JPS58166671A - Pressure control method of fuel cell power generating system - Google Patents
Pressure control method of fuel cell power generating systemInfo
- Publication number
- JPS58166671A JPS58166671A JP57049512A JP4951282A JPS58166671A JP S58166671 A JPS58166671 A JP S58166671A JP 57049512 A JP57049512 A JP 57049512A JP 4951282 A JP4951282 A JP 4951282A JP S58166671 A JPS58166671 A JP S58166671A
- Authority
- JP
- Japan
- Prior art keywords
- load
- fuel cell
- fuel
- compressor
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は燃料電池発電システムの制御方法に係如、41
に、排熱回収にターボ圧縮機を有する燃料電池発電シス
テムの圧力制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a fuel cell power generation system.
The present invention relates to a pressure control method for a fuel cell power generation system having a turbo compressor for exhaust heat recovery.
燃料電池を効率良く運転すゐ丸めKは、流量。To operate a fuel cell efficiently, K is the flow rate.
圧力、温度等を制御すゐ必要があ)、具体的准方法に関
しては、負荷電流に応じて燃料電池への空気供給量及び
再循礒量を制御す為方法(41会唱4111−4135
2号)、改質器への供給流量を電池電流と改質器温度で
制御する方法(特公昭5〇−1暴Os8号)、および改
質器の圧力を電池よシ高くする方法(418111@5
3−511923号)等カ提案されて%/%為、これら
O制御方法は多くの利点を有してIA為が、排熱回収に
ターボ圧縮機を有するシステムの制御方法としては不十
分である6例えば、電池O負荷が減少すると、必要とす
る空気量が減少し、吐出流量が低下する。この場合、吐
出圧力を一定に保持すると、サージング現象が発生する
可m性があるにもかかわらず、前記し九制御方法でFi
考慮されていない。It is necessary to control the pressure, temperature, etc.), and for specific methods, refer to the method for controlling the amount of air supplied to the fuel cell and the amount of recirculation according to the load current (41 Chosho 4111-4135).
2), a method of controlling the supply flow rate to the reformer by battery current and reformer temperature (Special Publication No. 50-1 Osho No. 8), and a method of increasing the pressure of the reformer higher than that of the battery (418111). @5
3-511923) etc., these O control methods have many advantages and IA control methods are insufficient as a control method for a system having a turbo compressor for waste heat recovery. 6. For example, when the battery O load decreases, the amount of air required decreases and the discharge flow rate decreases. In this case, although there is a possibility that a surging phenomenon may occur if the discharge pressure is kept constant, the Fi
Not considered.
本発明Oii的は、燃料電池のターボ圧縮機の運転を安
定化させる丸め、運転圧力の最適化を図る制御方法を提
供することにある。An object of the present invention is to provide a control method that stabilizes the operation of a turbo compressor of a fuel cell and optimizes the operating pressure.
本発明では、燃料電池の負荷に応じて、排熱回収用ター
ボ圧縮機の回転数と吐出圧力を変化させるように運転す
る0例えば、負荷が減少すれば必要空気量が減少し、タ
ーボ圧縮機の必l!同転数が低下す為、ζO場合、圧縮
熱吐出圧力を高い状態に保持すると、空気が圧縮されな
い現象(ナージング現象)が発生する可能性が強い、゛
この九め、本発明では、吐出圧力を低下させるように運
転することで、ナージング現象の発生を防止させる。In the present invention, the rotation speed and discharge pressure of the turbo compressor for exhaust heat recovery are changed according to the load of the fuel cell.For example, if the load decreases, the required air amount decreases, A must! Because the number of rotations decreases, in the case of ζO, if the compression heat discharge pressure is kept high, there is a strong possibility that a phenomenon in which the air is not compressed (nursing phenomenon) will occur. By operating in a manner that reduces the nursing phenomenon, the occurrence of the nerging phenomenon can be prevented.
以下、本発明の一実施例をjllmlKより説−する、
薦IEは、燃料電池10.燃料改質SSO。Hereinafter, one embodiment of the present invention will be explained by JllmlK.
The recommended IE is fuel cell 10. Fuel reforming SSO.
タービン30、圧縮機31よ)構成される#a科電池発
電システムに、本発明による制御装置■]を適用し九例
である。C0図で、S2は改質ガス流量制御装置、62
は改質器燃焼用燃料流量−御装置、72は電池燃料圧カ
ー御装置、82は電池空気流量制御装置、92は電池空
気圧力制御装置、10mは改質器燃焼用空気流量制御装
置、111は圧縮機吐出圧力制御装置である。51.・
l。This is nine examples in which the control device (1) according to the present invention is applied to a battery power generation system in category #a consisting of a turbine 30 and a compressor 31. In the C0 diagram, S2 is a reformed gas flow rate control device, 62
111 is a fuel flow rate control device for reformer combustion; 72 is a battery fuel pressure control device; 82 is a battery air flow rate control device; 92 is a battery air pressure control device; 10m is a reformer combustion air flow rate control device; is a compressor discharge pressure control device. 51.・
l.
81および101は流量計、71.91および111は
圧力計、53,68,78,418.・8゜103およ
び113は調曽伸である。これら0制御装置には制御装
置120KjDB1.Bs −Bm e B4 @ C
1s c、 a c、の設定値が与えられゐ、すなわち
、流量制−装置82,102゜52および62の設定値
は81 g Bm m Bm m B4 、圧力制御装
置92.72および112の設定値は01 a C1#
c。81 and 101 are flow meters, 71.91 and 111 are pressure gauges, 53, 68, 78, 418.・8°103 and 113 are Choso Shin. These 0 controllers include controller 120KjDB1. Bs −Bm e B4 @C
1s c, a c, i.e., the settings of the flow control devices 82, 102, 52 and 62 are 81 g Bm m Bm m B4, and the settings of the pressure control devices 92, 72 and 112. is 01 a C1#
c.
で与える。制御装置120へは、負荷40から検出され
て負荷に比例した信号Aが入力される。Give with. A signal A detected from the load 40 and proportional to the load is input to the control device 120 .
燃料改質器20の反応部22に配管50を通して供給さ
れた燃料は、燃焼室21よシの熱で改質され、水素リッ
チのガスとなり配管54を通って燃料電池10の燃料室
12に供給される。空気圧縮機31よりの空気は、配管
100.80より燃料電池lOの空気室11に供給され
、水素と酸素が電気化学的に反応して電極13および1
4の間に電圧を発生する0発生した電力は、回路41に
よって外部負荷40に供給される。燃料1!池10での
未反応燃料は配管70に、窒スは配管90に排出される
。未反応燃料は、配管60よす供給される燃焼用燃料と
ともに燃料改質器20の燃焼室21で燃焼する。燃焼エ
ネルギーの一部は、改質用に消費される。残りのエネル
ギーは、燃現ガスとして配管23を通ってガスタービン
30に供給される。The fuel supplied to the reaction section 22 of the fuel reformer 20 through the pipe 50 is reformed by heat from the combustion chamber 21 and becomes a hydrogen-rich gas, which is supplied to the fuel chamber 12 of the fuel cell 10 through the pipe 54. be done. Air from the air compressor 31 is supplied to the air chamber 11 of the fuel cell lO through the pipe 100.80, and hydrogen and oxygen react electrochemically to form the electrodes 13 and 1.
The generated power is supplied by a circuit 41 to an external load 40 . Fuel 1! Unreacted fuel in the pond 10 is discharged to a pipe 70 and nitrogen is discharged to a pipe 90. The unreacted fuel is combusted in the combustion chamber 21 of the fuel reformer 20 together with the combustion fuel supplied through the pipe 60. A portion of the combustion energy is consumed for reforming. The remaining energy is supplied to the gas turbine 30 through the pipe 23 as combustion gas.
本発明の制御系120は、従来より知られている負荷追
従制御を含んでお)、負荷に応じた流量設定値Bl e
Bm m Bl # B4を出力する。改質器燃焼用
空気流量制御装置102で社、燃焼状態を最適化させる
丸めに、配管70および60にて供給される未反応燃料
および燃焼用燃料の流量に応じて配管100全通して導
かれる空気流量を調整する。負荷が変動すると燃料電池
10での水素消費量が変化し、未反応燃料の水嵩量が変
動する。The control system 120 of the present invention includes a conventionally known load following control), and sets a flow rate set value Bl e according to the load.
Bm m Bl # Output B4. In the reformer combustion air flow control device 102, air is guided throughout the piping 100 according to the flow rate of unreacted fuel and combustion fuel supplied through the piping 70 and 60 to optimize the combustion state. Adjust air flow. When the load changes, the amount of hydrogen consumed in the fuel cell 10 changes, and the amount of water in the unreacted fuel changes.
この場合の空気流量は、燃料改質器2oに導かれる燃料
がメタンの場合の理論空気流量は次式のようになる(7
アラデ一定数を9650Qc/motとする)。In this case, the theoretical air flow rate when the fuel led to the fuel reformer 2o is methane is as follows (7
The Arade constant is 9650Qc/mot).
−)−2XFso) ・・・・・・・
・・・・・(1)ここで、Fl・・は理論空気流*(m
ol/ a )FIは改質器反応部入ロメタンガス
流量(mot/ s )
F’@oは改質器燃焼室入口メタンガス流量(moj/
畠)
Mは燃料電池直列接続個数
lは負荷電流(A)
である。-)-2XFso) ・・・・・・・・・
...(1) Here, Fl... is the theoretical air flow*(m
ol/a) FI is the flow rate of romethane gas entering the reformer reaction section (mot/s) F'@o is the flow rate of methane gas at the inlet of the reformer combustion chamber (moj/
(Hata) M is the number of fuel cells connected in series, l is the load current (A).
[114+装置lO8での空気流量は、例えば(1)式
のL3倍になるように設定値を与える。[114+The air flow rate in the device lO8 is set to a value that is, for example, L3 times the equation (1).
次に、圧力制御装置72,92,112の圧力設定方法
を第2図を用いて説明する。負荷変化が設定変化I11
よ〉大きい場合について考える。仮に、負荷が減少する
と、燃料電池1Gでの反応量は減少するので、各流量制
御系の流量は小さくなゐように設定され為、この丸め、
空気圧縮機310吐出流量は減少する丸め、第2図の1
22で必l!空気流量を求める。空気圧縮機310吐出
流量(Q)と吐出圧力(H)の関係は、一般的に第3図
のようであり、吐出流量は空気圧#横310囲転赦に、
吐出圧力は回転数の2乗に比例する。第2図のステップ
123では、吐出流量に比例し九回転数nを計算し、ス
テップ124では、回転数のm乗(通常は2乗)に比例
した吐出圧力を計算する。すなわち、負荷が減少し九場
合には、回転数は負荷に、吐出圧力は負荷のm乗に比例
させて減少させる。この場合の圧縮機31の運転状況を
jI3図で説明する。定格運転時の回転数In1時、R
1の点で運転しているものとする。負荷が減少し、回転
数がnsK減少し九場合、吐出圧カ一定時にはRsQ点
で運転される。吐出流量が減少すると空気が圧縮されな
い現象、サージングが空気圧縮機31に発生する。この
状態は、ms図で3にて示してあり、Rsの点はサージ
ング発生寸前の状態である。この場合、吐出圧力が低く
なるように1例えば% Rsで運転すれば、サージング
発生の恐れがなくなる。Next, a method of setting the pressure of the pressure control devices 72, 92, 112 will be explained using FIG. 2. Load change is setting change I11
Let's consider the case where it is large. If the load decreases, the amount of reaction in the fuel cell 1G decreases, so the flow rate of each flow control system is set to be small.
The air compressor 310 discharge flow rate is reduced by rounding, 1 in FIG.
A must at 22! Find the air flow rate. The relationship between the air compressor 310 discharge flow rate (Q) and the discharge pressure (H) is generally as shown in Fig. 3, and the discharge flow rate is equal to the air pressure #horizontal rotation,
The discharge pressure is proportional to the square of the rotational speed. In step 123 of FIG. 2, the number of revolutions n is calculated in proportion to the discharge flow rate, and in step 124, the discharge pressure is calculated in proportion to the m-th power (usually squared) of the number of revolutions. That is, when the load decreases, the rotational speed is decreased in proportion to the load, and the discharge pressure is decreased in proportion to the m power of the load. The operating status of the compressor 31 in this case will be explained using diagram jI3. When the rotation speed is In1 during rated operation, R
Assume that you are driving at point 1. When the load decreases and the rotational speed decreases by nsK, the engine is operated at point RsQ when the discharge pressure is constant. When the discharge flow rate decreases, surging, a phenomenon in which air is not compressed, occurs in the air compressor 31. This state is shown by 3 in the ms diagram, and the point Rs is a state on the verge of surging occurrence. In this case, if the discharge pressure is lowered by 1% Rs, for example, the risk of surging will be eliminated.
制御装置120よシの圧力設定信号はC15C,a C
,に発せられるが、Is1図の実施例においては、C■
の値をC1及びC雪よシ高くする必要がある。The pressure setting signal from the control device 120 is C15C,aC
, but in the example of the Is1 diagram, C■
It is necessary to make the value higher than that of C1 and C snow.
次に、負荷変化時における燃料電池10の起電力につい
て、縞4図、第S図を用いて説明する。Next, the electromotive force of the fuel cell 10 when the load changes will be explained with reference to Fig. 4 and Fig. S.
第4図は負荷電流と起電力の関係、JIIS図は電池の
ガス圧力と起電力の関係を示しえものである。Figure 4 shows the relationship between load current and electromotive force, and the JIIS diagram shows the relationship between battery gas pressure and electromotive force.
負荷電流が減少すると、燃料電池の起電力は上昇する1
本発明では、負荷減少時にはガス圧力を低下させるよう
に運転させるが、ガス圧力を低下させると起電力は低下
する特性を有しておシ、負荷電流の減少に伴う起電力上
昇と相殺する。すなわち、負荷変化時の出力電圧変動が
小さくなることになる。When the load current decreases, the electromotive force of the fuel cell increases1
In the present invention, when the load is reduced, the operation is performed so as to reduce the gas pressure, but when the gas pressure is reduced, the electromotive force is reduced, which offsets the increase in the electromotive force caused by the reduction in the load current. In other words, the output voltage fluctuation when the load changes becomes smaller.
以上に於ては、本発明をその特定の実施例について説明
し九が、本発明は説明した実施例に限定されるものでな
く、本発明の範囲内で種々の応用が可能であることは画
業者にとって明らかである。Although the present invention has been described above with reference to specific embodiments thereof, it is understood that the present invention is not limited to the described embodiments and that various applications are possible within the scope of the present invention. This is obvious to painters.
例えば、制御装置120への入力信号は、負荷電流の代
りに電力でも同一の効果を得ることができる。を九、圧
縮機吐出圧力は、放風量110で調整しているが、ター
ビン入口ガスをバイパスさせる方式でも良く、電池出口
空気90を大気圧放出する方法も考えられる。For example, the input signal to the controller 120 may be electrical power instead of load current to achieve the same effect. (9) Although the compressor discharge pressure is adjusted by the air discharge amount 110, a method of bypassing the turbine inlet gas may also be used, and a method of releasing the battery outlet air 90 to atmospheric pressure may also be considered.
本発明によれば次の効果がある。According to the present invention, there are the following effects.
(1) 圧縮機の運転が安定化し、サージング発生を
防止できる。(1) Compressor operation becomes stable and surging can be prevented.
(2)負荷変動時の燃料電池電圧変動を小さくすること
ができる。(2) Fuel cell voltage fluctuations during load fluctuations can be reduced.
第1図は本発明を適用し九燃料電池発電システムの一例
を示した系統図、11112図は本発明の詳細な説明す
るフロー線図、第5FjAは圧縮機の吐出流量と吐出力
の関係を示す特性図、第4図および第6図は本発明の詳
細な説明する九めの燃料電池O特性図である。
lO・・・燃料電池、20・・・燃料改質機、3G・・
・タービン、31・・・圧111機、12G・・・制御
装置。
代理人 弁理士 高橋明夫
第1図
第3図
吐詣糺量σ(’/、 )Fig. 1 is a system diagram showing an example of a fuel cell power generation system to which the present invention is applied, Fig. 11112 is a flow diagram explaining the present invention in detail, and Fig. 5FjA shows the relationship between the discharge flow rate and discharge force of the compressor. The characteristic diagrams shown in FIGS. 4 and 6 are the ninth fuel cell O characteristic diagrams explaining the present invention in detail. lO...Fuel cell, 20...Fuel reformer, 3G...
・Turbine, 31...pressure 111 machine, 12G...control device. Agent: Patent Attorney Akio Takahashi Figure 1 Figure 3 Disclosure amount σ('/, )
Claims (1)
、前記燃料電池に酸化ガスを供給する圧縮機とからなる
燃料電池発電VステAO圧力を制御すゐ方法において、
前記燃料電池O負荷電流を検出し、この負荷電流の減少
に基づiて前記圧縮機の關転歇および前記圧縮機の酸化
ガス吐出圧力を低下させることを特徴とすゐ燃料電池発
電システムの圧力制御方法。1. A method for controlling the VST AO pressure for fuel cell power generation, which comprises a fuel cell, means for supplying fuel to the fuel cell, and a compressor for supplying oxidizing gas to the fuel cell,
The fuel cell power generation system is characterized in that the load current of the fuel cell O is detected, and based on the decrease in the load current, the rotation of the compressor and the oxidant gas discharge pressure of the compressor are reduced. Pressure control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57049512A JPS58166671A (en) | 1982-03-27 | 1982-03-27 | Pressure control method of fuel cell power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57049512A JPS58166671A (en) | 1982-03-27 | 1982-03-27 | Pressure control method of fuel cell power generating system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58166671A true JPS58166671A (en) | 1983-10-01 |
JPS6260791B2 JPS6260791B2 (en) | 1987-12-17 |
Family
ID=12833179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57049512A Granted JPS58166671A (en) | 1982-03-27 | 1982-03-27 | Pressure control method of fuel cell power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58166671A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5975571A (en) * | 1982-10-23 | 1984-04-28 | Jgc Corp | Method for operating power generating system with fuel cell |
JPS60158562A (en) * | 1984-01-27 | 1985-08-19 | Mitsubishi Electric Corp | Fuel cell power generating system |
US4838020A (en) * | 1985-10-24 | 1989-06-13 | Mitsubishi Denki Kabushiki Kaisha | Turbocompressor system and method for controlling the same |
JPH02183965A (en) * | 1989-01-06 | 1990-07-18 | Mitsubishi Electric Corp | Power generating system for fuel cell |
EP0629013A2 (en) * | 1993-06-07 | 1994-12-14 | Daimler-Benz Aktiengesellschaft | Method and device for supplying air to a fuel cell system |
JP2016091833A (en) * | 2014-11-05 | 2016-05-23 | トヨタ自動車株式会社 | Fuel cell system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353389A (en) * | 1986-08-19 | 1988-03-07 | ベンデイクス・リミテツド | Assembly for connecting pipe |
DE4333273C1 (en) * | 1993-09-30 | 1994-11-10 | Rasmussen Gmbh | Push-in coupling for connecting two fluid lines |
CN103727074B (en) * | 2013-12-07 | 2016-02-10 | 西南交通大学 | Furl cell engine low power run surge resistance of air compressor method |
-
1982
- 1982-03-27 JP JP57049512A patent/JPS58166671A/en active Granted
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5975571A (en) * | 1982-10-23 | 1984-04-28 | Jgc Corp | Method for operating power generating system with fuel cell |
JPH0261099B2 (en) * | 1982-10-23 | 1990-12-19 | Jgc Corp | |
JPS60158562A (en) * | 1984-01-27 | 1985-08-19 | Mitsubishi Electric Corp | Fuel cell power generating system |
JPH0534783B2 (en) * | 1984-01-27 | 1993-05-24 | Mitsubishi Electric Corp | |
US4838020A (en) * | 1985-10-24 | 1989-06-13 | Mitsubishi Denki Kabushiki Kaisha | Turbocompressor system and method for controlling the same |
JPH02183965A (en) * | 1989-01-06 | 1990-07-18 | Mitsubishi Electric Corp | Power generating system for fuel cell |
EP0629013A2 (en) * | 1993-06-07 | 1994-12-14 | Daimler-Benz Aktiengesellschaft | Method and device for supplying air to a fuel cell system |
JPH0714599A (en) * | 1993-06-07 | 1995-01-17 | Daimler Benz Ag | Power regulator of fuel cell device, and operational method thereof |
EP0629013A3 (en) * | 1993-06-07 | 1995-11-29 | Daimler Benz Ag | Method and device for supplying air to a fuel cell system. |
JP2016091833A (en) * | 2014-11-05 | 2016-05-23 | トヨタ自動車株式会社 | Fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JPS6260791B2 (en) | 1987-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2501872B2 (en) | Method for converting inert gas of fuel electrode when fuel cell is shut down | |
EP3413382A1 (en) | Fuel cell assembly system and operating method therefor | |
JPS58166671A (en) | Pressure control method of fuel cell power generating system | |
US7056611B2 (en) | System for controlling the operating temperature of a fuel cell | |
JP4664585B2 (en) | Combined power generation system of fuel cell and gas turbine | |
JP5380039B2 (en) | Fuel cell power generation system and operation method thereof | |
JPS60177565A (en) | Operation method of fuel cell power generating system | |
JPS6356672B2 (en) | ||
JP2004063368A (en) | Fuel cell power generation system | |
JPH1167240A (en) | Fuel cell power generating device equipped with multi-stage turbine compressor | |
JP3262145B2 (en) | Air supply device for fuel cell | |
JP2931372B2 (en) | Operating method of fuel cell power generation system | |
JP3151628B2 (en) | Molten carbonate fuel cell power generator | |
JP3387234B2 (en) | Fuel cell generator | |
JP2998301B2 (en) | Combustor temperature control method and apparatus for fuel cell power generator | |
JP3467759B2 (en) | Control method of outlet temperature of reformer | |
JPH0261099B2 (en) | ||
JPS61227371A (en) | Fuel cell power generation system | |
JPS62119869A (en) | Control system for fuel cell power generation plant | |
JPS6177273A (en) | Control system for fuel cell power generation plant | |
JPH0461755A (en) | Operation control system of fuel cell power generating device | |
JPS6372072A (en) | Control method of fuel cell power generating plant | |
JPS62281275A (en) | Fuel cell power plant | |
JPS62222571A (en) | Fuel cell power generating plant | |
JPS63207053A (en) | Fuel cell power generation plant |