JPS5953216B2 - Synthesis method of anhydrous lithium borofluoride - Google Patents

Synthesis method of anhydrous lithium borofluoride

Info

Publication number
JPS5953216B2
JPS5953216B2 JP55046409A JP4640980A JPS5953216B2 JP S5953216 B2 JPS5953216 B2 JP S5953216B2 JP 55046409 A JP55046409 A JP 55046409A JP 4640980 A JP4640980 A JP 4640980A JP S5953216 B2 JPS5953216 B2 JP S5953216B2
Authority
JP
Japan
Prior art keywords
lithium
lithium borofluoride
boron trifluoride
borofluoride
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55046409A
Other languages
Japanese (ja)
Other versions
JPS56145113A (en
Inventor
好晴 持田
稔夫 立野
邦尭 百田
仁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morita Kagaku Kogyo Co Ltd
Original Assignee
Morita Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morita Kagaku Kogyo Co Ltd filed Critical Morita Kagaku Kogyo Co Ltd
Priority to JP55046409A priority Critical patent/JPS5953216B2/en
Publication of JPS56145113A publication Critical patent/JPS56145113A/en
Publication of JPS5953216B2 publication Critical patent/JPS5953216B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 エレクトロニクスの発展により高エネルギー密、度を有
する電池の開発が進んでおり、特に負極に電極電位の極
めて卑な金属リチウムを用いたリチウム電池に注目が集
まつている。
DETAILED DESCRIPTION OF THE INVENTION With the development of electronics, the development of batteries with high energy density and density is progressing, and in particular, lithium batteries using metal lithium, which has an extremely base electrode potential, as the negative electrode are attracting attention.

このリチウム電池は、リチウムが水と激しく反応するた
め電解液には非水電解液を使う必要があ3り、従来から
この目的に合つた有機・無機溶媒および溶質が使われて
いる。
Since lithium reacts violently with water in these lithium batteries, it is necessary to use a non-aqueous electrolyte as the electrolyte, and conventionally organic/inorganic solvents and solutes suitable for this purpose have been used.

この内溶質としては、過塩素酸リチウム (LiC1O、)、ホウフッ化リチウム(LiBF0)
、アルミニウム塩化リチウム(LiAlCl、)、リン
フッ化カリウム(KPF0)、リンフッ化ナトリウム、
(NaPF。
Among these solutes, lithium perchlorate (LiC1O, ), lithium borofluoride (LiBF0)
, lithium aluminum chloride (LiAlCl, ), potassium phosphorus fluoride (KPF0), sodium phosphorus fluoride,
(NaPF.

)O他の無水ルイス酸塩化合物が有用とされている。し
かし、このような溶質の製法上最も留意しなければなら
ないのは、、電解質中の不純物が電池の性能に重要な影
響を与える事であろう。
)O and other anhydrous Lewis acid salt compounds have been found to be useful. However, the most important thing to keep in mind when manufacturing such a solute is that impurities in the electrolyte will have a significant effect on the performance of the battery.

ク 換言すれば、品位が高く残留水分の少ない溶質を合
成する事が電池の性能を向上させる秘訣であつて、これ
が電池作製の前提になると考えられる。
In other words, the secret to improving battery performance is to synthesize a solute with high quality and low residual water content, and this is considered to be a prerequisite for battery production.

本発明は上述した数種類の溶媒の中でも特に特、性が良
いとされる無水ホウフッ化リチウムの合成方法に関する
ものである。
The present invention relates to a method for synthesizing anhydrous lithium borofluoride, which is said to have particularly good properties among the several types of solvents mentioned above.

ホウフッ化リチウムの公知の合成方法としては、湿式法
とエーテル法の二種類が報告されている。
Two known methods for synthesizing lithium borofluoride have been reported: a wet method and an ether method.

(A)湿式法は次式によつて含水塩が生成する。(A) In the wet method, a hydrated salt is generated according to the following formula.

2HBF4aq−soln・+Li2C03→LiBF
4・H2O+C02含水塩LiBF、・H。
2HBF4aq-soln・+Li2C03→LiBF
4.H2O+C02 hydrate salt LiBF, .H.

Oは加熱時、脱水前に102℃で溶融し、脱水の為には
200℃程度まで昇温が必要であるが、LiBF4→L
iF+BF3の分解が起り、純度が低下するだけでなく
水分が残留し、リチウム電池用には使用できない。(B
)エーテル法は次式に示すように BF3・(C2H5)20+LiF→LiBF4+(C
2H5)20三フッ化ホウ素とメチルエーテルまたはエ
チルエーテルのコンプレックス(錯化合物)とフッ化リ
チウムの反応によつて無水塩が得られるが、エーテルに
フッ化リチウムおよびホウフッ化リチウムが難溶性であ
るため、リチウム電池用として満足できる高品位のもの
が得にくい事、危険なエーテルを使用する事等の欠点が
ある。
During heating, O melts at 102°C before dehydration, and it is necessary to raise the temperature to about 200°C for dehydration, but LiBF4→L
Decomposition of iF+BF3 occurs, which not only reduces purity but also leaves water behind, making it unusable for lithium batteries. (B
) In the ether method, BF3・(C2H5)20+LiF→LiBF4+(C
2H5) 20 An anhydrous salt can be obtained by the reaction of a complex of boron trifluoride and methyl ether or ethyl ether with lithium fluoride, but since lithium fluoride and lithium borofluoride are poorly soluble in ether. However, there are drawbacks such as difficulty in obtaining high-quality products that are satisfactory for use in lithium batteries, and the use of dangerous ether.

このように、ホウフツ化リチウムをリチウム電池用とし
て使用する場合、公知の方法では満足できる品質のもの
を得ることができない。
As described above, when using lithium borofluoride for lithium batteries, it is not possible to obtain a product of satisfactory quality using known methods.

本発明者等は種々研究の結果、非水溶媒中でフ.5ツ化
リチウムと三フツ化ホウ素とを反応させることにより無
水ホウフツ化リチウムを生成させる際、次のような特性
を持つ非水溶媒を単独または複数で溶媒の一部もしくは
全部として使用する合成法を発明した。
As a result of various studies, the inventors of the present invention have found that fluorocarbons can be dissolved in non-aqueous solvents. A synthesis method that uses one or more non-aqueous solvents having the following characteristics as part or all of the solvent when producing anhydrous lithium borofluoride by reacting lithium pentatsuride and boron trifluoride. invented.

11生成されたホウ
フツ化リチウムを溶解させる。2三フツ化ホウ素とコン
プレツクスを作る。
11. Dissolve the produced lithium borofluoride. 2. Make a complex with boron trifluoride.

3広い温度範囲で液体である。3. It is liquid over a wide temperature range.

上記の条件に合致する溶媒として酢酸メチル、1酢酸エ
チル、ジメトキシエタン、プロピレンカーボネイト、γ
−ブチロラクトン、テトラハイドロフラン(C4H8O
)を見出すことができた。
Solvents that meet the above conditions include methyl acetate, ethyl monoacetate, dimethoxyethane, propylene carbonate, γ
-Butyrolactone, tetrahydrofuran (C4H8O
) could be found.

まず、ホウフツ化リチウムの溶解度については、下記に
例示するように大きな溶解性を示し2た。比較のためエ
チルエーテルの場合を示すと、約1.7wt%LiBF
4/Sat.sOln(25℃)である。
First, regarding the solubility of lithium borofluoride, it showed a large solubility as illustrated below. For comparison, the case of ethyl ether is approximately 1.7 wt% LiBF
4/Sat. sOln (25°C).

三フツ化ホウ素とコンプレツクスを作る溶媒については
、下記のとおりである。1:1m01BF3/MOl溶
媒コンプレツクスを作る溶媒酢酸メチル、酢酸エチル、
プロピレンカーボネイト、γ−ブチロラクトン、テトラ
ハイドロフラン1:lおよび2:1m01BF3/MO
l溶媒コンプレツクスを作る溶媒ジメトキシエタン また、これらの溶媒が広い温度範囲で液体であることは
、次表の融点、沸点表からも明らかである。
The solvents that form complexes with boron trifluoride are as follows. Solvents methyl acetate, ethyl acetate, making a 1:1m01BF3/MOI solvent complex.
Propylene carbonate, γ-butyrolactone, tetrahydrofuran 1:l and 2:1m01BF3/MO
Solvent dimethoxyethane that forms the solvent complex It is also clear from the following table of melting points and boiling points that these solvents are liquid over a wide temperature range.

フ 無水ホウフツ化リチウムの結晶を得る場合、ホウフツ化
リチウムの溶解度の大きい溶媒中で三フツ化ホウ素とフ
ツ化リチウムとを反応させて一旦溶液とし、不溶解物を
沢別後さらに三フツ化ホウ素を吸収させ、溶媒の一部ま
たは全部を三フツ化ホウ素コンプレツクスとしてホウフ
ツ化リチウムの溶解度を減少させるか、そのまま溶媒を
濃縮して結晶を容易に得ることができる。
To obtain crystals of anhydrous lithium borofluoride, boron trifluoride and lithium fluoride are reacted in a solvent in which lithium borofluoride has a high solubility to form a solution, and after removing insoluble materials, boron trifluoride is further added. The solubility of lithium borofluoride can be easily obtained by absorbing part or all of the solvent into a boron trifluoride complex, or by concentrating the solvent as it is.

三フツ化ホウ素コンプレツクスは温度条件によつて液体
であり、ホウフツ化リチウム結晶の単離は容易で、残留
する溶媒およびそのコンプレツクスも再利用可能である
The boron trifluoride complex is liquid depending on the temperature conditions, and the lithium borofluoride crystals can be easily isolated and the remaining solvent and the complex can be reused.

この際一旦ホウフツ化リチウムが溶解することにより、
淵過すれば未反応のフツ化リチウムやフツ化リチウム中
の不純物例えば炭酸リチウム(Li2CO3)、酸化リ
チウム(Li2O)等が除去でき、高品位の良好な結晶
が得られる。
At this time, once the lithium borofluoride is dissolved,
By filtering, unreacted lithium fluoride and impurities in the lithium fluoride, such as lithium carbonate (Li2CO3) and lithium oxide (Li2O), can be removed, and high quality and good crystals can be obtained.

溶媒が広い温度範囲で液体であることによつてこうした
一連の操作はより助長される。
This series of operations is facilitated by the fact that the solvent is liquid over a wide temperature range.

また、ホウフツ化リチウムの溶液例えばリチウム電池用
電解液を調合する場合には、きわめて潮解性が大きく取
扱いの困難なホウフツ化リチウムの結晶を一旦合成し、
溶媒に溶解させるよりも、本発明の方法のように溶媒、
三フツ化ホウ素、フツ化リチウムの混合により、目的物
を一気に合成した方が水分や不純物の混入も少なく、操
作数、経済性からも好ましいと考えらえる。
In addition, when preparing a lithium borofluoride solution, such as an electrolyte for lithium batteries, it is necessary to first synthesize lithium borofluoride crystals, which are extremely deliquescent and difficult to handle.
Rather than dissolving in a solvent, as in the method of the present invention, a solvent,
Synthesizing the target product all at once by mixing boron trifluoride and lithium fluoride is thought to be preferable in terms of the number of operations and economical efficiency, since there is less contamination of water and impurities.

導電性非水溶液を必要とする電池等の用途に対しては、
一般に次のような特性が要求されているが、本発明の対
象溶媒の多くがこの特性に合致している。
For applications such as batteries that require conductive non-aqueous solutions,
Generally, the following properties are required, and many of the target solvents of the present invention meet these properties.

8溶媒中でホウフツ化リチウムが大きな溶解度を持つ。Lithium borofluoride has high solubility in 8 solvents.

8電極その他に対し化学的に安定である。8 Chemically stable against electrodes and others.

O溶液にイオン導電性がある。O solution has ionic conductivity.

これは偶然ではなく、本発明によつて明らかとなつたよ
うに無水ホウフツ化リチウムの合成に際し、前述したよ
うに非プロトン性溶媒に対するホウフツ化リチウムの溶
解度が大きくしかも装置が腐触する等の問題も少ないこ
とによるものであろつ。
This is not a coincidence; as has been made clear by the present invention, when synthesizing anhydrous lithium borofluoride, there are problems such as the high solubility of lithium borofluoride in aprotic solvents and corrosion of the equipment as described above. This is probably due to the fact that there are fewer people.

前述した溶媒以外にもメタノール、エタノール、二酸化
イオウ、塩化チオニル(SOCl2)、エチレンカーボ
ネイト、メチルピロリドン等も特性として類似しており
、水を含まない溶媒として調達するのが難しい事、三フ
ツ化ホウ素コンプレツクス中のホウフツ化リチウム溶解
度が大きすぎる事、三フツ化ホウ素コンプレツクスの融
点が高い事、常温で固体もしくは気体である事等の難点
はあるが、場合によつてはこれらを利用することもでき
るであろう。
In addition to the above-mentioned solvents, methanol, ethanol, sulfur dioxide, thionyl chloride (SOCl2), ethylene carbonate, methylpyrrolidone, etc. have similar properties and are difficult to procure as water-free solvents, and boron trifluoride Although there are some drawbacks such as the high solubility of lithium borofluoride in the complex, the high melting point of the boron trifluoride complex, and the fact that it is solid or gaseous at room temperature, it is possible to use these in some cases. You can also do it.

例えば融点が高い場合低融点の第三物質を添加する事も
できる。本発明による無水ホウフツ化リチウムの結晶お
よび溶液の合成方法は次のような特徴がある。
For example, if the melting point is high, a third substance with a low melting point can be added. The method for synthesizing anhydrous lithium borofluoride crystals and solutions according to the present invention has the following characteristics.

1高純度ホウフツ化リチウムを合成することができる。1 High purity lithium borofluoride can be synthesized.

2非水溶媒を使うため最も不都合な水の発生・混入を避
けることができる。
2. Since a non-aqueous solvent is used, the most inconvenient generation and contamination of water can be avoided.

3製品収率が高い。3 Product yield is high.

二4一旦溶解状態となるた
め、脱水・脱不溶解物・脱色等の精製が容易である。5
電池用の電解液を直接合成することができる。
24 Once in a dissolved state, purification such as dehydration, removal of undissolved substances, and decolorization is easy. 5
Electrolytes for batteries can be directly synthesized.

次に、本発明による合成方法の実施例を示す。Next, examples of the synthesis method according to the present invention will be shown.

実施例 15リツトルのガラス製3つロフラスコに攪拌
機をセツトし、無水塩化カルシウムで脱水した後の酢酸
エチル2500gを入れて連続的に攪拌し、フラスコ外
部を水冷しながら三フツ化ホウ素ガス1750.1gを
もはや溶解吸収されなくなるまで吹き込んだ。
Example A stirrer was set in a 15-liter glass three-loaf flask, and 2500 g of ethyl acetate after dehydration with anhydrous calcium chloride was added thereto and continuously stirred. While cooling the outside of the flask with water, 1750.1 g of boron trifluoride gas was added. was blown until it could no longer be dissolved and absorbed.

次に600gのフツ化リチウムを添加、溶解、不溶解物
を濾別した後、攪拌水冷しながらさらに三フツ化ホウ素
ガス850gを沈澱が晶析するまで吹き込んだ。
Next, 600 g of lithium fluoride was added, dissolved, and undissolved matter was filtered out, and then 850 g of boron trifluoride gas was blown into the solution while stirring and cooling with water until a precipitate crystallized.

生成物は吸引濾過後90℃、3時間真空乾燥し、純度9
9.8%・水分0.01%のホウフツ化リチウム900
gを得た。
The product was vacuum-dried at 90°C for 3 hours after suction filtration, and the purity was 9.
Lithium borofluoride 900 with 9.8% and moisture 0.01%
I got g.

実施例 2 5リツトルのガラス製3つロフラスコに攪拌機をセツト
し、蒸留精製したジメトキシエタン1720gと微粉砕
し充分乾燥させたフツ化リチウム60gとを入れて連続
的に攪拌し、フラスコ外部を水冷しながら三フツ化ホウ
素ガス136gをゆつくり吸き込んだ。
Example 2 A stirrer was set in a 5-liter glass three-hole flask, and 1720 g of dimethoxyethane purified by distillation and 60 g of pulverized and thoroughly dried lithium fluoride were continuously stirred, and the outside of the flask was cooled with water. While doing so, 136 g of boron trifluoride gas was slowly inhaled.

生成物は1M−LiBF4のジメトキシエタン溶液で、
リチウム電池用等の電解液として使用することができた
The product is a 1M LiBF4 solution in dimethoxyethane,
It could be used as an electrolyte for lithium batteries, etc.

実施例 3 5リツトルのガラス製3つロフラスコに攪拌機をセツト
し、蒸留精製したプロピレンカーボネイト1900gお
よびベンゼン200gと、微粉砕し充分乾燥させたフツ
化リチウム60gとを入れて連続的に攪拌し、フラスコ
外部を水冷しながら三フツ化ホウ素ガス136gをゆつ
くり吹き込んだ。
Example 3 A stirrer was set in a 5-liter three-bottle glass flask, and 1,900 g of propylene carbonate purified by distillation and 200 g of benzene were added, and 60 g of pulverized and thoroughly dried lithium fluoride were continuously stirred. While cooling the outside with water, 136 g of boron trifluoride gas was slowly blown in.

生成物は1M−LiBF4のプロピレンカーボネイト・
ベンゼン溶液で、リチウム電池用等の低粘度電解液とし
て使用することができた。実施例 4 5リツトルのガラス製3つロフラスコに攪拌機をセツト
し、蒸留精製したγ−ブチロラクトン2150gおよび
R−113(CCl2CF2)100gと微粉砕し充分
乾燥させたフツ化リチウム60gとを入れて連続的に攪
拌し、フラスコ外部を水冷しながら三フツ化ホウ素ガス
136gをゆつくり吹き込んだ。
The product is 1M-LiBF4 propylene carbonate.
The benzene solution could be used as a low-viscosity electrolyte for lithium batteries, etc. Example 4 A stirrer was set in a 5-liter three-bottle glass flask, and 2150 g of distilled and purified γ-butyrolactone and 100 g of R-113 (CCl2CF2) and 60 g of pulverized and thoroughly dried lithium fluoride were added and stirred continuously. 136 g of boron trifluoride gas was slowly blown into the flask while stirring and cooling the outside of the flask with water.

Claims (1)

【特許請求の範囲】[Claims] 1 非水溶媒中でフッ化リチウムと三フッ化ホウ素とを
反応させることにより無水ホウフッ化リチウムを生成さ
せる際、生成されたホウフッ化リチウムを溶解させしか
も三フッ化ホウ素とコンプレックスを作る酢酸メチル、
酢酸エチル、ジメトキシエタン、プロピレンカーボネイ
ト、γ−ブチロラクトンあるいはテトラハイドロフラン
を溶媒として使用することを特徴とする無水ホウフッ化
リチウムの合成方法。
1. When producing anhydrous lithium borofluoride by reacting lithium fluoride and boron trifluoride in a non-aqueous solvent, methyl acetate dissolves the produced lithium borofluoride and forms a complex with boron trifluoride;
A method for synthesizing anhydrous lithium borofluoride, characterized in that ethyl acetate, dimethoxyethane, propylene carbonate, γ-butyrolactone or tetrahydrofuran is used as a solvent.
JP55046409A 1980-04-09 1980-04-09 Synthesis method of anhydrous lithium borofluoride Expired JPS5953216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55046409A JPS5953216B2 (en) 1980-04-09 1980-04-09 Synthesis method of anhydrous lithium borofluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55046409A JPS5953216B2 (en) 1980-04-09 1980-04-09 Synthesis method of anhydrous lithium borofluoride

Publications (2)

Publication Number Publication Date
JPS56145113A JPS56145113A (en) 1981-11-11
JPS5953216B2 true JPS5953216B2 (en) 1984-12-24

Family

ID=12746346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55046409A Expired JPS5953216B2 (en) 1980-04-09 1980-04-09 Synthesis method of anhydrous lithium borofluoride

Country Status (1)

Country Link
JP (1) JPS5953216B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375049B2 (en) * 1997-11-19 2003-02-10 セントラル硝子株式会社 Method for producing lithium tetrafluoroborate
DE19835595A1 (en) 1998-08-06 2000-02-10 Basf Ag Process for the production of high-purity LiBF¶4¶
US7820323B1 (en) 2006-09-07 2010-10-26 The United States Of America As Represented By The Secretary Of The Army Metal borate synthesis process
JP5252908B2 (en) * 2007-12-25 2013-07-31 ステラケミファ株式会社 Method for producing tetrafluoroborate
WO2010146710A1 (en) * 2009-06-19 2010-12-23 ステラケミファ株式会社 Method for producing tetrafluoroborate
CN102030339A (en) * 2011-01-12 2011-04-27 新疆有色金属研究所 Preparation method of battery-grade anhydrous lithium tetrafluoroborate
JP5794028B2 (en) * 2011-08-03 2015-10-14 セントラル硝子株式会社 Method for producing lithium tetrafluoroborate solution
CN103236562B (en) * 2013-04-11 2015-03-25 多氟多化工股份有限公司 Preparation method for lithium tetrafluoroborate
CN109264736A (en) * 2018-11-14 2019-01-25 东营石大胜华新能源有限公司 A kind of preparation method of LiBF4

Also Published As

Publication number Publication date
JPS56145113A (en) 1981-11-11

Similar Documents

Publication Publication Date Title
EP3381923B1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
WO2018201711A1 (en) Method for preparing lithium bis (fluorosulfonyl) imide
KR102036924B1 (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
JP2000516930A (en) Method for preparing lithium borate complex
JPH04501118A (en) Synthesis method of sulfonylimide
CN107720717B (en) Preparation method of lithium difluorophosphate
JP2003536229A (en) Electrolyte salt for lithium battery
JPH02276163A (en) Manufacture of electrolyte
CN115340573B (en) Preparation method of lithium difluorobis (oxalate) phosphate
KR20200049164A (en) Very efficient Method for preparing lithium bis(fluorosulfonyl)imide
WO2023202093A1 (en) Preparation method for lithium bis(fluorosulfonyl)imide, and lithium ion battery
WO2016093400A1 (en) Method for preparing lithium bis(fluorosulfonyl) imide salt and intermediate product obtained from the same
JP5862094B2 (en) Method for producing lithium hexafluorophosphate concentrate
JPS5953216B2 (en) Synthesis method of anhydrous lithium borofluoride
JPS5981870A (en) Manufacture of solute for nonaqueous electrolyte
CN1516702A (en) Boron chelate complexes
WO2016072158A1 (en) Method for purifying electrolyte solution and method for producing electrolyte solution
JP3034202B2 (en) Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
CN113929711A (en) Preparation method of lithium difluoroborate
JP3369937B2 (en) Purification method of lithium tetrafluoroborate
JP3375049B2 (en) Method for producing lithium tetrafluoroborate
CA2339593C (en) Method for producing highly pure libf4
JP3555720B2 (en) Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
TWI598292B (en) Method of producing phosphorus pentafluoride, method of producing lithium hexafluorophosphate, lithium hexafluorophosphate, non-aqueous electrolyte solution for battery, and lithium secondary battery