JPH0410711B2 - - Google Patents

Info

Publication number
JPH0410711B2
JPH0410711B2 JP19220882A JP19220882A JPH0410711B2 JP H0410711 B2 JPH0410711 B2 JP H0410711B2 JP 19220882 A JP19220882 A JP 19220882A JP 19220882 A JP19220882 A JP 19220882A JP H0410711 B2 JPH0410711 B2 JP H0410711B2
Authority
JP
Japan
Prior art keywords
lipf
organic solvent
acidic impurities
solute
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19220882A
Other languages
Japanese (ja)
Other versions
JPS5981870A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19220882A priority Critical patent/JPS5981870A/en
Publication of JPS5981870A publication Critical patent/JPS5981870A/en
Publication of JPH0410711B2 publication Critical patent/JPH0410711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 この発明はLiPF6からなる非水電解液用溶質の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a solute for a non-aqueous electrolyte comprising LiPF 6 .

リチウムを陰極活物質とする電池にあつては、
その電解液として有機溶媒に適宜の溶質、つまり
イオン伝導性を付与するための電解質を溶解させ
てなる非水電解液が用いられている。この種の電
解液における上記溶質の代表的なものとして
LiPF6が知られている。LiPF6は一般に無水のフ
ツ化水素中にLiFを溶解させこれにガス状のPF5
を吹き込んで反応させる方法でつくられており、
この方法でつくられるLiPF6は通常結晶粒子中に
フツ化水素やHPOxFyの如き酸性不純物を含ん
でいる。
For batteries that use lithium as the cathode active material,
As the electrolytic solution, a non-aqueous electrolytic solution is used, which is obtained by dissolving an appropriate solute, that is, an electrolyte for imparting ionic conductivity, in an organic solvent. Typical examples of the above solutes in this type of electrolyte are
LiPF 6 is known. LiPF 6 is generally produced by dissolving LiF in anhydrous hydrogen fluoride and adding gaseous PF 5 to this.
It is made by injecting and reacting,
LiPF 6 produced by this method usually contains acidic impurities such as hydrogen fluoride and HPOxFy in the crystal particles.

このようなLiPF6を有機溶媒に溶解させて非水
電解液とすると、液が酸性側となるためLiPF6
分解が促進され、またこの分解で生成するPF5
ルイス塩基を構成するような有機溶媒、たとえば
1・3−ジオキソランなどにアタツクして上記溶
媒を分解ないしポリマー化しやすい。このため、
電池組立後の貯蔵中に内部抵抗の増大や電池容量
の低下を引きおこす結果となる。
When such LiPF 6 is dissolved in an organic solvent to make a non-aqueous electrolyte, the liquid becomes acidic, which accelerates the decomposition of LiPF 6 , and the PF 5 produced by this decomposition is likely to form a Lewis base. It attacks organic solvents such as 1,3-dioxolane and easily decomposes or polymerizes the solvents. For this reason,
This results in an increase in internal resistance and a decrease in battery capacity during storage after battery assembly.

しかるに、従来、この種の粗LiPF6を非水電解
液用溶質として用いるに当たり、これに含まれる
水分や揮発性不純物を真空乾燥によつて取り除く
処理は行なつているが、前述の酸性不純物を取り
除く処理はほとんど行なつていない。
However, when using this type of crude LiPF 6 as a solute for nonaqueous electrolytes, conventionally, the water and volatile impurities contained in it have been removed by vacuum drying, but the acidic impurities mentioned above have been removed by vacuum drying. There is almost no removal process.

この発明者らは、上記の事情に鑑み、当初、粗
LiPF6をジメトキシエタンのような有機溶媒に発
熱溶解させたのち冷却して再結晶化する方法で酸
性不純物を取り除くことを試みたが、再結晶化す
るLiPF6は溶媒和されたものであるため取り込ま
れる溶媒分子中に酸性不純物が残存する結果とな
り、酸性不純物を取り除くという所期の目的を充
分に達しえなかつた。もちろん、再結晶化処理を
何度もくり返せば、比較的高純度のLiPF6を得る
ことはできるが、この場合は収率が極端に低下し
また製造作業能率を大きく損なう結果となる。
In view of the above circumstances, the inventors initially
Attempts were made to remove acidic impurities by exothermically dissolving LiPF 6 in an organic solvent such as dimethoxyethane, followed by cooling and recrystallization, but since the recrystallized LiPF 6 was solvated. As a result, acidic impurities remained in the incorporated solvent molecules, and the intended purpose of removing acidic impurities could not be sufficiently achieved. Of course, LiPF 6 of relatively high purity can be obtained by repeating the recrystallization process many times, but in this case, the yield will be extremely low and the efficiency of the manufacturing process will be greatly impaired.

この発明は、上記の観点からさらに検討した結
果、見い出されたものであり、その要旨とすると
ころは、LiPF6からなる非水電解液用溶質を製造
するに当たり、酸性不純物を含むLiPF6を有機溶
媒に発熱溶解させたのち、これに上記の酸性不純
物と塩ないし錯化合物を形成しうるLi化合物ない
しアミン類からなる処理剤を加えて中和処理し、
その後冷却して再結晶化させたLiPF6をろ取する
ことを特徴とする非水電解液用溶質の製造法にあ
る。
This invention was discovered as a result of further studies from the above viewpoint, and its gist is that when producing a solute for a non-aqueous electrolyte consisting of LiPF 6 , LiPF 6 containing acidic impurities is After exothermic dissolution in a solvent, a processing agent consisting of a Li compound or amines that can form a salt or a complex compound with the above acidic impurities is added to neutralize it.
The present invention provides a method for producing a solute for a non-aqueous electrolyte, which comprises filtering LiPF 6 that has been cooled and recrystallized.

すなわち、この発明においては、有機溶媒中で
粗LiPF6を再結晶化する際に、酸性不純物と反応
するような特定の処理剤を加えて粗LiPF6を中和
処理するようにしたものであり、これによれば中
和反応物が有機溶媒不溶性のものであればこれを
余剰の処理剤(有機溶媒に溶解していない余剰
分)と共にろ別できるし、また有機溶媒可溶性の
中和反応物にあつては冷却により再結晶化した
LiPF6をろ取する際に上記反応物をろ液中に残存
させて取り除くことができる。
That is, in this invention, when crude LiPF 6 is recrystallized in an organic solvent, a specific processing agent that reacts with acidic impurities is added to neutralize the crude LiPF 6 . According to this, if the neutralization reaction product is insoluble in an organic solvent, it can be filtered out together with the excess processing agent (surplus not dissolved in the organic solvent), and the neutralization reaction product soluble in an organic solvent can be filtered out. In this case, it was recrystallized by cooling.
When LiPF 6 is collected by filtration, the above-mentioned reactants can be left in the filtrate and removed.

このようにして得られるLiPF6は、前記操作つ
まり有機溶媒への溶解−中和処理−再結晶化を一
度行なうだけで、酸性不純物の含有量が非常に少
ないものとなる。したがつて、前記単なる再結晶
化法とは異なつて同じ操作を何度もくり返す必要
はとくになく、このためにLiPF6の収率を極端に
低下させることもまた製造作業能率を大きく低下
させることもない。もちろん、上記特徴を損なわ
ない範囲内での繰り返し操作を行なつて酸性不純
物の除去率を高めることは可能である。
LiPF 6 obtained in this way has a very low content of acidic impurities by performing the above operations, that is, dissolution in an organic solvent, neutralization treatment, and recrystallization, only once. Therefore, unlike the simple recrystallization method described above, there is no particular need to repeat the same operation many times, and this extremely reduces the yield of LiPF 6 , which also greatly reduces the production efficiency. Not at all. Of course, it is possible to increase the removal rate of acidic impurities by repeating the operation within a range that does not impair the above characteristics.

このように、この発明によれば酸性不純物の少
ない高純度のLiPF6を得ることができるから、こ
れを有機溶媒に溶解させて非水電解液としたとき
にLiPF6の経時的な分解が抑えられ、また有機溶
媒の分解ないしポリマー化などを誘発するおそれ
が回避され、電池組立後の電池容量や内部抵抗の
経日特性にきわめて良好な結果が得られる。
As described above, according to the present invention, it is possible to obtain highly pure LiPF 6 with few acidic impurities, so when it is dissolved in an organic solvent to form a non-aqueous electrolyte, the decomposition of LiPF 6 over time can be suppressed. Furthermore, the possibility of inducing decomposition or polymerization of the organic solvent is avoided, and extremely good results can be obtained in terms of aging characteristics of battery capacity and internal resistance after battery assembly.

この発明に適用される酸性不純物を含むLiPF6
とは、すでに述べたように、無水のフツ化水素中
にLiFを溶解させこれにガス状のPF5を吹き込ん
で得られるフツ化水素やHPOxFyの如き不純物
を含むものであるが、上記不純物を含むLiPF6
あれば他の製造法で得られるものであつても差し
支えない。
LiPF 6 containing acidic impurities applied to this invention
As mentioned above, LiF contains impurities such as hydrogen fluoride and HPOxFy, which are obtained by dissolving LiF in anhydrous hydrogen fluoride and blowing gaseous PF 5 into it. 6 , it may be obtained by other manufacturing methods.

この発明では、上記の粗LiPF6をまず有機溶媒
に溶解させる。この有機溶媒としては、LiPF6
溶解させうるものであれば無極性のものであつて
も極性基を有するものであつても差し支えない
が、溶解性の面を重視すると、非水電解液用とし
て一般に用いられている1・2−ジメトキシエタ
ン、1・3−ジオキソラン、テトラヒドロフラ
ン、1・2−ジエトキシエタン、2−メチルテト
ラヒドロフラン、プロピレンカーボネート、γ−
ブチロラクトンなどの分子内にエーテル結合やエ
ステル結合の如き極性基を持つた誘電率の高いも
のが好ましい。
In this invention, the above crude LiPF 6 is first dissolved in an organic solvent. This organic solvent may be non-polar or one with polar groups as long as it can dissolve LiPF 6 , but if solubility is important, it is recommended to use non-aqueous electrolyte Commonly used as 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 1,2-diethoxyethane, 2-methyltetrahydrofuran, propylene carbonate, γ-
It is preferable to use a material with a high dielectric constant, such as butyrolactone, which has a polar group such as an ether bond or an ester bond in its molecule.

このうち、1・2−ジメトキシエタン、1・2
−ジエトキシエタン、プロピレンカーボネートな
どのように、LiPF6の一部が中和処理前に分解し
たときに分解生成物であるPF5が配位して化学的
安定な状態となるものがもつとも好適である。も
ちろん、中和処理を可及的すみやかに行なつて上
記分解を抑止する限り、また化学的安定な状態と
なるような適宜の添加剤を併用する限り、1・3
−ジオキソランの如きPF5の存在によつて本来分
解ないしポリマー化しやすい極性溶媒も好ましい
溶媒として使用可能である。
Among these, 1,2-dimethoxyethane, 1,2
- It is also preferable to use materials such as diethoxyethane and propylene carbonate, which, when a portion of LiPF 6 decomposes before neutralization, coordinate with the decomposition product PF 5 to create a chemically stable state. It is. Of course, as long as the neutralization treatment is carried out as soon as possible to suppress the above decomposition, and as long as appropriate additives are used to achieve a chemically stable state, 1.3
- Polar solvents that are inherently prone to decomposition or polymerization due to the presence of PF 5 such as dioxolane can also be used as preferred solvents.

有機溶媒の使用量はとくに規定されないが、冷
却によつて高収率で再結晶化しうるような必要最
小限に留めるのが望ましい。前記に例示した如き
極性基を持つた溶媒でかつ配位結合を生じるよう
なものでは、LiPF6に対して通常3モル倍以上、
好ましくは5モル倍以上となるようにするのがよ
い。
Although the amount of the organic solvent used is not particularly limited, it is desirable to keep it to the minimum necessary so that recrystallization can be performed in high yield by cooling. For solvents with polar groups such as those exemplified above and which cause coordination bonds, the amount is usually 3 times or more by mole relative to LiPF 6 .
Preferably, the amount is 5 times or more by mole.

このような有機溶媒に粗LiPF6を溶解させる
と、一般に溶解熱で発熱して60〜70℃に達するか
ら、その後は外部加熱により上記温度を維持しな
がらLi化合物ないしアミン類による中和処理を行
なう。中和処理時間は通常2〜4時間程度で充分
である。
When crude LiPF 6 is dissolved in such an organic solvent, it generally generates heat due to the heat of dissolution and reaches 60 to 70℃, so after that, neutralization treatment with Li compounds or amines is performed while maintaining the above temperature by external heating. Let's do it. A neutralization treatment time of about 2 to 4 hours is usually sufficient.

中和処理用のLi化合物ないしアミン類は、粗
LiPF6と同時に有機溶媒に加えるようにしてもよ
いし、前記の温度に達してから添加するようにし
てもよい。望ましくは同時添加であり、これによ
つて添加前に生起するおそれのあるLiPF6の一部
分解を極力阻止することができる。
Li compounds or amines for neutralization treatment are
It may be added to the organic solvent at the same time as LiPF 6 , or it may be added after the above temperature has been reached. Preferably, they are added at the same time, so that partial decomposition of LiPF 6 that may occur before addition can be prevented as much as possible.

このようなLi化合物ないしアミン類は、粗
LiPF6に含まれる酸性不純物とくにフツ化水素と
塩ないし錯化合物を形成しうるものであればよ
く、有機溶媒に溶解するかどうかということはと
くに本質的な問題ではないが、一般にはごく微量
でも溶解するような化合物が好ましく用いられ
る。その代表例を挙げれば、Li化合物として
LiF、LiO、Li2CO3などが、アミン類としてトリ
エチルアミン、N・N・N′・N′−テトラメチル
エチレンジアミンなどがある。使用量は、酸性不
純物を除去するに充分な量であればよく、通常粗
LiPF6100重量部に対して1〜20重量部程度であ
る。
Such Li compounds or amines are
Acidic impurities contained in LiPF 6 , especially those that can form salts or complex compounds with hydrogen fluoride, are fine, and whether or not they are soluble in organic solvents is not an essential issue, but in general, even a very small amount Compounds that are soluble are preferably used. A typical example is as a Li compound.
LiF, LiO, Li 2 CO 3 and the like, and amines such as triethylamine and N-N-N'-N'-tetramethylethylenediamine. The amount used should be sufficient to remove acidic impurities;
The amount is about 1 to 20 parts by weight per 100 parts by weight of LiPF 6 .

上記の中和処理後、前記液温を保つた状態でろ
過して反応液中に分散懸濁している余剰のLi化合
物などの処理剤や反応生成物を除去する。その
後、ろ液を室温近くまで冷却すると、液中の
LiPF6が結晶析出してくるから、これをろ取する
ことにより、目的とする精製LiPF6を得ることが
できる。この精製LiPF6の酸性不純物の含有量を
さらに一段と低下させたいと望むなら、以上の操
作を繰り返すことができる。
After the above neutralization treatment, the reaction solution is filtered while maintaining the temperature to remove excess processing agents such as Li compounds and reaction products dispersed and suspended in the reaction solution. Then, when the filtrate is cooled to near room temperature, the
Since LiPF 6 crystals precipitate, the desired purified LiPF 6 can be obtained by filtering the crystals. If it is desired to further reduce the content of acidic impurities in this purified LiPF 6 , the above operation can be repeated.

かくして得られるLiPF6は、酸性不純物をほと
んど含まないが、用いた有機溶媒によつて溶媒和
されたものであるため、常圧乾燥または減圧乾燥
によつてその温度条件を適宜選択することによ
り、上記溶媒を完全に取り除くかあるいは溶媒和
モル数を減少させ、非水電解液用の溶質として使
用に供することができる。このとき用いる有機溶
媒としては、従来から用いられているつまり前記
精製時の好ましき溶媒として例示した分子内にエ
ーテル結合やエステル結合の如き極性基を持つた
誘電率の高いものが賞用される。
The LiPF 6 thus obtained contains almost no acidic impurities, but is solvated by the organic solvent used, so by appropriately selecting the temperature conditions for drying under normal pressure or under reduced pressure, The above-mentioned solvent can be completely removed or the number of solvated moles can be reduced, and it can be used as a solute for a non-aqueous electrolyte. As the organic solvent used at this time, it is preferable to use a conventionally used organic solvent, that is, one having a polar group such as an ether bond or an ester bond in the molecule and having a high dielectric constant, as exemplified as a preferable solvent for purification. Ru.

なお、精製時に用いた有機溶媒が非水電解液用
の有機溶媒としてそのまま適用できるものであれ
ば、上述の溶媒の除去ないし減少のための操作を
経ることなく前記同様にして使用に供することが
できる。
Note that if the organic solvent used during purification can be used as is as an organic solvent for non-aqueous electrolytes, it can be used in the same manner as above without going through the above-mentioned operation for removing or reducing the solvent. can.

以下に、この発明の実施例を記載してより具体
的に説明する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例 1・2−ジメトキシエタン700mlに、酸性不純
物を含む粗LiPF6を100g溶解させ、さらに
Li2CO310gを添加した。発熱反応により液温が
60〜70℃に達したが、その後は外部加熱によつて
上記温度を維持させ、約2時間反応させた。この
反応中、Li2CO3の一部は未溶解のまま液中に懸
濁状に分散されていた。
Example 1. 100g of crude LiPF 6 containing acidic impurities was dissolved in 700ml of 2-dimethoxyethane, and further
10 g of Li 2 CO 3 was added. Due to the exothermic reaction, the liquid temperature increases
After reaching 60 to 70°C, the temperature was maintained by external heating and the reaction was continued for about 2 hours. During this reaction, a portion of Li 2 CO 3 remained undissolved and was dispersed in suspension in the liquid.

上記の中和反応後、液温を保つたままろ過して
懸濁状物を分離除去したのち、ろ液を冷却して
LiPF6を結晶析出させた。この析出物をろ取し、
さらに減圧乾燥して溶媒和された1・2−ジメト
キシエタンを取り除いた。
After the above neutralization reaction, the suspended matter was separated and removed by filtration while maintaining the temperature of the solution, and then the filtrate was cooled.
LiPF 6 was crystallized. This precipitate was collected by filtration,
Further, the solvated 1,2-dimethoxyethane was removed by drying under reduced pressure.

このようにして得た精製LiPF6;45.6gを、
1・3−ジオキソラン200mlに溶解して非水電解
液を調製し、この電解液を用いて常法により図示
されるようなリチウム電池を作製した。図中、1
はリチウムを活物質とする陰極、2はFeS2
MnO2またはTiS2などを活物質とする陽極、3は
ポリプロピレンのような不織布からなるセパレー
タ、4は陽極缶5と陰極端子板6との間に介装さ
れたガスケツトである。
The purified LiPF 6 obtained in this way; 45.6 g was
A non-aqueous electrolyte was prepared by dissolving it in 200 ml of 1,3-dioxolane, and using this electrolyte, a lithium battery as shown was fabricated by a conventional method. In the figure, 1
is a cathode with lithium as the active material, 2 is FeS 2 ,
An anode using MnO 2 or TiS 2 as an active material, 3 a separator made of a nonwoven fabric such as polypropylene, and 4 a gasket interposed between the anode can 5 and the cathode terminal plate 6.

この電池を室温下で貯蔵したときの電池容量の
経日変化並びに60℃下で貯蔵したときの内部抵抗
の経日変化を調べた結果は、下記のとおりであつ
た。なお、比較のため、実施例で用いた粗LiPF6
をそのまま非水電解液用溶質とした以外は実施例
と同様にして作製した電池につき、上記同様の試
験結果を併記した。
The results of examining the changes in battery capacity over time when this battery was stored at room temperature and the changes over time in internal resistance when stored at 60°C were as follows. For comparison, the crude LiPF 6 used in the example
Test results similar to those described above are also listed for a battery produced in the same manner as in the example except that the solute was used as the solute for the non-aqueous electrolyte.

実施例品 比較例品 電池容量の劣化率 0.5%/月 3%/月 内部抵抗の上昇率 0.1Ω/月 0.5Ω/月 以上の結果から明らかなように、この発明法に
よれば電池特性の向上に寄与する高純度のLiPF6
を作業容易に製造できることがわかる。
Example product Comparative example product Deterioration rate of battery capacity 0.5%/month 3%/month Increase rate of internal resistance 0.1Ω/month 0.5Ω/month As is clear from the above results, according to the method of the invention, the battery characteristics High purity LiPF 6 contributes to improvement
It can be seen that it can be manufactured easily.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の方法により得られた非水電解
液用溶質を用いて作製したリチウム電池の一例を
示す断面図である。
The drawing is a cross-sectional view showing an example of a lithium battery manufactured using the solute for non-aqueous electrolyte obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 LiPF6からなる非水電解液用溶質を製造する
に当たり、酸性不純物を含むLiPF6を有機溶媒に
発熱溶解させる一方、これに上記の酸性不純物と
塩ないし錯化合物を形成しうるLi化合物ないしア
ミン類からなる処理剤を加えて中和処理し、その
後冷却して再結晶化させたLiPF6をろ取すること
を特徴とする非水電解液用溶質の製造法。
1. In producing a solute for a non-aqueous electrolyte consisting of LiPF 6 , LiPF 6 containing acidic impurities is exothermically dissolved in an organic solvent, and at the same time, a Li compound or amine that can form a salt or a complex compound with the above acidic impurities is added. 1. A method for producing a solute for a non-aqueous electrolyte, which comprises neutralizing LiPF 6 by adding a treatment agent consisting of the following, followed by cooling and recrystallizing LiPF 6.
JP19220882A 1982-11-01 1982-11-01 Manufacture of solute for nonaqueous electrolyte Granted JPS5981870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19220882A JPS5981870A (en) 1982-11-01 1982-11-01 Manufacture of solute for nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19220882A JPS5981870A (en) 1982-11-01 1982-11-01 Manufacture of solute for nonaqueous electrolyte

Publications (2)

Publication Number Publication Date
JPS5981870A JPS5981870A (en) 1984-05-11
JPH0410711B2 true JPH0410711B2 (en) 1992-02-26

Family

ID=16287457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19220882A Granted JPS5981870A (en) 1982-11-01 1982-11-01 Manufacture of solute for nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JPS5981870A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616421B2 (en) * 1987-05-12 1994-03-02 日本電信電話株式会社 Method for producing electrolyte for lithium battery
JP2778065B2 (en) * 1988-11-28 1998-07-23 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH07254415A (en) * 1993-12-20 1995-10-03 Wilson Greatbatch Ltd Electrochemical battery and method of reducing its voltage delay
US6001325A (en) * 1996-11-26 1999-12-14 Fmc Corporation Process for removing acids from lithium salt solutions
US6183718B1 (en) 1996-12-09 2001-02-06 Valence Technology, Inc. Method of making stabilized electrochemical cell active material of lithium manganese oxide
US5846673A (en) * 1996-12-09 1998-12-08 Valence Technology, Inc. Additive to stabilize electrochemical cell
US5869207A (en) * 1996-12-09 1999-02-09 Valence Technology, Inc. Stabilized electrochemical cell
US6869547B2 (en) 1996-12-09 2005-03-22 Valence Technology, Inc. Stabilized electrochemical cell active material
DE19824984A1 (en) * 1998-06-04 1999-12-09 Basf Ag Process for the crystallization of high-purity LiPF¶6¶ from organic solvents
JP3798560B2 (en) * 1998-11-17 2006-07-19 ステラケミファ株式会社 Purification method of lithium hexafluorophosphate
US6322744B1 (en) 1999-02-17 2001-11-27 Valence Technology, Inc. Lithium manganese oxide-based active material
US6468695B1 (en) 1999-08-18 2002-10-22 Valence Technology Inc. Active material having extended cycle life
JP3973329B2 (en) * 1999-12-09 2007-09-12 ステラケミファ株式会社 Method for producing lithium hexafluorophosphate
JP5849383B2 (en) * 2010-07-28 2016-01-27 宇部興産株式会社 Water / organic solvent mixed solution of lithium perfluorinated inorganic acid and method for producing the same
JP5532181B1 (en) * 2013-10-31 2014-06-25 Jointエンジニアリング株式会社 Method and apparatus for producing lithium salt for electrolyte of lithium battery and / or lithium ion battery

Also Published As

Publication number Publication date
JPS5981870A (en) 1984-05-11

Similar Documents

Publication Publication Date Title
KR101925051B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
JP2832644B2 (en) Method for producing lithium hexafluorophosphate
JPH0410711B2 (en)
KR102036924B1 (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
KR102396069B1 (en) Crystallization of Lithium bis(oxalate)borate and Manufacturing method of the same with high-purity
JP2022507458A (en) A process for removing the reactive solvent from lithium bis (fluorosulfonyl) imide (LIFSI) using an organic solvent that is stable to the anode of lithium ion and lithium metal batteries.
KR102285464B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR101887488B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101982601B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content using alkoxytrialkylsilanes
KR101982602B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (1)
JP5862094B2 (en) Method for producing lithium hexafluorophosphate concentrate
KR102285465B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR20220135283A (en) Method for manufacturing sodium bis(fluorosulfonyl)imide
KR20220135281A (en) Method for manufacturing sodium bis(fluorosulfonyl)imide
KR102275418B1 (en) method for preparing lithium bisfluorosulfonylimide
KR102007476B1 (en) New purification method of bis(fluorosulfonyl)imide lithium salt)
KR20200114967A (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
JPS5953216B2 (en) Synthesis method of anhydrous lithium borofluoride
JP3555720B2 (en) Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same
KR102231049B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery
KR101982603B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (2)
JPH11157830A (en) Production of lithium tetrafluoroborate
KR102259984B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
JP3750179B2 (en) Purification method of organic acid lithium salt
JPH0410712B2 (en)