JPS5975571A - Method for operating power generating system with fuel cell - Google Patents

Method for operating power generating system with fuel cell

Info

Publication number
JPS5975571A
JPS5975571A JP57185380A JP18538082A JPS5975571A JP S5975571 A JPS5975571 A JP S5975571A JP 57185380 A JP57185380 A JP 57185380A JP 18538082 A JP18538082 A JP 18538082A JP S5975571 A JPS5975571 A JP S5975571A
Authority
JP
Japan
Prior art keywords
fuel
compressor
fuel cell
air
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57185380A
Other languages
Japanese (ja)
Other versions
JPH0261099B2 (en
Inventor
Katsumasa Yamaguchi
克誠 山口
Tsutomu Katagiri
務 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Japan Gasoline Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Japan Gasoline Co Ltd filed Critical JGC Corp
Priority to JP57185380A priority Critical patent/JPS5975571A/en
Publication of JPS5975571A publication Critical patent/JPS5975571A/en
Publication of JPH0261099B2 publication Critical patent/JPH0261099B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the overall efficiency of the power generating system at the time of partial load operation, by operating the fuel cell then at lower operating pressure than that at the full load operation through the variable pressure and variable airflow operation of the air compressor. CONSTITUTION:A fuel 2 is reformed with steam and denatured by a reforming apparatus 4 into hydrogen fuel and the same is supplied to the fuel cell 8. Air is also supplied to the cell through a compressor 22 equipped with a heat recovery turbine 40, and the air is adapted to react there with the hydrogen to generate electricity. At the time of partial load operation, auxiliary fuel 3 to be supplied to a burner 28 installed at the inlet line of the turbine 40 is so adjusted that the airflow measured by a flowmeter installed in the discharge line of the compressor 22 indicates such a value that corresponds to the load value, whereby the compressor 22 can be operated to provide varied pressure and airflow. Thus, it becomes possible to operate the cell 8 under varied pressure conditions provided by the compressor 22, and the improvement of the overall efficiency of the power generating system at the partial load operation can be achieved.

Description

【発明の詳細な説明】 本発明は原料ガス、例えばメタンを主成分とする天然ガ
スを水蒸気改質、−酸化炭素変成して水素燃料ガスを得
、これを水素−酸素(空気)型撚料電池に供給して発電
全行う、燃料電池発電システムの運転方法に関する。− 燃料電池の発電効率を上げるため、近時、燃料電池の操
作圧力は、1〜8 #/ caGと加圧の方向にあり、
従料電池に供給される空気は1発電効率を向上させる目
的で、排熱回収タービンを備えた圧縮機により昇圧し、
熱源としては1発電システムから発生する高温の排ガス
、またはスブーームが利用されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces a hydrogen fuel gas by steam reforming and carbon oxide transformation of a raw material gas, for example, natural gas whose main component is methane. The present invention relates to a method of operating a fuel cell power generation system that generates electricity by supplying it to a battery. - In order to increase the power generation efficiency of fuel cells, the operating pressure of fuel cells has recently been increasing from 1 to 8 #/caG.
The air supplied to the conventional batteries is pressurized by a compressor equipped with an exhaust heat recovery turbine to improve power generation efficiency.
As a heat source, high-temperature exhaust gas generated from a power generation system or subboom is used.

このような加圧型の燃料′Φ1池発電システムにおいて
も、需要側の要望によ9部分負荷での運転は頻繁に行わ
れるところであり、この場合においても高効率の運転方
法が確立さ几ることか望ま几て来た。
Even in such a pressurized fuel Φ1 pond power generation system, operation at partial load is frequently performed due to demands from the demand side, and even in this case, it is necessary to establish a highly efficient operating method. It came as I expected.

特開昭51−105551号公報には、加圧型燃料電池
発電システムにおける部分負荷運転の方法が開示されて
いるが、燃料電池のみを高効率で運転する方法に留まっ
ている。
JP-A-51-105551 discloses a method of partial load operation in a pressurized fuel cell power generation system, but the method is limited to operating only the fuel cell with high efficiency.

本発明者等は燃料電池だけですく、システム全体の高効
率運転方法につき検討したところ2部分負荷運転時にお
いては、高圧はど高効率という従来の認識に反する結果
を得て9本発明を完成するに至った。即ち2本発明は。
The present inventors studied a method for highly efficient operation of the entire system without using only a fuel cell, and obtained results contrary to the conventional understanding that high pressure is highly efficient during dual-part load operation, and completed the present invention. I ended up doing it. That is, two aspects of the present invention are as follows.

原料ガスを水蒸気改質・変成して水素燃料を生成する燃
料処理装置、前記水素燃料と空気等の酸化剤の供給を受
けて発電を行う燃料電池および前記燃料電池に供給する
空気等の酸化剤を圧縮するための排熱回収タービンを備
えた圧縮装置とからなる加圧型燃料電池発電システムに
おいて1部分負荷時に、燃料電池を全負荷時の運転圧力
より低い圧力で運転することを特徴とする燃料電池発電
システムにおける運転方法 を提供するものである。
A fuel processing device that generates hydrogen fuel by steam reforming and converting raw material gas, a fuel cell that generates electricity by receiving the hydrogen fuel and an oxidizing agent such as air, and an oxidizing agent such as air that is supplied to the fuel cell. A pressurized fuel cell power generation system comprising a compression device equipped with an exhaust heat recovery turbine for compressing the fuel, characterized in that the fuel cell is operated at a pressure lower than the operating pressure at full load during one partial load. A method of operating a battery power generation system is provided.

以下1図面等に基づき詳細に説明する。A detailed explanation will be given below based on one drawing and the like.

初めに、第1図を参照しながら全負荷運転について説明
する。
First, full load operation will be explained with reference to FIG.

第1図は1本発明の運転方法を実施すべき典型的な発電
システムを示すフローシートで6り、改質装置4.燃料
電池8.圧縮機22および排熱回収タービン40が主な
構成機器である。
FIG. 1 is a flow sheet showing a typical power generation system in which the operating method of the present invention is to be implemented. Fuel cell8. The compressor 22 and the exhaust heat recovery turbine 40 are the main components.

改質装置4は夫々公知の水蒸気改質器、高温変成器およ
び低温変成器より構成さ庇ておシ、ここにて、燃料2(
天然ガス)と後述する燃料改質用スチームとの反応によ
り得られた水素を主成分とするガスはライン6を経て燃
料電池8の燃料室lOに送られる。
The reformer 4 is composed of a known steam reformer, a high-temperature shift converter, and a low-temperature shift converter, respectively, and here, the fuel 2 (
A gas containing hydrogen as a main component obtained by the reaction between natural gas (natural gas) and fuel reforming steam (described later) is sent to the fuel chamber IO of the fuel cell 8 via a line 6.

燃料電池8は水素−酸素(空気)型の燃料電池であり、
電極16により、燃料室】0.空気室12および電解液
室14にセパレートされ、更に電池の発熱を制御するた
めの電池冷却器32により構成されている。符号18は
直流・交流変換器を示している。
The fuel cell 8 is a hydrogen-oxygen (air) type fuel cell,
By the electrode 16, the fuel chamber]0. It is separated into an air chamber 12 and an electrolyte chamber 14, and further includes a battery cooler 32 for controlling heat generation of the battery. Reference numeral 18 indicates a DC/AC converter.

燃料電池8の空気室12には、圧縮機22により空気2
0が昇圧されて送られ、前記水素ガスとの反応により発
電が行われる。
Air 2 is supplied to the air chamber 12 of the fuel cell 8 by a compressor 22.
0 is pressurized and sent, and electricity is generated by reaction with the hydrogen gas.

反応を終了した水素ガス26と、空気24は共に改質装
置4に送られ燃焼させることにより改質反応の熱源とし
て利用され、前記改質反応が進められる。改質反応に必
要なスチームは、燃料電池の発熱を制御する為に用いら
れる補給水30が。
Both the hydrogen gas 26 and the air 24 that have completed the reaction are sent to the reformer 4 and burned, thereby being used as a heat source for the reforming reaction, and the reforming reaction proceeds. The steam necessary for the reforming reaction comes from makeup water 30, which is used to control heat generation in the fuel cell.

電池冷却器32を経る間に蒸発して得られるスチーム3
4の一部が用いられる。残余のスチーム3Bは系外に取
り出されて利用される。
Steam 3 obtained by evaporation while passing through the battery cooler 32
A portion of 4 is used. The remaining steam 3B is taken out of the system and used.

改質装置からの燃炒排ガス36と補助燃料3を燃焼器2
8で燃焼して排熱回収タービン40の駆動用動力として
使用されこれと同軸の圧縮機22を駆動する。
Combustion exhaust gas 36 from the reformer and auxiliary fuel 3 are transferred to the combustor 2.
8 and is used as driving power for the exhaust heat recovery turbine 40, which drives the compressor 22 coaxial therewith.

次に1部分負荷の場合については、電池における電気へ
の変換効率ηCは で表わされ、これは発電風を減少させると、電流密度が
疎となることから、向上することが知らnている。また
、操作圧力が高くなる程、高効率となることは上述のと
おシであり、これをグラフ化したものが第2図に示され
る。実線は定風量−1圧運転で圧力を変化(Pi> P
2>P3)させた場合の発゛Y「負荷とηCとの関係を
示す。
Next, in the case of one partial load, the conversion efficiency ηC of the battery into electricity is expressed as, and it is known that this improves when the power generation wind is reduced because the current density becomes sparse. . Furthermore, as mentioned above, the higher the operating pressure, the higher the efficiency, and a graph of this is shown in FIG. The solid line shows the pressure change (Pi > P
2>P3) shows the relationship between the load and ηC.

圧縮機の特性を表わした図が第3図に示されており、発
電負荷の如何に拘らずA点(100%)の定風量定圧運
転を行ったケースが第2図のP、の曲線で示される。即
ち1発電負荷の減少に伴いη0は上昇するから定風量定
圧運転は好ましいと考えられる。
A diagram showing the characteristics of the compressor is shown in Figure 3, and the curve P in Figure 2 represents the case of constant air flow and constant pressure operation at point A (100%) regardless of the power generation load. shown. That is, since η0 increases as the power generation load decreases, constant air volume and constant pressure operation is considered preferable.

これを更に、各負荷における溜当りの必要原料天然ガス
ノ熱量(以下、 Heat Rate (W/KVW(
) 。
This is further calculated as the heat rate (W/KVW) of the raw natural gas required per reservoir at each load.
).

略してH,R,という。)に換算したものが第4図の実
線Fに示される。
They are abbreviated as H and R. ) is shown by the solid line F in FIG.

これまでは、圧縮機と排熱回収タービンを含む圧縮装置
が自活、即ち糸外から動力を入几ないでタービンの回収
動力のみで昇圧可能という前提で説明してきたが、それ
には圧縮機の吐出圧に見合ったタービンの入口温度が維
持されることが必要となる。圧縮機の吐出圧が高くなる
程、高温ガスをタービンに導くことが要求される。
Up to now, we have explained the compression device including the compressor and the exhaust heat recovery turbine on the assumption that it is self-sustaining, that is, it is possible to increase the pressure only with the recovery power of the turbine without inputting power from outside the string. It is necessary to maintain a turbine inlet temperature commensurate with the pressure. The higher the discharge pressure of the compressor, the more high temperature gas is required to be guided to the turbine.

全負荷においても、現状、成る程度の補助燃料を焚くこ
とにより圧縮装置は自活できる。ところが2発電負荷を
下げると、改質装置で取扱う熱量はほぼ発電負荷の割合
で減少するにも拘らず、空気室から出る空気はほとんど
変わらないため、改質装置から得られる熱量は負荷に比
例して減少し。
Even under full load, the compressor can currently support itself by burning a certain amount of auxiliary fuel. However, when the power generation load is lowered, the amount of heat handled by the reformer decreases in proportion to the power generation load, but the amount of air coming out of the air chamber remains almost the same, so the amount of heat obtained from the reformer is proportional to the load. and decreased.

燃焼排ガスの温度が低下する。それ故、自活の為に多量
の補助燃料が必要となる。各負荷における補助燃料のi
(H,R,)が第4図の実線Aで示される。
The temperature of combustion exhaust gas decreases. Therefore, a large amount of auxiliary fuel is required for self-support. i of auxiliary fuel at each load
(H, R,) is shown by solid line A in FIG.

以上、定風量定圧運転について説明してきたが。Above, we have explained constant air volume and constant pressure operation.

圧縮機の風量を減少させると、どの様になるであろうか
What will happen if the air volume of the compressor is reduced?

発電負荷に従い、圧縮機風量を減少させると。When the compressor air volume is reduced according to the power generation load.

第3図の特性図に示されるようにA、B→Cと操作圧力
は低下し、各負荷におけるηCは第2図の破線で示され
るように変化する。この変風量変圧運転と先の定風量定
圧運転のηCを比較す几ば定風量定圧運転の方が優れて
いるように見える。第4図の破線Fが変風量変圧運転に
おけるH 、 R、を示しているが、実線^との比較で
定風量定圧運転の方が優れているようにみえる。
As shown in the characteristic diagram of FIG. 3, the operating pressure decreases from A and B to C, and ηC at each load changes as shown by the broken line in FIG. Comparing the ηC of this variable air volume variable pressure operation and the previous constant air volume constant pressure operation, it appears that the constant air volume constant pressure operation is superior. The broken line F in FIG. 4 shows H and R in the variable air volume and variable pressure operation, but compared to the solid line ^, the constant air volume and constant pressure operation appears to be superior.

次に補助燃料については、変風量変圧運転では。Next, regarding auxiliary fuel, in variable air volume variable pressure operation.

発電負荷を減少させても、空気室から出る空気が減少す
るので、改質装置から受ける熱量の減少に拘らず燃焼排
ガスの温度はほぼ一定となる。従って、補助燃料は減少
させることができる。(第4図の破線A)。
Even if the power generation load is reduced, the amount of air coming out of the air chamber is reduced, so the temperature of the combustion exhaust gas remains almost constant regardless of the reduction in the amount of heat received from the reformer. Therefore, auxiliary fuel can be reduced. (Dotted line A in Figure 4).

第4図の実線Tと破線Tは両運転における原料と補助燃
料の各々の合計を示す。変風量変圧運転は部分負荷にお
いて、少ない熱量で発電できることが分かる。
The solid line T and the broken line T in FIG. 4 indicate the respective sums of raw material and auxiliary fuel in both operations. It can be seen that variable air volume variable pressure operation can generate electricity with a small amount of heat at partial load.

尚、第4図の実線Tと破線Tとを発電総合効率に換算す
れば第5図のようになる。
Note that if the solid line T and broken line T in FIG. 4 are converted into total power generation efficiency, the result will be as shown in FIG. 5.

圧縮機の特性については既に述べたが1通常。As already mentioned, the characteristics of the compressor are 1. Normal.

広く運転範囲な取れないことが多い。その場合。A wide driving range is often not possible. In that case.

定格最少風量でそれ以下の発電負荷においても運転すれ
ば良い。
It is sufficient to operate at the rated minimum air volume and a power generation load lower than that.

図において、破線は50 = 100%負荷で変風量運
転、25〜50%は50%に於ける風量を確保して定風
量運転とした。定風量定圧運転の25チ運転では非常に
発電端効率が悪くなり、実用性がないが、変風量変圧運
転では25%でも十分実用にたえる発電効率である。
In the figure, the broken line indicates variable air volume operation at 50 = 100% load, and constant air volume operation where the air volume at 50% is ensured from 25 to 50%. In 25% operation with constant air volume and constant pressure operation, the generating end efficiency becomes extremely poor and is not practical, but in variable air volume and variable pressure operation, even 25% is sufficient for practical use.

本発明の部分負荷時における変風量変圧運転は。The variable air volume variable pressure operation during partial load according to the present invention is as follows.

よシ具体的には、圧縮器吐出側ラインに設置した流量計
で計測する流量を負荷に見合った値となる様、タービン
入口ラインに設けられた燃焼器への補助燃料量を加減す
ることにより行わJする。
Specifically, by adjusting the amount of auxiliary fuel to the combustor installed on the turbine inlet line, so that the flow rate measured by the flow meter installed on the compressor discharge line becomes a value commensurate with the load. Do J.

なお、圧縮装置の負荷応答性は電池の負荷変動速度に比
べて遅いので、急激な負荷減少が要求された場合には、
先ず定風量定圧運転で対応し、順次変風量変圧運転に移
行しても艮い。
Note that the load response of the compression device is slower than the load fluctuation speed of the battery, so if a sudden load reduction is required,
It is no problem to first respond with constant air volume and constant pressure operation, and then gradually shift to variable air volume and variable pressure operation.

又、急激な負荷増大の場合には、先ず圧縮装置の負荷を
増大負荷に見合った値とした後、電池負荷を増大しても
艮い。
Furthermore, in the case of a sudden load increase, it is no problem to first increase the load on the compression device to a value commensurate with the increased load and then increase the battery load.

本発明の理解の為、100OKWの発電を目標に設計す
ると次のようになる。
In order to understand the present invention, when designing with the goal of generating power of 100 OKW, the result will be as follows.

100%負荷で、改質用天然ガス8.43 Kfmot
/′hx補助燃料0.5 Kf mat / hrを用
いて、 110Kfmot/h3、 s Ky /iG
の空気を得て100OKWの発電ができ。
At 100% load, natural gas for reforming 8.43 Kfmot
/'hx With auxiliary fuel 0.5 Kf mat / hr, 110 Kf mot/h3, s Ky /iG
of air and can generate 100 kW of electricity.

その時の効率は30.5%である。The efficiency at that time is 30.5%.

各部分負荷時について、従来法(定風量、定風量)と9
本発明による方法(変圧、変風量)について算出比較す
る。
For each partial load, the conventional method (constant air volume, constant air volume) and 9
Calculations and comparisons will be made regarding the methods according to the present invention (variable pressure, variable air volume).

空気の圧縮れζを変圧、変風搦で運転するという事は燃
料電池自身をその変化した圧力条件で運転する事である
Operating the compressed air ζ under variable pressure and variable wind speed means operating the fuel cell itself under the changed pressure conditions.

以上の説明からも明らかなように1本発明によれば9部
分負荷時の発電総合効率を向上させることができ、この
効率は圧縮装置の効率が低い程。
As is clear from the above description, according to the present invention, it is possible to improve the overall power generation efficiency at partial load, and this efficiency increases as the efficiency of the compression device decreases.

その差は顕著である。The difference is remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の運転方法を実施すべき典型的な発電シ
ステムを示すフローシート、第2図は発電負荷に対する
燃料電池の電気への変換効率、第3図は圧縮機の特性図
、第4図は発電負荷に対するHeat Rate 、第
5図は発電負荷に対する発電総合効率を夫々示す図であ
る。 代理人 弁理士 青 麻 昌 二 1]図 0     25    50     75    
100発を失局(%〕 第2図 Q      25     50     75  
   700圧扁オX・爪型つ萄(%〕 第3図 0   25   50   75   700裏電つ
椅〔%〕 第4M 0   25   50   75   700裏電つ
薪(%) 第5図
Fig. 1 is a flow sheet showing a typical power generation system in which the operating method of the present invention is to be implemented; FIG. 4 is a diagram showing the Heat Rate with respect to the power generation load, and FIG. 5 is a diagram showing the total power generation efficiency with respect to the power generation load. Agent Patent Attorney Ao Asa Shoji1] Figure 0 25 50 75
Missed 100 shots (%) Figure 2 Q 25 50 75
Fig. 3

Claims (1)

【特許請求の範囲】[Claims] (1)  原料ガスを水蒸気改質・変成して水素燃料を
生成する燃料処理装置、前記水素燃料と空気等の酸化剤
の供給を受けて発電を行う燃料電池および前記燃料電池
に供給する空気等の酸化剤を圧縮するための排熱回収タ
ービンを備えた圧縮装置とからなる加圧型燃料電池発電
システムにおいて2部分負荷時に、燃料電池を全負荷時
の運転圧力より低い圧力で運転すること全特徴とする燃
料電池発電システムにおける運転方法。
(1) A fuel processing device that generates hydrogen fuel by steam reforming/transforming raw material gas, a fuel cell that generates electricity by receiving the hydrogen fuel and an oxidizing agent such as air, and air that is supplied to the fuel cell. A pressurized fuel cell power generation system consisting of a compression device equipped with an exhaust heat recovery turbine for compressing the oxidizer of An operating method for a fuel cell power generation system.
JP57185380A 1982-10-23 1982-10-23 Method for operating power generating system with fuel cell Granted JPS5975571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185380A JPS5975571A (en) 1982-10-23 1982-10-23 Method for operating power generating system with fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185380A JPS5975571A (en) 1982-10-23 1982-10-23 Method for operating power generating system with fuel cell

Publications (2)

Publication Number Publication Date
JPS5975571A true JPS5975571A (en) 1984-04-28
JPH0261099B2 JPH0261099B2 (en) 1990-12-19

Family

ID=16169788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185380A Granted JPS5975571A (en) 1982-10-23 1982-10-23 Method for operating power generating system with fuel cell

Country Status (1)

Country Link
JP (1) JPS5975571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112671A (en) * 1987-10-26 1989-05-01 Hitachi Ltd Operating method for fuel cell power plant
JP2004071279A (en) * 2002-08-05 2004-03-04 Central Res Inst Of Electric Power Ind Fused carbonate fuel cell power generation system, and power generation method in system
DE102010010271A1 (en) 2010-03-05 2011-09-08 Daimler Ag Device for provision of hot exhaust gas stream in fuel cell system in vehicle, has burner temporarily supplied with fresh air and comprising ignition device, by which mixture of fresh air and fuel of fuel cell is ignited
DE102010010272A1 (en) 2010-03-05 2011-09-08 Daimler Ag Device for providing hot exhaust gases

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166671A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Pressure control method of fuel cell power generating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166671A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Pressure control method of fuel cell power generating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112671A (en) * 1987-10-26 1989-05-01 Hitachi Ltd Operating method for fuel cell power plant
JP2004071279A (en) * 2002-08-05 2004-03-04 Central Res Inst Of Electric Power Ind Fused carbonate fuel cell power generation system, and power generation method in system
JP4629950B2 (en) * 2002-08-05 2011-02-09 財団法人電力中央研究所 Molten carbonate fuel cell power generation system and power generation method in the power generation system
DE102010010271A1 (en) 2010-03-05 2011-09-08 Daimler Ag Device for provision of hot exhaust gas stream in fuel cell system in vehicle, has burner temporarily supplied with fresh air and comprising ignition device, by which mixture of fresh air and fuel of fuel cell is ignited
DE102010010272A1 (en) 2010-03-05 2011-09-08 Daimler Ag Device for providing hot exhaust gases
WO2011107132A1 (en) 2010-03-05 2011-09-09 Daimler Ag Device for providing hot exhaust gases

Also Published As

Publication number Publication date
JPH0261099B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
US3976507A (en) Pressurized fuel cell power plant with single reactant gas stream
US3973993A (en) Pressurized fuel cell power plant with steam flow through the cells
CA1043861A (en) Pressurized fuel cell power plant
CA1043859A (en) Pressurized fuel cell power plant
US4923768A (en) Fuel cell power generation system
JP6228752B2 (en) Power generation system and method for starting power generation system
CN109860660B (en) High-efficiency solid oxide fuel cell system
JP2585210B2 (en) Fuel cell power plant
JPH06223851A (en) Fuel cell and gas turbine combined generation system
JP2005135835A (en) Hybrid power generation system of fuel cell and gas turbine
JPS5975571A (en) Method for operating power generating system with fuel cell
JPS6260791B2 (en)
JP2001015134A (en) Combined power generating device of fuel cell with gas turbine
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JPS58165273A (en) Generating method of fuel cell
JP2005098255A (en) Power generating device
JPS60160574A (en) Turbo-compressor system for fuel cell power generation
JPS6345763A (en) Operation controller of fuel cell power generating plant
JP2014160631A (en) Power generation system and method for operating power generation system
JPH079813B2 (en) Fuel cell power plant
KR102559980B1 (en) Fuel cell with improved efficiency by having an air supply unit that can control the amount of air supplied
JPS6372072A (en) Control method of fuel cell power generating plant
JPS61227371A (en) Fuel cell power generation system
JP3467759B2 (en) Control method of outlet temperature of reformer
JP2004111130A (en) Thermoelectric ratio changing method for fuel cell-micro gas turbine combined power generation facility