JPS626951B2 - - Google Patents

Info

Publication number
JPS626951B2
JPS626951B2 JP7577080A JP7577080A JPS626951B2 JP S626951 B2 JPS626951 B2 JP S626951B2 JP 7577080 A JP7577080 A JP 7577080A JP 7577080 A JP7577080 A JP 7577080A JP S626951 B2 JPS626951 B2 JP S626951B2
Authority
JP
Japan
Prior art keywords
inner ring
face
diameter end
dimension
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7577080A
Other languages
Japanese (ja)
Other versions
JPS571660A (en
Inventor
Tomoyoshi Ekusa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP7577080A priority Critical patent/JPS571660A/en
Publication of JPS571660A publication Critical patent/JPS571660A/en
Publication of JPS626951B2 publication Critical patent/JPS626951B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【発明の詳細な説明】 この発明は複列円錐ころ軸受或は背面合わせ等
の複列で使用される円錐ころ軸受内輪の加工方法
に係り、特に外輪小径端面から内輪小径端面迄の
寸法(平面差)を常に一定に維持し得る円錐ころ
軸受内輪の加工方法に関するものである。
Detailed Description of the Invention The present invention relates to a method for machining an inner ring of a double-row tapered roller bearing or a double-row tapered roller bearing used in back-to-back configurations, and particularly relates to a method for machining the inner ring of a double-row tapered roller bearing or a tapered roller bearing used in a double-row arrangement such as back-to-back configuration. The present invention relates to a method of machining an inner ring of a tapered roller bearing that can always maintain a constant difference in the inner ring of a tapered roller bearing.

一般に、複列円錐ころ軸受或は背面合わせ等の
複列で使用される円錐ころ軸受では、内輪の小径
端面を基準にした仕上げ寸法で転送面溝及び鍔面
を加工して外輪の小径端面から内輪の小径端面迄
の組立高さ(平面差)〔複列円錐ころ軸受の場
合、外輪幅中心から内輪小径端面までの寸法〕を
一定に維持できれば、スキマ公差を厳しく管理す
ることができ、第1図に示す様に間座(スペー
サ)なしで組立てることができる。尚、1は軸受
外輪、2,2′は軸受内輪、3,3′は円錐ころで
ある。
In general, for double-row tapered roller bearings or tapered roller bearings used in double rows such as back-to-back, the transfer surface groove and collar surface are machined with finishing dimensions based on the small-diameter end face of the inner ring, and then If the assembled height (plane difference) from the small diameter end face of the inner ring to the small diameter end face (in the case of double row tapered roller bearings, the dimension from the center of the outer ring width to the small diameter end face of the inner ring) can be maintained constant, the clearance tolerance can be strictly controlled, and the As shown in Figure 1, it can be assembled without a spacer. Note that 1 is a bearing outer ring, 2 and 2' are bearing inner rings, and 3 and 3' are tapered rollers.

ところが、この種軸受内輪2,2′の加工は、
マグネツトチヤツクの吸着力並びに砥石切込み方
向の関係から、大径端面を基準に加工せざる得
ず、組立時の転送面溝径等の寸法は内輪幅寸法の
バラツキの影響を受け、スキマ公差を厳しく管理
することが困難であつた。
However, the machining of the inner rings 2 and 2' of this type of bearing is
Due to the adsorption force of the magnetic chuck and the cutting direction of the grindstone, machining must be performed using the large diameter end face as a reference, and dimensions such as the transfer surface groove diameter during assembly are affected by variations in the inner ring width dimension, so the gap tolerance must be adjusted. It was difficult to strictly manage it.

即ち、従来は、第2図に示す様に、内輪2の大
径端面を研削盤のパツキングプレート4に吸着保
持させ、パツキングプレート4より所定寸法c離
れた位置に設置された測定器5にて転走面溝径を
測定し乍らパツキングプレート4及び内輪2を回
転させて砥石6にて研削加工していた。これは、
内輪2の大径端面から一定の位置cでの転走面溝
径を測定するものであるから、転走面溝2aは大
径端面を基準に加工されることになり、小径端面
側からみれば内輪2の幅寸法のバラツキにより各
工作物毎に転走面溝2aの測定位置が異なり、そ
の測定寸法が異なることになる。
That is, conventionally, as shown in FIG. 2, the large diameter end face of the inner ring 2 is held by suction on a packing plate 4 of a grinding machine, and a measuring device 5 is installed at a position a predetermined distance c away from the packing plate 4. While measuring the groove diameter of the raceway surface, the packing plate 4 and inner ring 2 were rotated and ground using a grindstone 6. this is,
Since the raceway groove diameter is measured at a certain position c from the large-diameter end face of the inner ring 2, the raceway groove 2a is machined based on the large-diameter end face, and the raceway groove 2a is machined based on the large-diameter end face. Due to variations in the width dimension of the inner ring 2, the measurement position of the raceway groove 2a differs for each workpiece, resulting in different measurement dimensions.

そこで従来は組立てに際して第3図に示す様
に、内輪2,2′の小径端面間に間座7を介在さ
せて寸法誤差を吸収していた。また第4図に示す
様に、2個の円錐ころ軸受8,8′を背面組合せ
で組立てた場合も間座9,9′を介在させて組立
てていた。しかし乍らこれでは、寸法の異なる間
座を予め多数用意しておき、組立ての都度内輪の
幅寸法に応じて適当な間座を選定せねばならず。
作業性並びに互換性が非常に悪かつた。
Conventionally, during assembly, as shown in FIG. 3, a spacer 7 was interposed between the small diameter end faces of the inner rings 2 and 2' to absorb the dimensional error. Furthermore, as shown in FIG. 4, when two tapered roller bearings 8, 8' are assembled back-to-back, they are assembled with spacers 9, 9' interposed. However, in this case, a large number of spacers with different dimensions must be prepared in advance, and an appropriate spacer must be selected in accordance with the width dimension of the inner ring each time the assembly is performed.
Workability and compatibility were very poor.

そこで本出願人は、先に内輪の幅寸法をもとに
小径端面側を基準としてインプロセス制御しつつ
転走面溝を加工する加工方法を提案している。こ
れは第5図に示す様に、研削盤本体10に配され
たL字状固定ブロツク11の一端に幅寸法を測定
する第1の測定器12を、他端に転走面溝径を測
定する第2の測定器13を取付け、第1の測定器
12による測定寸法Zの基準幅寸法Z0よりの偏差
Z―Z0に所定係数kを掛けた値kを第2の測定器
13にフイードバツク(零点較正)して当該第2
の測定器13によるインプロセス制御で転走面溝
を研削する様になしたものである。ところが上記
加工方法では、小径端面を基準に加工すること自
体は可能であるが、これの前工程である両頭型平
面研削盤による幅研削加工の仕上げ精度の影響を
受けて転走面溝径の正確なインプロセス制御が困
難であつた。
Therefore, the present applicant has proposed a machining method in which raceway grooves are first machined while performing in-process control based on the width dimension of the inner ring and using the small diameter end face side as a reference. As shown in Fig. 5, a first measuring device 12 for measuring the width dimension is installed at one end of an L-shaped fixed block 11 disposed on the grinding machine body 10, and a first measuring device 12 for measuring the raceway groove diameter is installed at the other end. Attach a second measuring device 13 to the measurement device 13, and apply a value k obtained by multiplying the deviation Z− Z0 of the dimension Z measured by the first measuring device 12 from the reference width dimension Z0 by a predetermined coefficient k to the second measuring device 13. Feedback (zero point calibration)
The rolling surface grooves are ground by in-process control using a measuring device 13. However, with the above processing method, although it is possible to perform processing based on the small-diameter end face, it is affected by the finishing accuracy of the width grinding process using a double-headed surface grinder, which is the preceding process, and the diameter of the groove on the raceway surface cannot be adjusted. Accurate in-process control was difficult.

即ち、一般的にこの種幅研削は他の加工と比較
して相対的に仕上げ寸法自体及び軸心に対する幅
面の直角度等の仕上げ精度が悪かつた。この様な
精度の低い幅寸法に基いて第2の測定器13にフ
イードバツク(零点較正)しようとすると、必然
的にフイードバツク量が大きくなる為に較正自体
が大変難しくなり、又、較正によつて内輪(工作
物)の外周面と研削盤の工作物を支持するシユー
との当り面がその都度変化し、パツキングプレー
ト14の回転中心と内輪2の中心とのオフセツト
量が変化して転走面溝寸法の測定精度並びに真円
度に悪影響を及ぼしていた。又、この種軸受を間
座なしで組立てる場合、第6図に示す様に、小径
端面を基準にした転送面溝径寸法Rの管理のみな
らず、小径端面から鍔面に至る寸法Kに直接、影
響する公差(±ΔA)をも厳しく管理しなければ
ならず、前述の加工方法ではこの(±ΔA)の管
理が不可能であつた。
That is, in general, this type of width grinding has relatively poor finishing accuracy in terms of the finished dimension itself and the perpendicularity of the width surface to the axis, compared to other processes. If you try to provide feedback (zero point calibration) to the second measuring device 13 based on such a width dimension with low accuracy, the amount of feedback will inevitably increase, making the calibration itself very difficult. The contact surface between the outer peripheral surface of the inner ring (workpiece) and the shoe that supports the workpiece of the grinding machine changes each time, and the amount of offset between the center of rotation of the packing plate 14 and the center of the inner ring 2 changes, causing rolling. This had a negative effect on the measurement accuracy and roundness of the face groove dimensions. In addition, when assembling this type of bearing without a spacer, as shown in Figure 6, it is not only necessary to control the transfer surface groove diameter dimension R based on the small diameter end face, but also to directly control the dimension K from the small diameter end face to the collar face. , the influencing tolerance (±ΔA) must also be strictly controlled, and it has been impossible to control this (±ΔA) with the above-mentioned processing method.

この発明は上記従来の問題点に鑑み、転送面研
削後に幅面を研削するようにしてこれを改良除去
したもので、通常の研削方法により加工された内
輪転送面溝径寸法の基準値(狙い寸法)からの偏
差(加工誤差)を内輪軸方向の偏差に換算し、こ
の換算値だけ小径端面加工用のインプロセス制御
用ゲージの零点をシフトさせる。次いで、当該ゲ
ージでインプロセス制御しつつ、小径端面研削砥
石及び該砥石と一定間隔だけ離反された鍔研削砥
石で、当該内輪の小径端面及び鍔を研削加工せん
とするものである。
In view of the above-mentioned conventional problems, this invention improves and eliminates them by grinding the width surface after grinding the transfer surface, and the standard value (target dimension) of the inner ring transfer surface groove diameter dimension machined by the normal grinding method. ) is converted into a deviation in the axial direction of the inner ring, and the zero point of the in-process control gauge for small-diameter end face machining is shifted by this converted value. Next, while performing in-process control using the gauge, the small-diameter end face and flange of the inner ring are ground using a small-diameter end-face grinding wheel and a flange grinding wheel separated from the grindstone by a certain distance.

以下この発明の実施の態様を図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第7図に於いて、20は研削盤のパツキングプ
レート(図示せず)に吸着保持される円錐ころ軸
受内輪、22は内輪20の鍔21を研削する鍔研
削砥石、23は鍔研削砥石用ロータリドレス、2
4は内輪20の小径端面20aを研削する端面研
削砥石、25は端面研削砥石用ロータリドレスで
ある。前記鍔研削砥石22及び端面研削砥石24
は一定の直径寸法関係で、且つ砥石スピンドル2
6に砥石スペーサ27を介在させて同心状に配
し、フランジナツト28にて固定してあり、夫々
外周面22a,24aにて内輪20の大鍔面21
a及び小径端面20aを研削する。29は砥石フ
ランジである。尚、鍔研削砥石22の外周面22
aは砥石スピンドル26の軸心と一定の角度αを
持たせてある。鍔研削砥石用ロータリドレス23
は先端面23aの角度を調整し、且つドレス補正
スライド(図示せず)に固定されており、端面研
削砥石用ロータリドレス25は先端面25aが鍔
研削砥石用ロータリドレス23に対して水平面に
沿つて施回可能であり、且つドレス補正スライド
(図示せず)を有している。30は研削盤の固定
ブロツク(図示せず)上に取付けられ、内輪20
の小径端面20aに当接させてパツキングプレー
トの端面から内輪20の小径端面20aに至る寸
法(幅寸法)を測定する第1の測定器、31はパ
ツキングプレートの端面から一定距離の内輪20
の転走面溝径を測定する第2の測定器である。
In FIG. 7, 20 is an inner ring of a tapered roller bearing that is held by suction on a packing plate (not shown) of a grinding machine, 22 is a flange grinding wheel for grinding the flange 21 of the inner ring 20, and 23 is a flange grinding wheel. rotary dress, 2
4 is an end face grinding wheel for grinding the small diameter end face 20a of the inner ring 20, and 25 is a rotary dress for the end face grinding wheel. The flange grinding wheel 22 and the end face grinding wheel 24
is a constant diameter dimension relationship, and the grinding wheel spindle 2
6 are arranged concentrically with a grindstone spacer 27 interposed between them, and fixed with a flange nut 28, and the large flange surface 21 of the inner ring 20 is connected to the outer peripheral surfaces 22a and 24a, respectively.
a and the small diameter end face 20a are ground. 29 is a grindstone flange. In addition, the outer peripheral surface 22 of the tsuba grinding wheel 22
a has a constant angle α with the axis of the grindstone spindle 26. Rotary dress 23 for tsuba grinding wheel
adjusts the angle of the tip surface 23a and is fixed to a dress correction slide (not shown). and has a dress correction slide (not shown). 30 is mounted on a fixed block (not shown) of the grinding machine, and the inner ring 20
A first measuring device 31 measures the dimension (width dimension) from the end surface of the packing plate to the small diameter end surface 20a of the inner ring 20 by bringing it into contact with the small diameter end surface 20a of the inner ring 20 at a certain distance from the end surface of the packing plate.
This is a second measuring device that measures the raceway groove diameter of the.

上記構成に於いて、その加工方法を説明する
と、前工程で通常の研削方法により、工作物の幅
寸法に関係なく、大径端面を基準にした狙い寸法
に転走面溝を研削加工した軸受内輪20の大径端
面側をパツキングプレートに吸着させて、第1の
測定器30を内輪20の小径端面20aに、第2
の測定器31を転走面溝に夫々当接させ、内輪2
0の幅寸法及び転走面溝径を測定する。このと
き、第2の測定器31にて測定された転走面溝径
寸法と基準となる転走面溝径寸法(設計上の狙い
溝径寸法)との偏差(加工誤差)を求め、この偏
差値を内輪軸方向の偏差値に換算して、第1の測
定器30へフイードバツクさせ、次いで、この零
点較正済みの第2の測定器31の測定値が所定の
内輪幅寸法になるまで、一定の直径寸法関係で1
体となつた鍔研削砥石22及び端面研削砥石24
で内輪20の鍔21の大鍔面21a及び小径端面
20aを同時研削する。
In the above configuration, the machining method is explained as follows: A bearing whose rolling surface grooves are ground to a target dimension based on the large-diameter end face, regardless of the width dimension of the workpiece, using a normal grinding method in the previous process. The large-diameter end surface side of the inner ring 20 is attracted to the packing plate, and the first measuring device 30 is attached to the small-diameter end surface 20a of the inner ring 20.
The measuring instruments 31 of the inner ring 2 are brought into contact with the raceway grooves, respectively.
Measure the width dimension and raceway groove diameter of 0. At this time, the deviation (processing error) between the raceway groove diameter measured by the second measuring device 31 and the reference raceway groove diameter (design target groove diameter) is determined. The deviation value is converted into a deviation value in the inner ring axial direction and fed back to the first measuring device 30, and then, until the measured value of this zero point calibrated second measuring device 31 reaches a predetermined inner ring width dimension, 1 with constant diameter dimension relationship
Tsuba grinding whetstone 22 and end face grinding whetstone 24
The large flange surface 21a and the small diameter end surface 20a of the flange 21 of the inner ring 20 are simultaneously ground.

この様にして研削された内輪20の転走面溝径
は内輪幅寸法に対応して設定されたことになり、
小径端面20aを基準に転走面溝の組高さが一定
に保たれ、背面組合せで組立てる際、間座なし、
或は一種類の間座で組立てることができ、作業性
が向上する。
The raceway groove diameter of the inner ring 20 ground in this way is set corresponding to the inner ring width dimension.
The assembly height of the raceway groove is kept constant based on the small diameter end face 20a, and there is no spacer when assembling back to back.
Alternatively, it can be assembled with one type of spacer, improving work efficiency.

更に詳述すると、本発明の加工方法は、第8図
に示す様に、前工程で所期の設計通りに溝加工さ
れた内輪20の小径端面20a及び大鍔面21a
を溝仕上げ寸法によつて零点較正されたインプロ
セス制御用ゲージで同時加工するもので、このと
きの端面研削砥石24と鍔研削砥石22とは一定
の直径寸法関係(離反距離が一定)で一体に取付
けられているので、研削された内輪20の小径端
面20aと大鍔面21aとの寸法Kは常に一定に
保たれている。従つて今内輪20の転送面溝径が
基準の転送面溝径Rより△R大きく仕上げられて
いたとし、幅寸法Xの内輪20を小径端面基準で
の転送面溝径をRにするため小径端面20aより
△Dだけ研削せねばならないとすると、この△D
は次式で表される。尚、転送面溝と水平面とのな
す角をβとする。また、基準幅寸法はXoとす
る。
More specifically, the processing method of the present invention, as shown in FIG.
are simultaneously machined using an in-process control gauge whose zero point is calibrated according to the groove finishing dimensions. At this time, the end face grinding wheel 24 and the flange grinding wheel 22 are integrated with a constant diameter dimension relationship (separation distance is constant). Therefore, the dimension K between the small diameter end surface 20a and the large flange surface 21a of the ground inner ring 20 is always kept constant. Therefore, now suppose that the transfer surface groove diameter of the inner ring 20 has been finished larger by △R than the standard transfer surface groove diameter R, and the inner ring 20 with the width dimension If it is necessary to grind △D from the end face 20a, this △D
is expressed by the following formula. Note that the angle between the transfer surface groove and the horizontal plane is defined as β. Also, the standard width dimension is Xo.

△D/△R=cotβ ∴△D=△Rcotβ …(1) 従つて第1の測定器30にて測定された幅寸法
をXo+△Rcotβになるまで研削すれば、小径面
基準での転送面溝径はRとなり、且つ同時に小径
端面20aから大鍔面21aまでの寸法が基準寸
法Kに仕上げられることになる。従つて加工誤差
を含む幅寸法の影響を受けることがなく、組高さ
を一定にすることができる。
△D/△R=cotβ ∴△D=△Rcotβ …(1) Therefore, if the width dimension measured by the first measuring device 30 is ground until it becomes Xo + △Rcotβ, the transfer surface based on the small diameter surface The groove diameter becomes R, and at the same time, the dimension from the small diameter end face 20a to the large flange face 21a is finished to the standard dimension K. Therefore, the assembly height can be kept constant without being affected by the width dimension including processing errors.

以上説明した様に、この発明は内輪転送面を研
削仕上げした後、内輪小径端面を研削仕上げする
円錐ころ軸受内輪の加工方法であつて、転送面仕
上げ寸法の狙い仕上寸法からの偏差を内輪軸方向
の偏差に換算し、この換算値だけ小径端面加工用
のインプロセス制御用ゲージにフイードバツク
し、このゲージによつて、内輪の小径端面並びに
鍔を一定距離だけ離反して一体に取付けた端面研
削砥石及び鍔研削砥石にて同時に研削するように
なしたから転走面溝径寸法や幅寸法にバラツキを
生じても、それらに何ら影響されることなく転走
面溝寸法を小径端面基準で所定の値に仕上げるこ
とができ、外輪の転走面との組高さが一定とな
り、複列円錐ころ軸受の組立の場合、或は背面組
合せで複列に組立てる場合、組高さの調整を必要
とせず、スペーサなしで、或は一種類のスペーサ
で組立てることができ、軸受組立時の作業性が向
上する。又、本発明では仕上げ精度の優れた転送
面溝径寸法のバラツキに基づいて、幅仕上げ寸法
をフイードバツク制御するようにしたから、フイ
ードバツク量が少なくすることができ、簡単に且
つ正確な制御ができる。更に、本発明では研削
時、小径端面から鍔までの寸法が常に一定に保た
れるので、測定された転走面溝径寸法の基準値か
らの偏差に対応する軸方向長さ分を幅寸法の基準
値(設計上の狙い寸法)に付加させるだけで、小
径端面から鍔に至る寸法も同時に所定寸法(転送
面溝径寸法のバラツキが考慮された値)に仕上げ
ることができ、本発明による軸受を組立てた場合
は、軸受スキマ(軸受予圧)も厳しく設定するこ
とができる。
As explained above, the present invention is a method for machining an inner ring of a tapered roller bearing, in which the inner ring transfer surface is ground and finished, and then the inner ring small diameter end face is ground and finished. This converted value is converted into a deviation in the direction, and this converted value is fed back to the in-process control gauge for small-diameter end face machining, and this gauge allows end face grinding of the small-diameter end face of the inner ring and the collar, which are mounted integrally with a certain distance apart. Since the grinding wheel and the flange grinding wheel are used to simultaneously grind, even if there are variations in the raceway groove diameter and width dimensions, the raceway groove dimensions can be determined based on the small diameter end face without being affected by them. The assembly height with respect to the raceway surface of the outer ring is constant, and the assembly height does not need to be adjusted when assembling a double-row tapered roller bearing or when assembling a double-row back-to-back assembly. The bearing can be assembled without a spacer or with only one type of spacer, improving work efficiency when assembling the bearing. In addition, in the present invention, the finished width dimension is subjected to feedback control based on the variation in the diameter dimension of the transfer surface groove with excellent finishing accuracy, so the amount of feedback can be reduced and control can be performed easily and accurately. . Furthermore, in the present invention, the dimension from the small diameter end face to the flange is always kept constant during grinding, so the width dimension is determined by the axial length corresponding to the deviation of the measured raceway groove diameter dimension from the reference value. By simply adding it to the reference value (design target dimension), the dimension from the small diameter end face to the flange can be finished to the specified dimension (a value that takes into account the variation in the transfer surface groove diameter dimension). When the bearing is assembled, the bearing clearance (bearing preload) can also be set strictly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスペーサなしで組立てられた複列円錐
ころ軸受を示す要部断面図、第2図は従来の軸受
内輪の加工方法を示す概略図、第3図は一般的な
複列円錐ころ軸受を示す要部断面図、第4図は2
個の円錐ころ軸受を背面組合せで組立てた場合を
示す要部断面図、第5図は従来の小径端面基準の
加工方法を示す概略図、第6図は従来の加工方法
の問題点を示す拡大図、第7図は本発明に係る内
輪の加工方法の具体例を示す概略図、第8図は加
工原理を示す説明図である。 20…軸受内輪、21…鍔、22…鍔研削砥
石、23…端面研削砥石。
Figure 1 is a sectional view of the main parts of a double-row tapered roller bearing assembled without a spacer, Figure 2 is a schematic diagram showing a conventional method for machining the inner ring of the bearing, and Figure 3 is a typical double-row tapered roller bearing. A sectional view of the main part showing the
Figure 5 is a schematic diagram showing the conventional machining method based on the small diameter end face, and Figure 6 is an enlarged view showing the problems with the conventional machining method. FIG. 7 is a schematic diagram showing a specific example of the inner ring machining method according to the present invention, and FIG. 8 is an explanatory diagram showing the machining principle. 20... Bearing inner ring, 21... Tsuba, 22... Tsuba grinding wheel, 23... End face grinding wheel.

Claims (1)

【特許請求の範囲】[Claims] 1 内輪転送面を研削仕上げした後、内輪小径端
面を研削仕上げする円錐ころ軸受内輪の加工方法
であつて、転送面仕上げ寸法の狙い仕上寸法から
の偏差を内輪軸方向の偏差に換算し、この換算値
だけ小径端面加工用のインプロセス制御用ゲージ
にフイードバツクし、このゲージによつて、内輪
の小径端面並びに鍔を一定距離だけ離反して一体
に取付けた端面研削砥石及び鍔研削砥石にて同時
に研削するようになしたことを特徴とする円錐こ
ろ軸受内輪の加工方法。
1 A method for processing the inner ring of a tapered roller bearing, in which the inner ring small diameter end face is finished by grinding after the inner ring transfer surface is ground and finished, and the deviation of the transfer surface finish dimension from the target finished dimension is converted to the deviation in the inner ring axial direction. The converted value is fed back to the in-process control gauge for small-diameter end face machining, and this gauge allows the small-diameter end face of the inner ring and the flange to be simultaneously processed by the end face grinding wheel and the flange grinding wheel, which are installed integrally with a certain distance apart. A method for machining an inner ring of a tapered roller bearing, characterized by performing grinding.
JP7577080A 1980-06-04 1980-06-04 Working method for inner ring of tapered roller bearing Granted JPS571660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7577080A JPS571660A (en) 1980-06-04 1980-06-04 Working method for inner ring of tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7577080A JPS571660A (en) 1980-06-04 1980-06-04 Working method for inner ring of tapered roller bearing

Publications (2)

Publication Number Publication Date
JPS571660A JPS571660A (en) 1982-01-06
JPS626951B2 true JPS626951B2 (en) 1987-02-14

Family

ID=13585768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7577080A Granted JPS571660A (en) 1980-06-04 1980-06-04 Working method for inner ring of tapered roller bearing

Country Status (1)

Country Link
JP (1) JPS571660A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144662A (en) * 1981-02-25 1982-09-07 Ntn Toyo Bearing Co Ltd Method for processing of inner ring of conical roller bearing
JPS5871062A (en) * 1981-10-24 1983-04-27 Ntn Toyo Bearing Co Ltd Machining method of inner ring in tapered roller bearing
JPH0783715B1 (en) * 1981-11-23 1995-09-13
DE3242474T1 (en) * 1982-01-12 1984-10-04 Ntn Toyo Bearing Co. Ltd., Osaka Process for the manufacture of bearings for the drive wheels of motor vehicles
JPS6319311B1 (en) * 1982-01-19 1988-04-22 Ntn Toyo Bearing Co Ltd

Also Published As

Publication number Publication date
JPS571660A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
US2478607A (en) Grinding machine
JP4047277B2 (en) Method and apparatus for grinding the central bearing position of a crankshaft
US4592172A (en) Method of machining tapered roller bearing inner rings
US5945595A (en) Online roll profile measuring system and measuring method using the same
CN110509115B (en) High-precision grinding process and application of slender shaft
US3905116A (en) Crankshaft bearing measuring apparatus
JPS626951B2 (en)
CN114700563A (en) Herringbone tooth centering measuring tool and herringbone tooth machining method
US5343626A (en) Method for measuring gears and system for machining and measuring gears
JP6379232B2 (en) Grinding equipment
CN110411634B (en) Device and method for measuring grinding force of spherical basal plane of conical roller
JPS6319311B1 (en)
JPS6250271B2 (en)
CN112122893B (en) Finish machining method of electric jumping rotor shaft
JP2620689B2 (en) Machining method for tapered roller bearing inner ring
JPS59192457A (en) Positioner
US20240217066A1 (en) Method of manufacturing chamfering wheel, chamfering wheel, and method of adjusting chamfering wheel before use
CN109676155B (en) Displacement compensation turning method of metal tin plate
CN114473645B (en) High-speed high-precision machining method and device for double-row cylindrical roller bearing raceway and application
US2408995A (en) Spindle bearing
TWI829108B (en) Manufacturing method of chamfering wheel, chamfering wheel and chamfering wheel adjustment method before use
JPH0244670B2 (en)
CN118039544B (en) Centering deviation adjusting method and centering deviation adjusting assembly
JPH08281539A (en) Centering method for roll grinding machine
JPS637909B2 (en)