JPS58163176A - Organic electrolytic battery - Google Patents

Organic electrolytic battery

Info

Publication number
JPS58163176A
JPS58163176A JP4482582A JP4482582A JPS58163176A JP S58163176 A JPS58163176 A JP S58163176A JP 4482582 A JP4482582 A JP 4482582A JP 4482582 A JP4482582 A JP 4482582A JP S58163176 A JPS58163176 A JP S58163176A
Authority
JP
Japan
Prior art keywords
dioxolane
general formula
electrolyte
dissolving
compound indicated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4482582A
Other languages
Japanese (ja)
Inventor
Kazumi Yoshimitsu
由光 一三
Atsushi Sato
淳 佐藤
Akio Shimizu
清水 明夫
Yoshio Uetani
植谷 慶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4482582A priority Critical patent/JPS58163176A/en
Publication of JPS58163176A publication Critical patent/JPS58163176A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To restrict the increase of internal resistance and prevent the deterioration of discharge capacity during storage by using an electrolyte obtained by dissolving the compound indicated by a specific chemical formula in 1,3-dioxolane or a mixed solvent containg 1,3-dioxolane. CONSTITUTION:An electrolyte is obtained by dissolving a compound indicated by general formula (I) (where, m is a positive number of 1-4) in 1,3-dioxolane or a mixed solvent containing 1,3-dioxolane. In this case, the concentration of the compound indicated by general formula (I) should be 0.5-3.5mol/l. Besides, since the compound indicated by general formula (I) has slightly a property of non-ring-opening polymerization to 1,3-dioxolane, an amine compound should previously be dissolved in 1,3-dioxolane or a mixd solvent containing 1,3-dioxolane to suppress this phenomenon. The compound indicated by general formula (I) is obtained by dissolving LiPE6 in 1,2-dimethoxyethane, filtering it, then cooling and crystallizing the filtrate.

Description

【発明の詳細な説明】 本発明は一般式(1) %式%)() (式中、mは1〜4の正数である) で示される化合物を電解質とし、これを1,8−ジオキ
ソランまたは1,8−ジオキソランを含む混合溶媒に溶
解した電解液を用いた有機電解質電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a compound represented by the general formula (1) (% formula %) () (in the formula, m is a positive number from 1 to 4) as an electrolyte, and uses this as an electrolyte. The present invention relates to an organic electrolyte battery using an electrolyte solution dissolved in a mixed solvent containing dioxolane or 1,8-dioxolane.

最近、有機電解質電池用の電解質として、LiPF6が
、有機溶媒への溶解性がよく、かつ高電導度で、17か
も過塩素酸系のものより安全性が高いことから、非常に
注目されている。
Recently, LiPF6 has attracted much attention as an electrolyte for organic electrolyte batteries because it has good solubility in organic solvents, high conductivity, and is safer than perchlorate-based ones. .

しかしながら、この化合物は非常に不安定で水分の存在
と熱により容易に分解し、しかも一般に入手しうる市販
品はかなりの不純物を含んでいて、この不純物や分解生
成物が電池内で活物質と反応して放電容量の低下やガス
発生を引きおこし、また内部抵抗の増加を引きおこす。
However, this compound is very unstable and easily decomposes in the presence of moisture and heat, and commonly available commercial products contain considerable impurities, and these impurities and decomposition products become active materials in batteries. The reaction causes a decrease in discharge capacity, gas generation, and an increase in internal resistance.

特に電解液の溶媒として1,8−ジオキソランなどの環
状エーテル系有機溶媒を用いた場合には、前記不純物や
分解生成物が環状エーテル系有機溶媒の開環重合を惹起
させ、電解液の電導度が極度に低下して使用に耐えなく
なる。
In particular, when a cyclic ether organic solvent such as 1,8-dioxolane is used as a solvent for the electrolyte, the impurities and decomposition products cause ring-opening polymerization of the cyclic ether organic solvent, and the conductivity of the electrolyte increases. becomes extremely low and becomes unusable.

しかしながら、1.8−ジオキソランは電解質の溶解能
が大きく、かつ導電率が高いなどの有機電解質電池の電
解液溶媒として非常に望ましい性質を有しているので、
これを是非とも使用したいという要請がある。
However, 1,8-dioxolane has properties that are highly desirable as an electrolyte solvent for organic electrolyte batteries, such as high electrolyte solubility and high conductivity.
There is a request to use this by all means.

本発明者らは、そのようら事情に鑑み種々研究を重ねた
結果、このL s P F6を1,2−ジメトキシエタ
ンに溶解させ、濾過後、濾液を冷却して結晶化させるこ
とにより、LiPF6の溶媒和物である一般式(I)で
示される化合物を得て、これを1,8−ジオキソランま
たは1.8−ジオキソランを含む混合溶媒に溶解して電
解液を調製するときは、貯蔵中における内部抵抗の増加
や放電容量の低下が少なく、しかもLiPF6の電解質
としての優位性や、1.8−ジオキソランの電解液溶媒
としての優位性を生かした有機電解質電池が得られるこ
とを見出し、本発明を完成するにいたった。
The present inventors have conducted various studies in view of the above circumstances, and have found that LiPF6 is dissolved in 1,2-dimethoxyethane, and after filtration, the filtrate is cooled and crystallized. When preparing an electrolytic solution by obtaining a compound represented by general formula (I) which is a solvate of 1,8-dioxolane or a mixed solvent containing 1,8-dioxolane, during storage, We have discovered that an organic electrolyte battery can be obtained with little increase in internal resistance or decrease in discharge capacity, and which takes advantage of the advantages of LiPF6 as an electrolyte and the advantages of 1,8-dioxolane as an electrolyte solvent. He completed his invention.

すなわち、一般式(I)で示される化合物は、その出発
物質であるL i P F6より安定であり、またL 
i P F6から一般式(I)で示される化合物に変化
する間にLiPF6に含まれていた不純物は除去される
ので、貯蔵中における内部抵抗の増加や放電容量の低下
が少ない有機電解質電池が得られる。しかし、LiPF
6が有していた有機溶媒への良好な溶解性、高電導度な
どの電解質としてのすぐれた性質は一般式(I)で示さ
れる化合物に変化しても失なわれず、従って非常に特性
の良い電池が得られる。
That is, the compound represented by general formula (I) is more stable than its starting material L i P F6, and L
Since the impurities contained in LiPF6 are removed during the transformation from iPF6 to the compound represented by the general formula (I), an organic electrolyte battery with less increase in internal resistance and less decrease in discharge capacity during storage can be obtained. It will be done. However, LiPF
The excellent properties of 6 as an electrolyte, such as good solubility in organic solvents and high electrical conductivity, are not lost even when it is converted into a compound represented by general formula (I), and therefore it has very characteristic properties. You can get a good battery.

一般式(I)で示される化合物は、L i P F6を
1,2−ジメトキシエタンに溶解させ、濾過後、濾液を
冷却して結晶化させることによって得られる。
The compound represented by the general formula (I) can be obtained by dissolving L i P F6 in 1,2-dimethoxyethane, filtering it, and then cooling the filtrate to crystallize it.

LiPF6を1,2−ジメトキシエタンに溶解させると
、発熱するとともに、L iP F6は1,2−ジメト
キシエタンと溶媒和して一般式(I)で示される化合物
に変化する。溶解は一般式(I)で示される化合物の分
解を避けるため70℃以下で行なうのが好ましく、また
溶解から濾過が終了するまでの間、溶液の温度を50〜
70℃に保持するのが好ましい。この溶解、濾過によっ
てLiPF6中に含まれていた不純物で1,2−ジメト
キシエタンに溶解しないものは除去される。結晶化のた
めの冷却は通常25℃以下で1.2−ジメトキシエタン
の凝固点以上の温度で行なわれる。この際、L i P
 F6に含まれていた不純物で1,2−ジメトキシエタ
ンに溶解したものは結晶化せず、そのまま溶液中に残る
ので濾過することによって除去される。濾過後、減圧下
0〜6℃で乾燥して結晶に付着している1、2−ジメト
キシエタンを除去する。この乾燥時の減圧度、温度、時
間などを適宜調節することによって一般式(I)におけ
るmの値を調節することができる。
When LiPF6 is dissolved in 1,2-dimethoxyethane, heat is generated and LiPF6 is solvated with 1,2-dimethoxyethane and changes into a compound represented by general formula (I). In order to avoid decomposition of the compound represented by general formula (I), the dissolution is preferably carried out at 70°C or lower, and the temperature of the solution is kept at 50°C or lower from the time of dissolution until the end of filtration.
Preferably, the temperature is maintained at 70°C. By this dissolution and filtration, impurities contained in LiPF6 that do not dissolve in 1,2-dimethoxyethane are removed. Cooling for crystallization is usually carried out at a temperature below 25°C and above the freezing point of 1,2-dimethoxyethane. At this time, L i P
Impurities contained in F6 dissolved in 1,2-dimethoxyethane do not crystallize and remain in the solution, and are removed by filtration. After filtration, 1,2-dimethoxyethane adhering to the crystals is removed by drying at 0 to 6°C under reduced pressure. The value of m in general formula (I) can be adjusted by appropriately adjusting the degree of reduced pressure, temperature, time, etc. during this drying.

電解液は一般式(I)で示される化合物を1,8−ジオ
キソランまたは1.8−ジオキソランを含む混合溶媒に
溶解させることによって得られる。その際、一般式(I
)で示される化合物の濃度としては0.5〜8.5モル
/lにするのが好ましい。
The electrolytic solution is obtained by dissolving the compound represented by the general formula (I) in a mixed solvent containing 1,8-dioxolane or 1,8-dioxolane. At that time, the general formula (I
) is preferably 0.5 to 8.5 mol/l.

なお一般式(I)で示される化合物はそれ自身が1゜8
−ジオキソランを開環重合させる性質を若干有するので
、これを抑制するために1,8−ジオキソランまたは1
,8−ジオキソランを含む混合溶媒にアミン化合物をあ
らかじめ溶解させておくことが望ましい。
The compound represented by the general formula (I) itself has a 1°8
-Since dioxolane has a slight tendency to cause ring-opening polymerization, in order to suppress this, 1,8-dioxolane or 1,8-dioxolane or
It is desirable to dissolve the amine compound in advance in a mixed solvent containing , 8-dioxolane.

このようなアミン化合物としては、たとえば1t8−ビ
ス(ジメチルアミノ)ナフタレン、2,2.6゜6−チ
トラメチルピペリジン、N、 N、 N’、 N’−テ
トラメチル−1,8−プロパンジアミン、2.8.5.
6−テトラメチル−p−フェニレンジアミン、N、N、
N5N1−テトラメチルベンジジン、N、 N、 N’
、 N’−テトラメチル−1,4−ブタンシアきン、N
、 N、 N’、 N’ −テトラメチルエチレンシア
ミンなどが用いられる。
Examples of such amine compounds include 1t8-bis(dimethylamino)naphthalene, 2,2.6°6-titramethylpiperidine, N, N, N', N'-tetramethyl-1,8-propanediamine, 2.8.5.
6-tetramethyl-p-phenylenediamine, N, N,
N5N1-tetramethylbenzidine, N, N, N'
, N'-tetramethyl-1,4-butanesiaquine, N
, N, N', N'-tetramethylethylenecyamine, etc. are used.

これらのアミン化合物は多すぎると電池性能を低下させ
るので、溶媒に対して0.1〜5チ(重量%、以下同様
)にするのが好ましい。
If the amount of these amine compounds is too large, the battery performance will deteriorate, so it is preferable that the amount of these amine compounds is 0.1 to 5% by weight (wt%, the same applies hereinafter) to the solvent.

1.8−ジオキソランを他の有機溶媒と混合する場合に
おいて、他の有機溶媒としては、たとえばプロピレンカ
ーボネート、T−ブチロラクトン、1.2−ジメトキシ
エタン、ジメチルホルムアシド、ジメチルアセトアシド
、ジメチルスルホキシド、ニトロメタン、N−メチル−
2−オキサゾリドン、ジグリム、トリグリムなどが用い
られる。
When 1.8-dioxolane is mixed with other organic solvents, examples of the other organic solvents include propylene carbonate, T-butyrolactone, 1,2-dimethoxyethane, dimethylformacide, dimethylacetoacide, dimethylsulfoxide, and nitromethane. , N-methyl-
2-oxazolidone, diglyme, triglyme, etc. are used.

上記電解液は活物質の種類のいかんにかかわらずすべて
の有機電解質電池に適用できるが、その好ましい例を示
すと、負極活物質がリチウムまたはリチウム−アルミニ
ウム、リチウム−亜鉛などのリチウム系合金で、正極活
物質が二硫化チタン、硫化鉄、硫化銅などの金属硫化物
である電池である。
The above electrolyte can be applied to all organic electrolyte batteries regardless of the type of active material, but a preferred example is when the negative electrode active material is lithium or a lithium-based alloy such as lithium-aluminum or lithium-zinc; This is a battery in which the positive electrode active material is a metal sulfide such as titanium disulfide, iron sulfide, or copper sulfide.

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例1 1.8−ジオキソランと1,2−ジメトキシエタンとの
混合比が容量比で91:9の混合溶媒にL iP F6
・8 (CH30CH2CH20CH5)を1,5モル
/l溶解させて電解液を調製した。
Example 1 LiP F6 was added to a mixed solvent of 1,8-dioxolane and 1,2-dimethoxyethane in a volume ratio of 91:9.
・An electrolytic solution was prepared by dissolving 1.5 mol/l of 8 (CH30CH2CH20CH5).

この電解液を用い、リチウムを負極活物質、二硫化チタ
ンを正極活物質とし、ハーメチックシー1   ル構造
の電池を製造した。
Using this electrolyte, a battery with a hermetic seal structure was manufactured using lithium as a negative electrode active material and titanium disulfide as a positive electrode active material.

上記電池の電極は、リチウム板の片面にステンレス鋼製
の溶接網を圧着した負極板と、二硫化チタンを正極活物
質とする正極合剤をステンレス鋼製の溶接網を芯材とし
て板状に成形しセパレータで包被した正極板とを重ね合
わせ、これを封口蓋の中央部に設けたステンレス鋼製パ
イプを芯にして渦巻状に巻回したものである。セパレー
タは微孔性ポリプロピレンフィルムとポリプロピレン不
織布を積重してなシ、封口蓋はステンレス鋼製パイプの
周囲にガラスで形成された絶縁部とその周囲に形成され
たステンレス鋼製のボディ一部を有してなシ、渦巻電極
の形成後、渦巻電極と共にステンレス鋼製の電池ケース
に入れ、電池ケースの開口部と封口蓋の外周部を溶接し
たのち、電解液をパイプから注入し、電解液の注入後、
パイプにステンレス鋼製の細棒を挿入し、その頭部をパ
イプと溶接して電池内部を密閉状態にしている。
The electrodes of the above battery consist of a negative electrode plate with a stainless steel welded mesh crimped onto one side of a lithium plate, and a positive electrode mixture containing titanium disulfide as the positive electrode active material in the form of a plate with a stainless steel welded mesh as the core material. A positive electrode plate that has been molded and covered with a separator is stacked one on top of the other, and this is spirally wound around a stainless steel pipe provided in the center of the sealing lid. The separator is made of a stack of microporous polypropylene film and polypropylene nonwoven fabric, and the sealing lid is made of an insulating part made of glass around a stainless steel pipe and a part of the body made of stainless steel formed around it. After forming the spiral electrode, put it into a stainless steel battery case together with the spiral electrode, weld the opening of the battery case and the outer periphery of the sealing lid, and then inject the electrolyte through the pipe. After injection of
A thin stainless steel rod is inserted into the pipe, and its head is welded to the pipe to seal the inside of the battery.

実施例2 1.8−ジオキソランと1,2−ジメトキシエタンとの
容量比が91:9の混合溶媒にN+ N+ N’+ N
’−テトラメチルエチレンジアミンを1.0チ添加して
混合したのち、 LiPF6・8(CH30CH2CH20CH3)を1
.5モル/l溶解させて電解液を調製し、この電解液を
用いたほかは実施例1と同様にして電池を製造した。
Example 2 N+ N+ N'+ N in a mixed solvent with a volume ratio of 91:9 of 1.8-dioxolane and 1,2-dimethoxyethane
After adding and mixing 1.0 g of '-tetramethylethylenediamine, 1.0 g of LiPF6.8 (CH30CH2CH20CH3) was added.
.. An electrolytic solution was prepared by dissolving 5 mol/l, and a battery was manufactured in the same manner as in Example 1 except that this electrolytic solution was used.

比較例1 1.8−ジオキソランと1,2−ジメトキシエタンとの
容量比が91:9の混合溶媒にN・N、 N’、 N’
−テトラメチルエチレンジアミンを1.0チ添加して溶
解したのち、市販のLiPF6(純度98チ)を1.5
モル/l溶解させて電解液を調製し、この電解液を用い
たほかは実施例1と同様にして電池を製造した。
Comparative Example 1 N・N, N', N' in a mixed solvent of 1.8-dioxolane and 1,2-dimethoxyethane with a volume ratio of 91:9
- After adding and dissolving 1.0 g of tetramethylethylenediamine, 1.5 g of commercially available LiPF6 (purity 98 g) was added.
An electrolytic solution was prepared by dissolving mol/l, and a battery was manufactured in the same manner as in Example 1 except that this electrolytic solution was used.

以上のようにして製造された実施例1〜2の電池および
比較例1の電池の初度内部抵抗と60℃で10日間貯蔵
後の内部抵抗を測定した結果を第1表に示す。
Table 1 shows the results of measuring the initial internal resistance and the internal resistance after storage at 60° C. for 10 days of the batteries of Examples 1 and 2 and the battery of Comparative Example 1 manufactured as described above.

第  1  表 第1表に示すように本発明の電池は比較例1の電池に比
べて貯蔵による内部抵抗増加が少ない。
Table 1 As shown in Table 1, the battery of the present invention shows less increase in internal resistance due to storage than the battery of Comparative Example 1.

Claims (1)

【特許請求の範囲】 1、一般式(1) %式%() (式中、mは1〜4の正数である) で示される化合物を1,8−ジオキソランまたは1.8
−ジオキソランを含む混合溶媒に溶解した電解液を用い
たことを特徴とする有機電解質電池。 2.1.8−ジオキソランまたは1,8−ジオキソラン
を含む混合溶媒があらかじめアミン化合物を溶解させた
ものである特許請求の範囲第1項記載の有機電解質電池
。 8、負極活物質がリチウムまたはリチウム系合金である
特許請求の範囲第1項または第2項記載の有機電解質電
池。 4、正極活物質が二硫化チタンである特許請求の範囲第
1項、第2項または第8項記載の有機電解質電池。
[Claims] 1. A compound represented by the general formula (1) % formula % (in the formula, m is a positive number from 1 to 4) is 1,8-dioxolane or 1.8
- An organic electrolyte battery characterized by using an electrolyte solution dissolved in a mixed solvent containing dioxolane. 2. The organic electrolyte battery according to claim 1, wherein the mixed solvent containing 1.8-dioxolane or 1,8-dioxolane is one in which an amine compound is dissolved in advance. 8. The organic electrolyte battery according to claim 1 or 2, wherein the negative electrode active material is lithium or a lithium-based alloy. 4. The organic electrolyte battery according to claim 1, 2 or 8, wherein the positive electrode active material is titanium disulfide.
JP4482582A 1982-03-20 1982-03-20 Organic electrolytic battery Pending JPS58163176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4482582A JPS58163176A (en) 1982-03-20 1982-03-20 Organic electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4482582A JPS58163176A (en) 1982-03-20 1982-03-20 Organic electrolytic battery

Publications (1)

Publication Number Publication Date
JPS58163176A true JPS58163176A (en) 1983-09-27

Family

ID=12702225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4482582A Pending JPS58163176A (en) 1982-03-20 1982-03-20 Organic electrolytic battery

Country Status (1)

Country Link
JP (1) JPS58163176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186564A (en) * 1988-01-12 1989-07-26 Sanyo Electric Co Ltd Nonaqueous electrolyte cell
US4952330A (en) * 1989-05-25 1990-08-28 Eveready Battery Company, Inc. Nonaqueous electrolyte
JP2007299695A (en) * 2006-05-02 2007-11-15 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186564A (en) * 1988-01-12 1989-07-26 Sanyo Electric Co Ltd Nonaqueous electrolyte cell
US4952330A (en) * 1989-05-25 1990-08-28 Eveready Battery Company, Inc. Nonaqueous electrolyte
JP2007299695A (en) * 2006-05-02 2007-11-15 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte battery using the same

Similar Documents

Publication Publication Date Title
JP7247263B2 (en) Non-aqueous electrolyte composition
JP4725728B2 (en) Secondary battery
WO2006115023A1 (en) Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JP3384625B2 (en) Non-aqueous electrolyte battery
JPH0652887A (en) Lithium secondary battery
JPH02276163A (en) Manufacture of electrolyte
EP1209754B1 (en) Non-aqueous electrolyte cell
JPH02260374A (en) Organic electrolyte battery
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
JPH06333594A (en) Nonaqueous electrolyte secondary battery
TW200810184A (en) Electrolyte for improving life characteristics at high temperature and lithium secondary battery comprising the same
JPH0410711B2 (en)
JP3223111B2 (en) Non-aqueous electrolyte battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JPH09245832A (en) Non-aqueous electrolytic liquid
JPS58163176A (en) Organic electrolytic battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JP3439083B2 (en) Non-aqueous electrolyte battery
JPH08241731A (en) Organic electrolytic secondary battery
JPS58163175A (en) Organic electrolytic battery
JPH05283086A (en) Organic electrolyte battery
JP2010238385A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP3439079B2 (en) Non-aqueous electrolyte battery
JPS58163177A (en) Organic electrolytic battery