸
受にかかる負荷が5乃至50Kg程度となる流体圧
力)を供給し負荷シリンダ6を左方に押し、外筒
8及び外輪端面押エリング9を介し軸受の外輪を
左方に押し、内輪はバツキングプレート7で支持
されているため被加工玉軸受の内外輪間に負荷が
かかる。
When the cycle start button is pressed down, the pressure supply to the clamp cylinder chamber C is stopped and leaks through the fluid hole c, releasing the fixation between the clamp ring 5 and the chuck mounting plate 2.
Adjusted fluid pressure is constantly supplied to the air bearing in the load cylinder 6 and the clamp ring outer peripheral support plate 3, and the load cylinder 4 and the load piston 6 are made rotatable and axially slidable under low load, and are clamped. The ring 5 and the clamp ring outer periphery support plate 3 are also rotatable and slidable in the axial direction with a low load. Next, the pressure in the ejection cylinder chamber A is leaked through the fluid supply hole a, and the pressure is adjusted to a low pressure in the preloading cylinder chamber B (fluid pressure at which the load on the ball bearing to be machined is approximately 5 to 50 kg). ) and pushes the load cylinder 6 to the left, pushing the outer ring of the bearing to the left via the outer cylinder 8 and the outer ring end face pressing ring 9. Since the inner ring is supported by the bucking plate 7, the ball bearing to be machined is Load is applied between the inner and outer rings.

そこで主軸を低速(200rpm程度)で回転させ
る。このとき、被加工玉軸受の内輪、バツキング
プレート7、負荷ピストン4、チヤツク取付板2
及び主軸1(以下内輪)は一体となり同心軸で回
転しそして被加工玉軸受の外輪、外輪押エ板9、
外筒8、負荷シリンダ6、及びクランプリング5
(以下外輪)は内輪とはエアベアリングにより低
負荷で回転自在に係合されているため慣性により
内輪におくれて廻り出し外輪と内輪との間で相対
回転しそしてその結果内輪、外輪夫々と一体回転
している被加工玉軸受の内輪と外輪との間に相対
回転が生じる。これによりなじませ回転が行なわ
れる。
Therefore, the main shaft is rotated at a low speed (about 200 rpm). At this time, the inner ring of the ball bearing to be processed, the backing plate 7, the load piston 4, the chuck mounting plate 2
The main shaft 1 (hereinafter referred to as the inner ring) is integrally rotated around a concentric shaft, and the outer ring of the ball bearing to be processed, the outer ring pressing plate 9,
Outer cylinder 8, load cylinder 6, and clamp ring 5
The outer ring (hereinafter referred to as the outer ring) is engaged with the inner ring through an air bearing so that it can rotate freely under low load, so due to inertia it falls behind the inner ring and rotates, causing relative rotation between the outer ring and the inner ring, and as a result, the inner ring and outer ring become integral with each other. Relative rotation occurs between the inner ring and outer ring of the rotating workpiece ball bearing. This performs a blending rotation.

一定時間主軸1を低速で回転させた後クランプ
用シリンダ室Cに流体供給穴cを介し調整された
流体圧力を供給しクランプリング5の端面19を
チヤツク取付板に押しつけ、この押し付け面の摩
擦力により内輪と外輪とは一体となつて回転す
る。
After rotating the main shaft 1 at a low speed for a certain period of time, adjusted fluid pressure is supplied to the clamp cylinder chamber C through the fluid supply hole c to press the end surface 19 of the clamp ring 5 against the chuck mounting plate, and the friction force of this pressing surface is applied. This causes the inner ring and outer ring to rotate as one.

次にシリンダ室Bに流体供給穴b,b′を介し調
整された高い流体圧力(被加工玉軸受の内外輪間
に必要な大きさの負荷が作用する圧力)を供給し
被加工玉軸受の内外輪間に予圧を付与する。
Next, a high adjusted fluid pressure (pressure that applies a load of the required magnitude between the inner and outer rings of the ball bearing to be machined) is supplied to the cylinder chamber B through the fluid supply holes b and b'. Apply preload between the inner and outer rings.

次に測定器16を自動的に図示の如く被加工玉
軸受の内輪及び外輪の端面に接触させ端面位置を
測定しはじめる。研削を行う際、本発明の装置で
は以下に述べる方法を用いている。
Next, the measuring instrument 16 is automatically brought into contact with the end faces of the inner ring and outer ring of the ball bearing to be machined as shown in the figure, and the position of the end faces begins to be measured. When performing grinding, the apparatus of the present invention uses the method described below.

上記装置による研削手順 第4図に研削方法のフローチヤート図が示して
ある。第4図においてGA、GBは被加工玉軸受W
の内輪及び外輪端面の測定器16による測定値で
ある。GA、GBはアナログ値であるため計算処理
を容易ならしめるためデジタル値にA−D変換器
を用いて変換する。
Grinding procedure using the above device FIG. 4 shows a flowchart of the grinding method. In Fig. 4, G A and G B are the workpiece ball bearings W
These are the values measured by the measuring device 16 of the inner ring and outer ring end faces of. Since G A and G B are analog values, they are converted to digital values using an A-D converter to facilitate calculation processing.

上で述べたように測定器16が被加工玉軸受W
の内輪及び外輪の端面に接触した後内輪及び外輪
が1回転している間GA、GBを測定し、一定微少
時間ごとにGA及びGBをサンプリングしそのサン
プリング値をデイジタル化して1回転毎に平均値
をとる。ここで1回転の検知は近接スイツチによ
り行う。このことは第5図に示してある。微少時
間毎に測定したGA及びGBがGA1、GA2、………
Ao、GB1、GB2、………GBoとすると求める平
均値A及びBはGA1+GA2………GAo/o、GB1
+GB2………GBo/oとなる。この平均値A及び
Bをワークヘツド1回転毎に算出しそして平均
値間の差SAVBAも1回転毎に算出する。
この算出されたGAVにもとずき研削砥石の送り量
を定め軸受の内輪端面を研削する。
As mentioned above, the measuring device 16 is the ball bearing W to be machined.
After contacting the end faces of the inner and outer rings, G A and G B are measured while the inner ring and outer ring make one rotation, and G A and G B are sampled at regular minute intervals and the sampled values are digitized. Take the average value for each rotation. Here, one rotation is detected by a proximity switch. This is illustrated in FIG. G A and G B measured at minute intervals are G A1 , G A2 , ......
G Ao , G B1 , G B2 , ...... G Bo , the average values A and B to be obtained are G A1 + G A2 ...... G Ao/o , G B1
+G B2 ......G Bo/o . This average value A and
B is calculated every revolution of the work head, and the difference between the average values S AV = B - A is also calculated every revolution.
Based on this calculated G AV , the feed amount of the grinding wheel is determined and the inner ring end face of the bearing is ground.

例えば、内輪固定で外輪に荷重をかけて外輪回
転させる場合、外輪が偏心荷重により傾いて回転
したとしても、平均を取ることにより外輪平面の
内輪中心における仮想平面高さが得られ真の差幅
が演算可能である。
For example, when the inner ring is fixed and the outer ring is rotated by applying a load to the outer ring, even if the outer ring rotates tilted due to the eccentric load, by taking the average, the virtual plane height of the outer ring plane at the center of the inner ring can be obtained, and the true difference width is computable.

このように本装置において端面位置を平均化す
ることにより、バツキングプレートにより支持さ
れていない非研削面(第3図の実施例においては
外輪端面)が大きくふれ測定誤差を大きく含み差
幅精度が向上しないという欠点を解消することが
できた。また本装置の研削には荒研削と仕上げ研
削との2種類有り第4図のフローチヤート図の後
段に示す如く平均値GAVがある一定の値r以上で
あるときは荒研削送り速度で研削しGAVがrより
小さくなつた時点で仕上げ研削送りに送り速度を
変更し仕上げ研削を行い、さらにAVがある一定
値δより小さくなつた時点で研削砥石送りを停止
して、スパークアウト研削で研削を続行しGAV
ε(εは所望の差幅値)となつた時点で研削砥石
17を被加工玉軸受より離脱させかつ測定器16
も内輪及び外輪の端面より自動的に取りはずし研
削終了ランプ(図示せず)を点灯し装置を停止す
る。
By averaging the end face positions in this device in this way, the non-ground surface that is not supported by the bucking plate (the outer ring end face in the embodiment shown in Fig. 3) has a large runout, which causes a large measurement error and reduces the difference width accuracy. We were able to overcome the drawback of not improving. In addition, there are two types of grinding with this device: rough grinding and finish grinding.As shown in the latter part of the flowchart in Figure 4, when the average value G AV is greater than a certain value r, grinding is performed at the rough grinding feed rate. When G AV becomes smaller than r, change the feed speed to finish grinding feed and perform finish grinding, and when AV becomes smaller than a certain value δ, stop the grinding wheel feed and perform spark-out grinding. Continue grinding and G AV
When ε (ε is the desired difference width value) is reached, the grinding wheel 17 is removed from the ball bearing to be machined, and the measuring device 16
is automatically removed from the end faces of the inner and outer rings, a grinding completion lamp (not shown) is turned on, and the apparatus is stopped.

以上の動作は計算機を用いて自動的にコントロ
ールされる。
The above operations are automatically controlled using a computer.

ここにおいて内輪端面の平面位置の算出はバツ
キングプレートにより1方に押しつけられ固定さ
れているのでふれ廻りが小さく平均値を算出せず
に瞬間値を用いてもよい。以上により被加工玉軸
受Wの差幅の自動研削は終了する。次に被加工玉
軸受Wを装置より取りはずす。
Here, the planar position of the inner ring end face can be calculated by using an instantaneous value without calculating an average value since the inner ring end face is pressed and fixed in one direction by the bucking plate, so there is little wobbling. With the above steps, the automatic grinding of the difference width of the ball bearing W to be machined is completed. Next, the ball bearing W to be processed is removed from the device.

別の実施例の説明 さらに第6図に示す実施例は正面差幅を一定に
するための被加工玉軸受の外輪端面を研削する研
削装置である。
DESCRIPTION OF ANOTHER EMBODIMENT Furthermore, the embodiment shown in FIG. 6 is a grinding device for grinding the outer ring end face of a ball bearing to be machined in order to make the frontal difference width constant.

さらに本発明の装置を研削装置としてではなく
玉軸受の内輪又は外輪の測定のみを行なう測定装
置として使用することも可能である。
Furthermore, it is also possible to use the device of the present invention not as a grinding device but as a measuring device for measuring only the inner ring or outer ring of a ball bearing.

発明の効果 叙述のごとく、本発明の装置はなじませ回転測
定及び研削を自動的にかつ連続的に行ない作業工
程数をすくなくしかつ測定しながら研削するた
め、差幅精度の高い軸受の大量生産を可能とす
る。また、作業が自動化されていため非熟練者で
も高精度な加工が可能である。さらに被加工玉軸
受に所定の予圧を付与したままの状態で背面幅を
調整研削できるのでより実際の使用状態に応じた
加工が可能となり圧力調整により予圧が容易に変
更可能でありかつ加工中に被加工玉軸受の内外輪
は一体回転であつて相対的な動きがなく軸受軌道
面や転動体(球)を砥石の脱落粉等によつて損傷
することがないから、加工前後において軸受精度
が変化せず前記の如き面倒な工程管理の必要もな
く精密アンギユラ玉軸受のコスト低減、生産性向
上、精度向上に多大な効果を有する。さらに軸受
の使用上では内外輪間にスペーサを入れて差幅調
整を行う方法もあるが、その場合スペーサを同一
寸法に製作すればよいのでそのような調整用スペ
ーサは不要となる。
Effects of the Invention As stated above, the device of the present invention automatically and continuously performs measurement of rotation and grinding to reduce the number of work steps and performs grinding while measuring, making it possible to mass produce bearings with high precision in differential width. is possible. Furthermore, since the work is automated, even unskilled workers can perform highly accurate processing. Furthermore, the back width can be adjusted and ground while applying a predetermined preload to the ball bearing to be machined, making it possible to perform machining more suited to the actual usage conditions.The preload can be easily changed by adjusting the pressure, and during machining. The inner and outer rings of the ball bearing to be machined rotate as one unit, and there is no relative movement, so the bearing raceway surface and rolling elements (balls) are not damaged by falling particles from the grinding wheel, etc., so bearing accuracy is maintained before and after machining. It does not change and does not require the troublesome process control as described above, and has great effects on cost reduction, productivity improvement, and accuracy improvement of precision angular ball bearings. Furthermore, when using a bearing, there is a method of inserting a spacer between the inner and outer rings to adjust the width difference, but in that case, the spacers need only be manufactured to the same dimensions, so such an adjustment spacer is not necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は玉軸受における差幅の説明図;第2図
は玉軸受の背面組合わせ状態の説明図;第3図は
本発明に従う研削盤のワークヘツド説明図、第4
図は本発明に従う研削量及び研削方法を示すフロ
ーチヤート図、第5図は本発明に従う被加工玉軸
受の内輪、外輪の平均値算出の説明図、第6図は
本発明に従う別の実施例の説明図、 〔主要部分の符号の説明〕、内輪回転部材……
1,2,3,4,7,15、外輪回転部材……
5,6,8,9、回転自在に係合する手段……1
1,12,13、切換える手段……C,c。
Fig. 1 is an explanatory diagram of the difference width in the ball bearing; Fig. 2 is an explanatory diagram of the back-to-back combination of the ball bearings; Fig. 3 is an explanatory diagram of the work head of the grinding machine according to the present invention;
The figure is a flowchart showing the amount of grinding and the grinding method according to the present invention, Figure 5 is an explanatory diagram of calculating the average value of the inner ring and outer ring of a ball bearing to be machined according to the present invention, and Figure 6 is another embodiment according to the present invention. Explanatory diagram, [Explanation of symbols of main parts], Inner ring rotating member...
1, 2, 3, 4, 7, 15, outer ring rotating member...
5, 6, 8, 9, means for rotatably engaging...1
1, 12, 13, switching means...C, c.

Claims (1)

【特許請求の範囲】 1 玉軸受の研削装置において 研削すべき玉軸受の内輪を保持し、該内輪を所
定の軸回りに回転させる内輪回転手段と; 該玉軸受の外輪を保持し、該外輪を前記所定の
軸回りに回転させる外輪回転手段と; 前記内輪回転手段と外輪回転手段とを係合/離
脱させる係合/離脱手段と; 前記係合/離脱手段を制御し、該外輪と該内輪
とを一体で回転させるか、独立して回転させるか
を選択する選択手段と; 前記内輪回転手段と前記外輪回転手段とに作用
し、前記内輪回転手段に保持された該内輪と前記
外輪回転手段に保持された該外輪との間に一定の
アキシヤル方向負荷を付与する負荷付与手段と; 前記選択手段と前記負荷付与手段と研削手段と
を制御し、最初に該内輪及び該外輪間に一定のア
キシヤル方向の低負荷を付与した状態で、前記内
輪回転手段と前記外輪回転手段とを相対的に回転
せしめ、次に前記内輪回転手段と前記外輪回転手
段とを一体的に回転せしめ、該内輪または該外輪
のいずれか一方を、一定のアキシヤル方向負荷を
付与した状態で、研削手段にて研削せしめる制御
手段とを含むことを特徴とする玉軸受研削装置。 2 特許請求の範囲第1項記載の玉軸受研削装置
において、 前記係合/離脱手段がエアベアリングであるこ
とを特徴とする玉軸受研削装置。 3 特許請求の範囲第1項記載の玉軸受研削装置
において、 前記制御手段が該内輪または該外輪のラジアル
方向の表面に隣接し、該表面の平面変位を測定す
る測定手段を含み、該玉軸受1回転毎に内外輪の
それぞれの各平面位置の平均値を算出し前記平均
値に基づき研削すべき量を算出し、研削手段を制
御して研削せしめることを特徴とする玉軸受研削
装置。 4 特許請求の範囲第3項記載の玉軸受研削装置
において、 前記平均値に基づき研削すべき量を算出する
際、非研削面の平面位置の平均値と研削すべき面
の瞬間平面位置の検出値との差に基づいて研削量
を算出することを特徴とする玉軸受研削装置。 5 特許請求の範囲第3項記載の玉軸受研削装置
において、 前記平均値に基づき研削すべき量を算出する
際、内輪及び外輪のそれぞれの平面位置のそれぞ
れの平均値間の差に基づいて研削量を算出するこ
とを特徴とする玉軸受研削装置。
[Claims] 1. In a ball bearing grinding device: an inner ring rotating means for holding an inner ring of a ball bearing to be ground and rotating the inner ring around a predetermined axis; an outer ring rotating means for rotating the inner ring around the predetermined axis; an engaging/disengaging means for engaging/disengaging the inner ring rotating means and the outer ring rotating means; controlling the engaging/disengaging means to connect the outer ring and the outer ring. a selection means for selecting whether to rotate the inner ring integrally or independently; acting on the inner ring rotation means and the outer ring rotation means to rotate the inner ring held by the inner ring rotation means and the outer ring; load applying means for applying a constant axial load between the inner ring and the outer ring held by the means; controlling the selection means, the load applying means and the grinding means to initially apply a constant axial load between the inner ring and the outer ring; The inner ring rotating means and the outer ring rotating means are rotated relative to each other under a low load in the axial direction, and then the inner ring rotating means and the outer ring rotating means are rotated integrally, and the inner ring or a control means for causing the grinding means to grind either one of the outer rings while applying a constant axial load. 2. The ball bearing grinding device according to claim 1, wherein the engagement/disengagement means is an air bearing. 3. The ball bearing grinding device according to claim 1, wherein the control means is adjacent to a surface of the inner ring or the outer ring in the radial direction and includes a measuring means for measuring a plane displacement of the surface, A ball bearing grinding device characterized in that the average value of each plane position of the inner and outer rings is calculated every rotation, the amount to be ground is calculated based on the average value, and the grinding device is controlled to perform the grinding. 4. In the ball bearing grinding device according to claim 3, when calculating the amount to be ground based on the average value, detecting the average value of the plane position of the non-grinding surface and the instantaneous plane position of the surface to be ground. A ball bearing grinding device characterized by calculating the amount of grinding based on the difference between the two values. 5. In the ball bearing grinding device according to claim 3, when calculating the amount to be ground based on the average value, grinding is performed based on the difference between the respective average values of the planar positions of the inner ring and the outer ring. A ball bearing grinding device characterized by calculating the amount.
JP57050922A 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing Granted JPS58171258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050922A JPS58171258A (en) 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050922A JPS58171258A (en) 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing

Publications (2)

Publication Number Publication Date
JPS58171258A JPS58171258A (en) 1983-10-07
JPS6247668B2 true JPS6247668B2 (en) 1987-10-08

Family

ID=12872286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050922A Granted JPS58171258A (en) 1982-03-31 1982-03-31 Method and apparatus for grinding ball bearing

Country Status (1)

Country Link
JP (1) JPS58171258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624335A (en) * 2012-08-20 2014-03-12 利勃海尔-齿轮技术有限责任公司 Tool assembly

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254702B2 (en) * 2008-08-21 2013-08-07 株式会社岡本工作機械製作所 Bearing grinding jig
JP5254706B2 (en) * 2008-08-28 2013-08-07 株式会社岡本工作機械製作所 Bearing grinding jig
CN103692302B (en) * 2013-12-23 2016-05-11 河南金鑫精密轴承制造有限公司 Precision corner contact ball bearing peripheral milling processing technology
CN104191334A (en) * 2014-07-01 2014-12-10 宁波固特轴承有限公司 Bearing outer ring groove grinding process
JP6971168B2 (en) * 2018-02-23 2021-11-24 Ntn株式会社 Grinding system and grinding method
CN112828741B (en) * 2019-11-22 2021-12-21 浙江翔宇密封件有限公司 Bearing grinding assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624335A (en) * 2012-08-20 2014-03-12 利勃海尔-齿轮技术有限责任公司 Tool assembly

Also Published As

Publication number Publication date
JPS58171258A (en) 1983-10-07

Similar Documents

Publication Publication Date Title
CA2207064C (en) Front-loading rotary ring cutter
JPS6247668B2 (en)
EP1103327A1 (en) Methods of machining a braking surface on a brake rotor
JPH04217452A (en) Apparatus for polishing and honing roller bearing ring
CN205927207U (en) Fixed turning attachment
JP3918645B2 (en) Tool holder
JP3397471B2 (en) Device for mounting tire and wheel assembly to wheel balancer
JPH077086Y2 (en) Equipment for grinding and lapping packing surfaces such as sliding valves in place or at the factory
JPH02256452A (en) Method and device for holding roller segment
CN112935949A (en) Valve fine conical surface grinding machine
JPS6156048B2 (en)
US20150306724A1 (en) Grinding machine for bearing rings and method for adjusting such a machine
JP3330722B2 (en) Processing method of turbine blade blade root
JP7038594B2 (en) Rotary compressor manufacturing method and processing equipment
CN214080871U (en) Vacuum chuck clamping main shaft and wafer thinning machine
JP3944640B2 (en) Single-side grinding method and apparatus
TWI812137B (en) with processing unit
CN218395956U (en) Coarse and fine machining integrated positioning tool for shaft parts
GB2075385A (en) Apparatus for grinding grooves in the inner race of a constant velocity universal joint
WO1995021728A1 (en) Method and apparatus for correcting diametrical taper on a workpiece
CN215092486U (en) Valve fine conical surface grinding machine
JP2748569B2 (en) Grinding method
JPS639410Y2 (en)
JP3539090B2 (en) Grinding equipment
US3434244A (en) Grinding machinery for finishing brake discs