JP5151121B2 - Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same - Google Patents

Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same Download PDF

Info

Publication number
JP5151121B2
JP5151121B2 JP2006313847A JP2006313847A JP5151121B2 JP 5151121 B2 JP5151121 B2 JP 5151121B2 JP 2006313847 A JP2006313847 A JP 2006313847A JP 2006313847 A JP2006313847 A JP 2006313847A JP 5151121 B2 JP5151121 B2 JP 5151121B2
Authority
JP
Japan
Prior art keywords
lithium
lithium ion
ion battery
electrolytic solution
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006313847A
Other languages
Japanese (ja)
Other versions
JP2007184246A (en
Inventor
敬二 佐藤
周 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2006313847A priority Critical patent/JP5151121B2/en
Publication of JP2007184246A publication Critical patent/JP2007184246A/en
Application granted granted Critical
Publication of JP5151121B2 publication Critical patent/JP5151121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、ヘキサフルオロリン酸リチウムを電解質として用いたリチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池に関する。   The present invention relates to a method for producing an electrolytic solution for a lithium ion battery using lithium hexafluorophosphate as an electrolyte and a lithium ion battery using the same.

リチウムイオン電池等に有用な電解質であるヘキサフルオロリン酸リチウムの製造方法は、種々提案されており、一般的な電解液製造は、まずヘキサフルオロリン酸リチウムを製造し、所定のリチウム電池用溶媒に溶解させて電解液とする方法が行われている。ヘキサフルオロリン酸リチウムの製造方法については、例えば、無溶媒で固体のフッ化リチウムと気体の五フッ化リンを反応させる方法(特許文献1)がある。この方法においては、フッ化リチウムの表面に反応生成物の被膜が形成され、反応が完全に進行せず未反応のフッ化リチウムが残存する恐れがある。また、同じく無溶媒で五塩化リンとフッ化リチウムに無水フッ化水素を加えて反応させる方法(特許文献2)もある。これは反応の制御が容易ではなく、氷点下数十℃までの冷却が必要である。   Various methods for producing lithium hexafluorophosphate which is an electrolyte useful for lithium ion batteries and the like have been proposed. In general, an electrolytic solution is produced by first producing lithium hexafluorophosphate, and a predetermined solvent for lithium batteries. The method of making it melt | dissolve in and making it an electrolyte solution is performed. As a method for producing lithium hexafluorophosphate, for example, there is a method of reacting solid lithium fluoride and gaseous phosphorus pentafluoride without solvent (Patent Document 1). In this method, a film of a reaction product is formed on the surface of lithium fluoride, and the reaction does not proceed completely, so that unreacted lithium fluoride may remain. There is also a method (Patent Document 2) in which anhydrous hydrogen fluoride is added to phosphorus pentachloride and lithium fluoride and reacted without solvent. This is not easy to control the reaction and requires cooling to several tens of degrees Celsius below freezing point.

一方、溶媒を用いたヘキサフルオロリン酸リチウムの製造方法では、無水フッ化水素を溶媒として溶解させたフッ化リチウムにガス状の五フッ化リンを反応させ、生成したヘキサフルオロリン酸リチウムを結晶化させ、取り出すという方法(非特許文献1)がある。   On the other hand, in the method for producing lithium hexafluorophosphate using a solvent, gaseous phosphorus pentafluoride is reacted with lithium fluoride in which anhydrous hydrogen fluoride is dissolved as a solvent, and the produced lithium hexafluorophosphate is crystallized. There is a method (Non-patent Document 1) in which the data is converted into an image and taken out.

この方法ではヘキサフルオロリン酸リチウムの反応率は高いが、蒸気圧が高く、また毒性、腐食性を有する無水フッ化水素を溶媒として大量に使用しなければならず、ハンドリングが容易ではない。さらに原料の一つである五フッ化リンを別プロセスで製造する必要があることや、ヘキサフルオロリン酸リチウムの結晶化プロセスが必要であることなど、コストアップにつながる要素が多い。   In this method, the reaction rate of lithium hexafluorophosphate is high, but the vapor pressure is high, and anhydrous hydrogen fluoride having toxicity and corrosivity must be used in a large amount as a solvent, and handling is not easy. Furthermore, there are many factors that lead to an increase in cost, such as the necessity of producing phosphorous pentafluoride, which is one of the raw materials, in a separate process, and the need for a crystallization process of lithium hexafluorophosphate.

また、有機溶媒中でフッ化リチウムと五フッ化リンと反応させる方法(特許文献3)がある。この方法では反応の制御および純度の点で利点は大きいが、前述したように別プロセスで原料の一つである五フッ化リンガスを製造し、取り扱う必要があるためコストの課題が残る。   There is also a method (Patent Document 3) in which lithium fluoride and phosphorus pentafluoride are reacted in an organic solvent. This method has great advantages in terms of reaction control and purity. However, as described above, since it is necessary to manufacture and handle phosphorus pentafluoride gas, which is one of the raw materials, in another process, there remains a problem of cost.

さらに、溶媒として無水フッ化水素または極性有機溶媒であるCHCNを用い、三塩化リンと塩素、フッ化水素を反応させて五フッ化リンを得て、さらに同一の反応器にフッ化リチウムを加えて、五フッ化リンと反応させてヘキサフルオロリン酸リチウムを製造する方法(特許文献4)もある。 Further, anhydrous hydrogen fluoride or polar organic solvent CH 3 CN is used as a solvent, and phosphorus trichloride is reacted with chlorine and hydrogen fluoride to obtain phosphorus pentafluoride. Further, lithium fluoride is added to the same reactor. There is also a method of producing lithium hexafluorophosphate by reacting with phosphorus pentafluoride (Patent Document 4).

この方法では五フッ化リンの製造も同一反応器内で行うため効率的であるが、蒸気圧の高い五フッ化リンの生成を経由するため、加圧反応器などの高価な設備と複雑な操作が必要であり、また基本的に結晶化プロセスが必要であるために電解液製造に対して根本的なコストダウンは難しいなど多くの課題が残っている。
特開昭64−72901号公報 特開平10−72207号公報 特開平9−165210号公報 特開平10−81505号公報 J.Chem.Soc.Part4、4408(1963)
This method is efficient because phosphorous pentafluoride is produced in the same reactor. However, since it produces phosphorus pentafluoride with a high vapor pressure, expensive equipment such as a pressurized reactor and complicated Many problems remain, such as the need for operation, and basically the need for a crystallization process, which makes it difficult to fundamentally reduce the cost of electrolyte production.
JP-A 64-72901 JP-A-10-72207 JP-A-9-165210 JP-A-10-81505 J. et al. Chem. Soc. Part 4, 4408 (1963)

本発明における課題は、ヘキサフルオロリン酸リチウムを電解質に用いたリチウムイオン電池用電解液製造おいて、前述したように、取り扱いが容易ではない無水フッ化水素溶媒を使用せず、また高価な設備や複雑な操作を必要とせず、さらに結晶化プロセスを行わず安価にヘキサフルオロリン酸リチウムを電解質に用いた電解液を製造し、リチウムイオン電池用に使用することにある。   The object of the present invention is to produce an electrolyte solution for lithium ion batteries using lithium hexafluorophosphate as an electrolyte, as described above, without using an anhydrous hydrogen fluoride solvent that is not easy to handle and expensive equipment In addition, an electrolyte solution using lithium hexafluorophosphate as an electrolyte is manufactured at low cost without using a complicated operation and without performing a crystallization process, and is used for a lithium ion battery.

本発明者らは、かかる課題に鑑み、鋭意研究した結果、ヘキサフルオロリン酸リチウムを電解質に用いたリチウムイオン電池用電解液の製造において、取り扱いが容易ではない無水フッ化水素溶媒を使用せず、また高価な設備や複雑な操作を必要とせず、さらに結晶化プロセスを行わず安価にヘキサフルオロリン酸リチウムを電解質に用いた電解液が得られる方法を見い出し、本発明に到達した。   As a result of intensive research in view of such problems, the present inventors have not used an anhydrous hydrogen fluoride solvent that is not easy to handle in the production of an electrolyte for lithium ion batteries using lithium hexafluorophosphate as an electrolyte. In addition, the present inventors have found a method that does not require expensive equipment and complicated operations, and that can obtain an electrolytic solution using lithium hexafluorophosphate as an electrolyte at low cost without performing a crystallization process, and has reached the present invention.

すなわち本発明は、ヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液の製造において、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらには、塩化リチウムと反応させることを特徴とするリチウムイオン電池用電解液の製造方法であり、特に、該非水性有機溶媒が、鎖状又は環状の炭酸エステル、または2つ以上の酸素原子を有するエーテル化合物であること、さらには該炭酸エステルが、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、又はプロピレンカーボネートのみから成る群から選択される少なくとも1つであること、または該エーテル化合物が、1,2−ジメトキシエタンであることを特徴とする製造方法をそれぞれ提供するものである。
That is, in the production of an electrolytic solution for a lithium ion battery using lithium hexafluorophosphate as an electrolyte, the present invention reacts phosphorus trichloride with chlorine and lithium chloride in a non-aqueous organic solvent, and then in the solvent. It is a method for producing an electrolytic solution for a lithium ion battery, characterized by reacting the produced reaction product with hydrogen fluoride, and further reacting with lithium chloride. In particular, the non-aqueous organic solvent is a chain or A cyclic carbonate, or an ether compound having two or more oxygen atoms, and the carbonate is selected from the group consisting of dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, or propylene carbonate only. Or at least one of the ether compounds is 1, - there is provided a manufacturing method which is a dimethoxyethane, respectively.

本発明のヘキサフルオロリン酸リチウムを含むリチウムイオン電池用電解液の製造方法は、反応収率が高く、基本的に大気圧で反応を行うことが出来るため、反応制御が容易で、さらに、反応溶媒としてリチウム電池用非水性有機溶媒を使用することにより、結晶化してヘキサフルオロリン酸リチウム粉末を取り出さなくとも直接反応溶液をリチウムイオン電池用電解液として用いることができる利点がある。   The method for producing an electrolytic solution for a lithium ion battery containing lithium hexafluorophosphate according to the present invention has a high reaction yield and can basically perform a reaction at atmospheric pressure. By using a non-aqueous organic solvent for a lithium battery as a solvent, there is an advantage that the reaction solution can be directly used as an electrolyte for a lithium ion battery without crystallization and taking out lithium hexafluorophosphate powder.

本発明のリチウムイオン電池用電解液の製造方法は、上記リチウム電池用非水性有機溶媒の内のいずれか一種類、もしくは数種類の混合溶媒中で実施される。   The manufacturing method of the electrolyte solution for lithium ion batteries of this invention is implemented in any one type in the said nonaqueous organic solvent for lithium batteries, or several types of mixed solvents.

使用される非水性有機溶媒は、化学的安定性が高く、しかもヘキサフルオロリン酸リチウムの溶解度が高い鎖状又は環状の炭酸エステル化合物、または2つ以上の酸素原子を有するエーテル化合物が望ましい。このような溶媒は、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタンなどが挙げられる。   The non-aqueous organic solvent used is preferably a chain or cyclic carbonate compound having high chemical stability and high solubility of lithium hexafluorophosphate, or an ether compound having two or more oxygen atoms. Examples of such a solvent include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane and the like.

本発明の製造方法は、まず非水性有機溶媒に原料である三塩化リンと塩化リチウムを仕込み、これに塩素ガスを吹き込むことで、該非水性有機溶媒中で反応が実施され、その後、該反応生成物を含む溶媒中にフッ化水素を導入し、反応生成物と反応させるものである。   In the production method of the present invention, first, phosphorus trichloride and lithium chloride as raw materials are charged into a non-aqueous organic solvent, and chlorine gas is blown into the non-aqueous organic solvent, whereby the reaction is carried out in the non-aqueous organic solvent, and then the reaction product is produced. Hydrogen fluoride is introduced into the solvent containing the product and reacted with the reaction product.

本発明において、塩化リチウム、塩素、三塩化リンのそれぞれのモル比は、1〜1.1:1:1〜2であり、三塩化リンの量は、塩素ガスと同量もしくは塩素ガスよりも多く仕込む必要がある。塩素ガスの量が三塩化リンよりも多いと、過剰の塩素ガスが溶媒と反応して不純物が生成するためである。このため三塩化リンの量を、塩素ガスよりも1〜2倍molの範囲で多く仕込む必要がある。また、塩化リチウムの量は、原料コストの点で、塩素ガスの1〜1.1倍molが好ましい。より好ましくは、1.05〜1.1倍molである。   In the present invention, each molar ratio of lithium chloride, chlorine, and phosphorus trichloride is 1 to 1.1: 1: 1 to 2, and the amount of phosphorus trichloride is the same as chlorine gas or more than chlorine gas. It is necessary to prepare a lot. This is because if the amount of chlorine gas is larger than phosphorus trichloride, excess chlorine gas reacts with the solvent to generate impurities. For this reason, it is necessary to charge more phosphorus trichloride in the range of 1 to 2 times mol than chlorine gas. The amount of lithium chloride is preferably 1 to 1.1 times mol of chlorine gas in terms of raw material cost. More preferably, it is 1.05-1.1 times mol.

次に、非水性有機溶媒に対する原料の仕込量は、非水性有機溶媒1リットルに対して塩化リチウムが400g以下、好ましくは100g以下にする必要がある。塩化リチウムの量が非水性有機溶媒1リットルに対して400gを超えると生成物が飽和となり、未反応の塩化リチウムが生じ反応が進行できなくなる。   Next, the amount of the raw material charged into the non-aqueous organic solvent needs to be 400 g or less, preferably 100 g or less of lithium chloride with respect to 1 liter of the non-aqueous organic solvent. When the amount of lithium chloride exceeds 400 g with respect to 1 liter of non-aqueous organic solvent, the product becomes saturated, unreacted lithium chloride is generated, and the reaction cannot proceed.

この反応を行う際の温度は、下限が−40℃、好ましくは5℃で、上限は100℃、好ましくは50℃である。反応温度が−40℃未満では、非水性有機溶媒が凝固してしまうため反応が進行しない。また100℃よりも高い場合、着色や副反応の原因となるため好ましくない。   The lower limit of the temperature at which this reaction is carried out is −40 ° C., preferably 5 ° C., and the upper limit is 100 ° C., preferably 50 ° C. If reaction temperature is less than -40 degreeC, since a non-aqueous organic solvent will coagulate | solidify, reaction does not advance. Moreover, when higher than 100 degreeC, since it causes coloring and a side reaction, it is unpreferable.

上記反応時の圧力は特に限定しないが、生成するガス成分はなく、大気圧で反応は迅速に100%進行するため、特別な耐圧反応器を必要とせず、基本的に大気圧付近で行う。   The pressure during the reaction is not particularly limited, but there is no gas component to be generated, and the reaction proceeds rapidly 100% at atmospheric pressure. Therefore, a special pressure-resistant reactor is not required, and the reaction is basically performed near atmospheric pressure.

また反応時に光が照射されると、非水性有機溶媒と塩素の反応が生じる恐れがあるため、反応時には遮光した条件下で行うことが望ましい。   In addition, when light is irradiated during the reaction, there is a possibility that a reaction between the non-aqueous organic solvent and chlorine occurs.

一方、塩素ガス吹き込み完了後、反応器内に仕込んだ塩化リチウム粉末は、反応式(1)により全部もしくは一部溶解して、ヘキサクロロリン酸リチウムと推定される中間体化合物となる。   On the other hand, after completion of the blowing of chlorine gas, the lithium chloride powder charged into the reactor is completely or partially dissolved by the reaction formula (1) to become an intermediate compound presumed to be lithium hexachlorophosphate.

LiCl + PCl + Cl → LiPCl (1)
次に、生成したヘキサクロロリン酸リチウムのフッ素化を行うため、無水フッ化水素を反応器内に導入する。この時、無水フッ化水素は、ガス状でも液状でも構わない。以下の反応式(2)によって目的生成物のヘキサフルオロリン酸リチウムが得られる。
LiPCl + 6HF → LiPF + 6HCl (2)
無水フッ化水素の導入量は、中間生成物であるヘキサクロロリン酸リチウムと前反応での過剰分の三塩化リンを合わせた量に対して、モル比で6.01倍mol以上必要である。無水フッ化水素の量が、ヘキサクロロリン酸リチウムと過剰分の三塩化リンの合わせた量と同量もしくは少ないと、ヘキサクロロリン酸リチウムのフッ素化が十分進行せず、部分フッ素化塩素化リン酸リチウムおよび三塩化リンが残存してしまうため、液中の塩素濃度が高くなり、リチウム電池特性に悪影響を及ぼす恐れがある。無水フッ化水素の量がヘキサクロロリン酸リチウムと過剰分の三塩化リンを合わせた量に対してモル比で6.01倍mol以上であると、ヘキサクロロリン酸リチウムは完全にヘキサフルオロリン酸リチウムに反応するばかりではなく、過剰分の三塩化リンも、蒸気圧の高い三フッ化リンへと反応し、後の減圧処理等で容易に除去することが可能となる。このため、無水フッ化水素の量は、ヘキサクロロリン酸リチウムと過剰分の三塩化リンを合わせた量以上導入する必要がある。なお、無水フッ化水素の導入量は原料コストの点から、ヘキサクロロリン酸リチウムと過剰分の三塩化リンを合わせた量の6.01〜7.20倍molの範囲が好ましい。
LiCl + PCl 3 + Cl 2 → LiPCl 6 (1)
Next, in order to fluorinate the produced lithium hexachlorophosphate, anhydrous hydrogen fluoride is introduced into the reactor. At this time, anhydrous hydrogen fluoride may be gaseous or liquid. The target product lithium hexafluorophosphate is obtained by the following reaction formula (2).
LiPCl 6 + 6HF → LiPF 6 + 6HCl (2)
The amount of anhydrous hydrogen fluoride introduced is required to be 6.01 times mol or more in molar ratio with respect to the total amount of lithium hexachlorophosphate as an intermediate product and excess phosphorus trichloride in the previous reaction. If the amount of anhydrous hydrogen fluoride is the same or less than the combined amount of lithium hexachlorophosphate and excess phosphorus trichloride, the fluorination of lithium hexachlorophosphate does not proceed sufficiently and partially fluorinated chlorinated phosphoric acid Since lithium and phosphorus trichloride remain, the chlorine concentration in the liquid increases, which may adversely affect lithium battery characteristics. When the amount of anhydrous hydrogen fluoride is 6.01 times mol or more in molar ratio with respect to the total amount of lithium hexachlorophosphate and excess phosphorus trichloride, the lithium hexachlorophosphate is completely lithium hexafluorophosphate. In addition to the reaction, excess phosphorus trichloride also reacts with phosphorus trifluoride having a high vapor pressure and can be easily removed by a subsequent decompression process or the like. For this reason, the amount of anhydrous hydrogen fluoride needs to be introduced more than the total amount of lithium hexachlorophosphate and excess phosphorus trichloride. The introduction amount of anhydrous hydrogen fluoride is preferably in the range of 6.01 to 7.20 times mol of the total amount of lithium hexachlorophosphate and excess phosphorus trichloride from the viewpoint of raw material cost.

この反応を行う際の温度は、下限が−40℃、好ましくは5℃で、上限は100℃、好ましくは50℃である。反応温度が−40℃未満では、非水性有機溶媒が凝固してしまうため反応が進行しない。また100℃よりも高い場合、着色や副反応の原因となるため好ましくない。   The lower limit of the temperature at which this reaction is carried out is −40 ° C., preferably 5 ° C., and the upper limit is 100 ° C., preferably 50 ° C. If reaction temperature is less than -40 degreeC, since a non-aqueous organic solvent will coagulate | solidify, reaction does not advance. Moreover, when higher than 100 degreeC, since it causes coloring and a side reaction, it is unpreferable.

この反応時の圧力は特に限定しないが、副生成する塩化水素を取り除くため、一般的に大気圧付近で行なわれる。   Although the pressure during this reaction is not particularly limited, it is generally carried out near atmospheric pressure in order to remove by-product hydrogen chloride.

得られたヘキサフルオロリン酸リチウム非水性有機溶液において、液中に存在する副生成した塩化水素、三フッ化リン、過剰導入分のフッ化水素は減圧処理、バブリング処理、蒸留などによって除去可能であり、また、フッ化水素に限っては例えば塩化リチウムの再添加により反応式(3)により蒸気圧の高い塩化水素に転化させて減圧処理、バブリング処理、蒸留などによって除去可能である。リチウムイオン電池に使用可能な、高純度のヘキサフルオロリン酸リチウムが溶解した電解液が得られる。
HF + LiCl → LiF + HCl (3)
以上のようにして得られたヘキサフルオロリン酸リチウム溶液から冷却や濃縮という結晶化プロセスにより、ヘキサフルオロリン酸リチウム結晶を得ることも可能であるが、本発明では反応に用いた非水性有機溶媒としてリチウムイオン電池用溶媒を使用しているため、反応により得られた溶液からヘキサフルオロリン酸リチウムを結晶化プロセスで固体として取り出すことなしに、直接リチウムイオン電池用電解液原料として使用することが可能である。
In the obtained non-aqueous lithium hexafluorophosphate organic solution, by-product hydrogen chloride, phosphorus trifluoride, and excess hydrogen fluoride present in the liquid can be removed by decompression, bubbling, distillation, etc. In addition, hydrogen fluoride can be removed, for example, by re-addition of lithium chloride, converted into hydrogen chloride having a high vapor pressure by the reaction formula (3), and reduced pressure treatment, bubbling treatment, distillation or the like. An electrolytic solution in which high purity lithium hexafluorophosphate is dissolved, which can be used for a lithium ion battery, is obtained.
HF + LiCl → LiF + HCl (3)
Although it is possible to obtain lithium hexafluorophosphate crystals from the lithium hexafluorophosphate solution obtained as described above by a crystallization process such as cooling or concentration, in the present invention, the non-aqueous organic solvent used in the reaction is used. As a lithium ion battery solvent, it can be used directly as an electrolyte raw material for lithium ion batteries without taking out lithium hexafluorophosphate as a solid in the crystallization process from the solution obtained by the reaction. Is possible.

以上説明したように、本発明によれば、ヘキサフルオロリン酸リチウムを電解質とするリチウムイオン電池用電解液の製造において、取り扱いが困難な無水フッ化水素溶媒を使用せず、高価な設備や複雑な操作を必要とせず、また結晶化プロセスを行うことなしに安価に高純度なリチウムイオン電池用電解液を得ることができる。また、該電解液を用いたリチウムイオン電池を提供することができる。   As described above, according to the present invention, in the manufacture of an electrolyte solution for lithium ion batteries using lithium hexafluorophosphate as an electrolyte, an anhydrous hydrogen fluoride solvent that is difficult to handle is not used, and expensive equipment and complicated Therefore, it is possible to obtain a high-purity electrolyte solution for a lithium ion battery at a low cost without requiring a simple operation and without performing a crystallization process. In addition, a lithium ion battery using the electrolytic solution can be provided.

以下、本発明を実施例に基づいてさらに説明するが、かかる実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is further demonstrated based on an Example, it is not limited by this Example.

実施例1
ポリテトラフルオロエチレン製反応器中に500gのジメチルカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
Example 1
In a polytetrafluoroethylene reactor, 500 g of dimethyl carbonate, 72 g of phosphorus trichloride, and 21 g of lithium chloride were charged and dispersed. At this time, a reactor made of light-shielded polytetrafluoroethylene reactor was used. While maintaining this dispersion at 10 ° C., 35.5 g of chlorine gas was introduced. The liquid after the introduction was completed became a pale yellow solution with the solid content dissolved, and the reaction proceeded to produce lithium hexachlorophosphate. 66 g of anhydrous hydrogen fluoride was introduced into the resulting solution while maintaining it at 10 ° C. The liquid after the introduction was changed from pale yellow to colorless, and lithium hexafluorophosphate was produced.

次に得られた溶液中の過剰のフッ化水素を、塩化リチウムの再添加により塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。   Next, the excess hydrogen fluoride in the obtained solution is converted into hydrogen chloride and lithium fluoride by re-addition of lithium chloride, and by a reduced pressure treatment with hydrogen chloride and phosphorus trifluoride which are by-products during the reaction. Removed.

得られた溶液をNMRで分析したところ、ジメチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。さらにこの溶液について、リチウム電池特性に悪影響を及ぼす酸性不純物濃度は10ppmであり、ヘキサフルオロリン酸リチウム固体換算で70ppmであった。   When the obtained solution was analyzed by NMR, decomposition of dimethyl carbonate and the like were not observed, and the product was only lithium hexafluorophosphate. The amount of lithium hexafluorophosphate in the solution determined by NMR was 75 g, and the yield was confirmed to be almost 100%. Further, with respect to this solution, the acidic impurity concentration that adversely affects the lithium battery characteristics was 10 ppm, and was 70 ppm in terms of lithium hexafluorophosphate solid.

実施例2
ポリテトラフルオロエチレン製反応器中に500gのジエチルカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
Example 2
In a polytetrafluoroethylene reactor, 500 g of diethyl carbonate, 72 g of phosphorus trichloride and 21 g of lithium chloride were charged and dispersed with stirring. At this time, a reactor made of light-shielded polytetrafluoroethylene reactor was used. While maintaining this dispersion at 10 ° C., 35.5 g of chlorine gas was introduced. The liquid after the introduction was completed became a pale yellow solution with the solid content dissolved, and the reaction proceeded to produce lithium hexachlorophosphate. 66 g of anhydrous hydrogen fluoride was introduced into the resulting solution while maintaining it at 10 ° C. The liquid after the introduction was changed from pale yellow to colorless, and lithium hexafluorophosphate was produced.

次に得られた溶液中の過剰のフッ化水素を、塩化リチウムの再添加により塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。   Next, the excess hydrogen fluoride in the obtained solution is converted into hydrogen chloride and lithium fluoride by re-addition of lithium chloride, and by a reduced pressure treatment with hydrogen chloride and phosphorus trifluoride which are by-products during the reaction. Removed.

得られた溶液をNMRで分析したところ、ジエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。さらにこの溶液について、リチウム電池特性に悪影響を及ぼす酸性不純物濃度は14ppmであり、ヘキサフルオロリン酸リチウム固体換算で98ppmであった。   When the obtained solution was analyzed by NMR, no decomposition or the like of diethyl carbonate was observed, and the product was only lithium hexafluorophosphate. The amount of lithium hexafluorophosphate in the solution determined by NMR was 75 g, and the yield was confirmed to be almost 100%. Further, with respect to this solution, the acidic impurity concentration that adversely affects the lithium battery characteristics was 14 ppm, and 98 ppm in terms of lithium hexafluorophosphate solids.

実施例3
ポリテトラフルオロエチレン製反応器中に500gのメチルエチルカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
Example 3
In a polytetrafluoroethylene reactor, 500 g of methyl ethyl carbonate, 72 g of phosphorus trichloride and 21 g of lithium chloride were charged and dispersed with stirring. At this time, a reactor made of light-shielded polytetrafluoroethylene reactor was used. While maintaining this dispersion at 10 ° C., 35.5 g of chlorine gas was introduced. The liquid after the introduction was completed became a pale yellow solution with the solid content dissolved, and the reaction proceeded to produce lithium hexachlorophosphate. 66 g of anhydrous hydrogen fluoride was introduced into the resulting solution while maintaining it at 10 ° C. The liquid after the introduction was changed from pale yellow to colorless, and lithium hexafluorophosphate was produced.

次に得られた溶液中の過剰のフッ化水素を、塩化リチウムの再添加により塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。   Next, the excess hydrogen fluoride in the obtained solution is converted into hydrogen chloride and lithium fluoride by re-addition of lithium chloride, and by a reduced pressure treatment with hydrogen chloride and phosphorus trifluoride which are by-products during the reaction. Removed.

得られた溶液をNMRで分析したところ、メチルエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。さらにこの溶液について、リチウム電池特性に悪影響を及ぼす酸性不純物濃度は12ppmであり、ヘキサフルオロリン酸リチウム固体換算で84ppmであった。   When the obtained solution was analyzed by NMR, decomposition of methyl ethyl carbonate and the like were not observed, and the product was only lithium hexafluorophosphate. The amount of lithium hexafluorophosphate in the solution determined by NMR was 75 g, and the yield was confirmed to be almost 100%. Further, with respect to this solution, the acidic impurity concentration that adversely affects the lithium battery characteristics was 12 ppm, and 84 ppm in terms of lithium hexafluorophosphate solids.

次にこの溶液を用いてテストセルを作製し、充放電試験により電解液としての性能を評価した。まず合成したヘキサフルオロリン酸リチウム/メチルエチルカーボネート溶液を2倍程度濃縮し、そこにエチレンカーボネートを体積比でメチルエチルカーボネート:エチレンカーボネート=2:1になるように添加して1mol/Lのヘキサフルオロリン酸リチウム/(メチルエチルカーボネート、エチレンカーボネート混合溶媒)電解液を調合した。   Next, a test cell was produced using this solution, and the performance as an electrolytic solution was evaluated by a charge / discharge test. First, the synthesized lithium hexafluorophosphate / methyl ethyl carbonate solution is concentrated about twice, and ethylene carbonate is added to the mixture so that methyl ethyl carbonate: ethylene carbonate = 2: 1 by volume ratio. A lithium fluorophosphate / (methyl ethyl carbonate / ethylene carbonate mixed solvent) electrolyte solution was prepared.

この電解液を用いて負極に黒鉛、正極にコバルト酸リチウムを用いたテストセルを組み立てた。具体的には、天然黒鉛粉末95重量部に、バインダーとして5重量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーをニッケルメッシュ上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。また、コバルト酸リチウム85重量部に、黒煙粉末10重量部およびPVDF5重量部を混合し、さらに、N,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーをアルミニウム箔上に塗布して、150℃で12時間乾燥させることにより、試験用正極体とした。ポリプロピレン不織布をセパレーターとして、本実施例の反応溶液を電解液とし、上記負極体および正極体とを用いてテストセルを組み立てた。続いて定電流充放電試験を、充電、放電ともに0.35mA/cmで、充電4.2V、放電2.5Vまでのサイクルを繰り返し行い容量維持率の変化を観察した。 Using this electrolytic solution, a test cell using graphite as a negative electrode and lithium cobaltate as a positive electrode was assembled. Specifically, 95 parts by weight of natural graphite powder was mixed with 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on a nickel mesh and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Further, 85 parts by weight of lithium cobaltate was mixed with 10 parts by weight of black smoke powder and 5 parts by weight of PVDF, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on an aluminum foil and dried at 150 ° C. for 12 hours to obtain a test positive electrode body. A test cell was assembled using a polypropylene nonwoven fabric as a separator, the reaction solution of this example as an electrolytic solution, and the negative electrode body and the positive electrode body. Subsequently, a constant current charge / discharge test was repeated at 0.35 mA / cm 2 for both charging and discharging, and the cycle of charging to 4.2 V and discharging to 2.5 V was repeated to observe the change in capacity retention rate.

その結果、充放電効率ほぼ100%で、100サイクル終了後の容量維持率は全く変化しなかった。   As a result, the charge / discharge efficiency was almost 100%, and the capacity retention rate after the end of 100 cycles did not change at all.

比較例1
ポリテトラフルオロエチレン製反応器中に500gの無水フッ化水素を仕込み、32gのフッ化リチウムを溶解させた。また、別反応器にて五フッ化リンと無水フッ化水素を反応させて、五フッ化リンガス得て、これを前述のフッ化リチウム溶液に155g吹き込み、反応させた。得られた反応溶液を一晩かけてゆっくりと−20℃まで冷却することにより、ヘキサフルオロリン酸リチウムの結晶を析出させた。この結晶を濾別し、室温で減圧処理して付着のフッ化水素を除去した。以上の操作により、1mm程度の均一粒径のヘキサフルオロリン酸リチウム結晶65gが得られた。この結晶中の酸性不純物の濃度は300ppmであった。
Comparative Example 1
In a polytetrafluoroethylene reactor, 500 g of anhydrous hydrogen fluoride was charged, and 32 g of lithium fluoride was dissolved. Moreover, phosphorus pentafluoride and anhydrous hydrogen fluoride were reacted in a separate reactor to obtain phosphorus pentafluoride gas, and 155 g of this was blown into the above-mentioned lithium fluoride solution for reaction. The resulting reaction solution was slowly cooled to −20 ° C. overnight to precipitate lithium hexafluorophosphate crystals. The crystals were separated by filtration and treated with reduced pressure at room temperature to remove the attached hydrogen fluoride. By the above operation, 65 g of lithium hexafluorophosphate crystals having a uniform particle size of about 1 mm were obtained. The concentration of acidic impurities in the crystal was 300 ppm.

Claims (5)

ヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液の製造において、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、溶媒中に生成した反応生成物とフッ化水素とを反応させることを特徴とするリチウムイオン電池用電解液の製造方法。 In the production of an electrolytic solution for a lithium ion battery using lithium hexafluorophosphate as an electrolyte, a reaction product produced in a nonaqueous organic solvent is reacted with phosphorus trichloride, chlorine, and lithium chloride, and then generated in the solvent. A method for producing an electrolytic solution for a lithium ion battery, comprising reacting hydrogen fluoride with hydrogen fluoride. ヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液の製造において、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、溶媒中に生成した反応生成物とフッ化水素とを反応させ、その後、塩化リチウムと反応させることを特徴とするリチウムイオン電池用電解液の製造方法。 In the production of an electrolytic solution for a lithium ion battery using lithium hexafluorophosphate as an electrolyte, a reaction product produced in a nonaqueous organic solvent is reacted with phosphorus trichloride, chlorine, and lithium chloride, and then generated in the solvent. A method for producing an electrolytic solution for a lithium ion battery, comprising reacting hydrogen fluoride with hydrogen chloride and then reacting with lithium chloride. 請求項1、2のいずれかに記載の非水性有機溶媒が、鎖状又は環状の炭酸エステル、または2つ以上の酸素原子を有するエーテル化合物であることを特徴とする請求項1または2記載のリチウムイオン電池用電解液の製造方法。 The non-aqueous organic solvent according to any one of claims 1 and 2 is a chain or cyclic carbonate or an ether compound having two or more oxygen atoms. A method for producing an electrolytic solution for a lithium ion battery. 請求項3記載の炭酸エステルが、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、及びプロピレンカーボネートのみから成る群から選択される少なくとも1つであることを特徴とする請求項3記載のリチウムイオン電池用電解液の製造方法。 The lithium ion according to claim 3, wherein the carbonate ester according to claim 3 is at least one selected from the group consisting of dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, and propylene carbonate. Manufacturing method of battery electrolyte. 請求項3記載のエーテル化合物が、1,2−ジメトキシエタンであることを特徴とする請求項3記載のリチウムイオン電池用電解液の製造方法。 The method for producing an electrolytic solution for a lithium ion battery according to claim 3, wherein the ether compound according to claim 3 is 1,2-dimethoxyethane.
JP2006313847A 2005-12-06 2006-11-21 Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same Active JP5151121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313847A JP5151121B2 (en) 2005-12-06 2006-11-21 Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005351406 2005-12-06
JP2005351406 2005-12-06
JP2006313847A JP5151121B2 (en) 2005-12-06 2006-11-21 Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same

Publications (2)

Publication Number Publication Date
JP2007184246A JP2007184246A (en) 2007-07-19
JP5151121B2 true JP5151121B2 (en) 2013-02-27

Family

ID=38340125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313847A Active JP5151121B2 (en) 2005-12-06 2006-11-21 Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same

Country Status (1)

Country Link
JP (1) JP5151121B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609283B2 (en) 2010-06-08 2014-10-22 セントラル硝子株式会社 Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP5862094B2 (en) 2010-08-17 2016-02-16 セントラル硝子株式会社 Method for producing lithium hexafluorophosphate concentrate
EP2607305A1 (en) * 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6 solutions
CN102874790A (en) * 2012-09-29 2013-01-16 谭云东 Preparation method of crystal lithium hexafluorophosphate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034202B2 (en) * 1996-09-19 2000-04-17 セントラル硝子株式会社 Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
PT816288E (en) * 1996-06-26 2000-04-28 Solvay Fluor & Derivate PREPARATION OF LITHIUM HEXAFLUOROMETHYLATES
JP3369937B2 (en) * 1997-11-19 2003-01-20 セントラル硝子株式会社 Purification method of lithium tetrafluoroborate

Also Published As

Publication number Publication date
JP2007184246A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP4810867B2 (en) Method for producing electrolyte for lithium ion battery
KR102036924B1 (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
KR101773539B1 (en) Method for producing difluorophosphate
KR100971065B1 (en) Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
US9343774B2 (en) Method for producing a lithium hexafluorophosphate concentrated liquid
JP6226643B2 (en) Method for producing lithium difluorophosphate
US10734664B1 (en) Purified hydrogen bis(fluorosulfonyl)imide (HFSI) products, methods of purifying crude HFSI, and uses of purified HFSI products
KR20210077773A (en) Method for Removal of Reactive Solvents from Lithium Bis(fluorosulfonyl)imide (LiFSI) Using Organic Solvents Stable for Lithium Ion and Anode in Lithium Metal Batteries
CN111989295A (en) Production of lithium hexafluorophosphate
KR20210092226A (en) Purified lithium bis(fluorosulfonyl)imide (LiFSI) product, process for purification of crude LiFSI, and use of purified LiFSI product
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP5609283B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JPH11157830A (en) Production of lithium tetrafluoroborate
CN114408882A (en) Preparation and application of lithium bis (fluorosulfonyl) imide
KR20200110127A (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250