JP3555720B2 - Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same - Google Patents

Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same Download PDF

Info

Publication number
JP3555720B2
JP3555720B2 JP06495797A JP6495797A JP3555720B2 JP 3555720 B2 JP3555720 B2 JP 3555720B2 JP 06495797 A JP06495797 A JP 06495797A JP 6495797 A JP6495797 A JP 6495797A JP 3555720 B2 JP3555720 B2 JP 3555720B2
Authority
JP
Japan
Prior art keywords
lithium hexafluorophosphate
compound
addition compound
carbonate
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06495797A
Other languages
Japanese (ja)
Other versions
JPH10259189A (en
Inventor
章一 辻岡
久和 伊東
満夫 高畑
忠幸 川島
広美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP06495797A priority Critical patent/JP3555720B2/en
Publication of JPH10259189A publication Critical patent/JPH10259189A/en
Application granted granted Critical
Publication of JP3555720B2 publication Critical patent/JP3555720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池用電解質として有用なヘキサフルオロリン酸リチウムの付加化合物及びその製造法並びにそれを用いた電解液に関する。
【0002】
【従来技術】
近年、高電圧、高エネルギー密度のリチウムイオン二次電池が開発され、その需要が急速に伸びている。この種の電池の電解質には、ヘキサフルオロリン酸リチウムが主に使用されている。しかし、ヘキサフルオロリン酸リチウムは、非常に不安定な化合物であるために、製造工程上からあるいは保管取り扱い上から、不純物として系内に混入してくる水分等による加水分解のためにその品質が低下する。また、非水有機溶媒にヘキサフルオロリン酸リチウムを溶解し、電解液を調製する際、溶解熱および溶媒和熱により溶液の温度が上昇し、それにより電解液の分解反応を局部的に引き起こすという問題点もある。このように非常に取り扱いにくい物質であるため、より取り扱いやすい電解質が求められているが、イオン伝導度、耐電圧等の電池の性能に直接関わる特性において、ヘキサフルオロリン酸リチウム以上もしくは同等の化合物は、未だに見出されていない。
【0003】
【問題点を解決するための具体的手段】
本発明者らは、かかる従来技術の問題点に鑑み鋭意検討の結果、有機溶媒中において、新規なヘキサフルオロリン酸リチウムの当該有機溶媒の付加物を見いだし本発明に到達したものである。
【0004】
すなわち本発明は、ヘキサフルオロリン酸リチウムとエステル化合物からなり、ヘキサフルオロリン酸リチウム1分子に対して、エステル化合物が1から6分子配位していることを特徴とする付加化合物を合成し、電解質として使用することにより、上記のような問題点を解決したものである。
【0005】
ヘキサフルオロリン酸リチウムは、非常に不安定な化合物であり、製造工程上からあるいは保管取り扱い上から、不純物として系内に混入してくる水分により、次のような加水分解反応を起こし、品質を低下させる。
LiPF + X HO → LiPO(6−2X) + 2X HF (1)
【0006】
この分解反応により発生するLiPO(6−2X) 、HF 等の不純物は、ヘキサフルオロリン酸リチウムの用途であるリチウム電池用電解質として使用されたとき、その電池性能に大きく影響を及ぼすことが知られている。
【0007】
本発明者らは、種々検討した結果、ヘキサフルオロリン酸リチウムと有機化合物からなる付加化合物を合成することにより、従来の純粋なヘキサフルオロリン酸リチウムよりも耐加水分解性、耐自己分解性の優れた化合物にできることを見いだした。
【0008】
従来は単純に(1)式のような機構で加水分解反応が進行すると考えられていたが、検討した結果、次のような2段反応機構で加水分解が進行するものと推定された。
LiPF → LiF + PF (2)
PF + X HO → PO(5−2X) + 2X HF (3)
【0009】
そこで、配位性の強い有機化合物をリチウムイオンの周りに配位させ、ヘキサフルオロリン酸リチウムの付加化合物とすることにより、(2)式で示したLiFとPFの生成を抑制し、(3)式の加水分解反応を防止することを可能とした。
【0010】
本発明の付加化合物は、取り扱い易さにおいて、従来のヘキサフルオロリン酸リチウムより優れており、しかも、電池の性能に直接関わる特性においても、従来のヘキサフルオロリン酸リチウムと同等である。
【0011】
本発明において、ヘキサフルオロリン酸リチウムと付加化合物を形成する有機化合物は、比較的配位性の高いエステル化合物が挙げられる。特に安定性の面から考えると炭酸エステルまたは、酢酸エステルが好ましい。具体例としては、プロピレンカ−ボネ−ト、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。これらの炭酸エステルは、リチウムイオン二次電池用溶媒として使用されているため、これらの付加化合物は、そのままの状態で電解質として使用できるという長所がある。この他のものについては、使用時に炭酸エステル類に置換することにより使用できる。具体的には、付加化合物を炭酸エステルに溶解し、付加している溶媒と炭酸エステルの蒸気圧差を利用して、付加している溶媒のみを除去する方法等がある。
【0012】
配位数は、有機化合物により異なるがヘキサフルオロリン酸リチウム1分子に対して、1から6分子である。例えば、エチレンカーボネートの配位数は4、ジエチルカーボネートの配位数は2、そして、アセトニトリルの配位数は4となっている。
【0013】
これらの付加化合物は、ヘキサフルオロリン酸リチウムを付加させる有機化合物中に溶解し、その溶液を−20℃から40℃の温度領域にて蒸発および冷却することにより結晶として晶出させる方法により得られる。−20℃より低い温度では、有機物自体の凝固が起こるため好ましくない。また、40℃以上の温度では、付加化合物が安定に存在できない。
【0014】
本発明により得られたヘキサフルオロリン酸リチウムの付加化合物は、非常に純度が高い。例えば、リチウムイオン二次電池に悪影響を及ぼす酸性不純物含量が従来の製法で得られるヘキサフルオロリン酸リチウムに比べ、非常に低くなっている。
【0015】
また、ヘキサフルオロリン酸リチウムの付加化合物は、エステル化合物が、リチウムイオンに配位しているため、純粋なヘキサフルオロリン酸リチウムに比べ、熱に対する安定性、加水分解に対する安定性、保存時の安定性ともに改善されており、取り扱いが容易である。
【0016】
また、ヘキサフルオロリン酸リチウムを溶媒に溶解し、電解液を調製する際に溶解熱と溶媒和熱により、電解液の温度が上昇し電解液の分解等を引き起こすという問題が従来はあったが、本発明のヘキサフルオロリン酸リチウムの付加化合物を使用することにより解決された。また、当該付加化合物は既に溶媒和した状態であるため、溶媒和熱は発生しないので、温度上昇も従来の2分の1程度となるという長所もある。さらに、溶解速度についても従来のものよりも優れている。
【0017】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
【0018】
実施例1
ヘキサフルオロリン酸リチウム45gをジエチルカーボネート75gに40℃で溶解した。この溶液を20℃まで、冷却したところ溶液全体が凝固して、結晶が得られた。得られた結晶をヘキサンで洗浄した後、1torrの減圧度で減圧乾燥を行った。
【0019】
以上のようにして、118.5gの結晶を得た。得られた結晶の元素分析を行いその組成を確認したところ、LiPF・2(ジエチルカーボネート)で表される付加化合物であることが確認された。この付加化合物の融点は36℃であった。また、不純物のフッ化水素濃度は50ppm以下(定量下限)であった。
【0020】
実施例2
ヘキサフルオロリン酸リチウム8gをエチレンカーボネート33gに80℃で溶解した。この溶液を20℃まで、冷却したところ粒径1〜2mmの結晶が析出した。この結晶をヘキサンで洗浄した後、1torrの減圧度で減圧乾燥を行った。
【0021】
以上のようにして、26gの結晶を得た。得られた結晶の元素分析を行いその組成を確認したところ、LiPF・4(エチレンカーボネート)で表される付加化合物であることが確認された。この付加化合物の融点は40℃であった。また、不純物のフッ化水素濃度は50ppm以下(定量下限)であった。
【0022】
加水分解に対する安定性確認のため、この付加化合物の結晶を露点−10℃の雰囲気中に1時間放置したところ、加水分解により発生すると思われるフッ化水素濃度は60ppmであった。
【0023】
次に、この付加化合物に40℃のエチレンカーボネートを添加して、1mol/lの濃度の溶液を調製した。その際に、溶液の温度が溶解熱により50℃まで上昇した。
【0024】
比較例1
ヘキサフルオロリン酸リチウム中のフッ化水素濃度を測定したところ、100ppmであった。このヘキサフルオロリン酸リチウムの加水分解に対する安定性確認の試験を実施例2と同様の方法で実施した。その結果、フッ化水素濃度が300ppmまで増加した。
【0025】
次に、このヘキサフルオロリン酸リチウムに40℃のエチレンカーボネートを添加して、1mol/lの濃度の溶液を調製した。その際に、溶液の温度が溶解熱と溶媒和熱により65℃まで上昇した。
【0026】
【発明の効果】
本発明のヘキサフルオロリン酸リチウムの付加化合物は、従来のヘキサフルオロリン酸リチウムに比べ、耐加水分解性、耐自己分解性において優れたものであり、取り扱いが容易で、当該付加化合物を用いることにより不純物の少ないリチウム電池用電解質を提供することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an addition compound of lithium hexafluorophosphate useful as an electrolyte for a lithium battery, a method for producing the same, and an electrolytic solution using the same.
[0002]
[Prior art]
In recent years, high voltage, high energy density lithium ion secondary batteries have been developed, and the demand for them has been growing rapidly. Lithium hexafluorophosphate is mainly used for the electrolyte of this type of battery. However, since lithium hexafluorophosphate is a very unstable compound, its quality is deteriorated due to hydrolysis due to water and the like mixed into the system as impurities from the manufacturing process or from storage and handling. descend. Also, when dissolving lithium hexafluorophosphate in a non-aqueous organic solvent to prepare an electrolyte, the heat of solution and solvation heat raises the temperature of the solution, thereby locally causing a decomposition reaction of the electrolyte. There are also problems. As this is a substance that is very difficult to handle, an electrolyte that is easier to handle is required. Has not yet been found.
[0003]
[Specific means to solve the problem]
The present inventors have conducted intensive studies in view of the problems of the related art, and as a result, have found a novel adduct of lithium hexafluorophosphate with the organic solvent in an organic solvent, and have reached the present invention.
[0004]
That is, the present invention consists of lithium hexafluorophosphate and ester compound, with respect to lithium hexafluorophosphate one molecule, the ester compound is synthesized adducts, characterized by that 6 molecules coordinated from 1, By using it as an electrolyte, the above problems have been solved.
[0005]
Lithium hexafluorophosphate is a very unstable compound, and it undergoes the following hydrolysis reaction due to water entering the system as an impurity from the manufacturing process or from storage and handling, resulting in poor quality. Lower.
LiPF 6 + X H 2 O → LiPO X F (6-2X) + 2X HF (1)
[0006]
Impurities such as LiPO X F (6-2X) and HF generated by this decomposition reaction may greatly affect battery performance when used as an electrolyte for lithium batteries, which is a use of lithium hexafluorophosphate. Are known.
[0007]
The present inventors have conducted various studies and found that by synthesizing an addition compound consisting of lithium hexafluorophosphate and an organic compound, the hydrolysis resistance and the self-decomposition resistance were higher than those of conventional pure lithium hexafluorophosphate. It has been found that excellent compounds can be made.
[0008]
Conventionally, it was thought that the hydrolysis reaction proceeds simply by the mechanism of the formula (1), but as a result of investigation, it was estimated that the hydrolysis proceeds by the following two-stage reaction mechanism.
LiPF 6 → LiF + PF 5 (2)
PF 5 + X H 2 O → PO X F (5-2X) + 2X HF (3)
[0009]
Therefore, by coordinating an organic compound having strong coordination around lithium ions to form an addition compound of lithium hexafluorophosphate, the production of LiF and PF 5 shown in the formula (2) is suppressed, 3) It is possible to prevent the hydrolysis reaction of the formula.
[0010]
The addition compound of the present invention is superior to conventional lithium hexafluorophosphate in ease of handling, and is equivalent to conventional lithium hexafluorophosphate also in characteristics directly related to battery performance.
[0011]
In the present invention, the organic compound forming an addition compound with lithium hexafluorophosphate may be an ester compound having a relatively high coordination property . Particularly, from the viewpoint of stability, carbonate ester or acetate ester is preferable. Specific examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. Since these carbonates are used as a solvent for a lithium ion secondary battery, there is an advantage that these additional compounds can be used as electrolytes as they are. Others can be used by replacing them with carbonates at the time of use. Specifically, there is a method in which an addition compound is dissolved in a carbonate ester, and only the added solvent is removed by utilizing a vapor pressure difference between the added solvent and the carbonate ester.
[0012]
The coordination number varies depending on the organic compound, but is 1 to 6 molecules per 1 molecule of lithium hexafluorophosphate. For example, the coordination number of ethylene carbonate is 4, the coordination number of diethyl carbonate is 2, and the coordination number of acetonitrile is 4.
[0013]
These addition compounds are obtained by dissolving in an organic compound to which lithium hexafluorophosphate is added, and evaporating and cooling the solution in a temperature range of −20 ° C. to 40 ° C. to crystallize as crystals. . If the temperature is lower than −20 ° C., solidification of the organic substance itself occurs, which is not preferable. At a temperature of 40 ° C. or higher, the addition compound cannot be stably present.
[0014]
The lithium hexafluorophosphate addition compound obtained according to the present invention has a very high purity. For example, the content of acidic impurities that adversely affect a lithium ion secondary battery is much lower than that of lithium hexafluorophosphate obtained by a conventional production method.
[0015]
In addition, since the ester compound is coordinated with lithium ions, the addition compound of lithium hexafluorophosphate has higher heat stability, hydrolysis stability, and storage stability than pure lithium hexafluorophosphate. Both stability is improved and handling is easy.
[0016]
In addition, when lithium hexafluorophosphate is dissolved in a solvent and the heat of solution and solvation heat is used to prepare an electrolytic solution, there has been a problem that the temperature of the electrolytic solution rises and the electrolytic solution is decomposed. The problem was solved by using the lithium hexafluorophosphate addition compound of the present invention. In addition, since the adduct is already in a solvated state, no heat of solvation is generated, so that there is an advantage that the temperature rise is reduced to about one half of that of the conventional case. Furthermore, the dissolution rate is superior to the conventional one.
[0017]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the examples.
[0018]
Example 1
45 g of lithium hexafluorophosphate was dissolved at 40 ° C. in 75 g of diethyl carbonate. When this solution was cooled to 20 ° C., the whole solution solidified to obtain crystals. After the obtained crystals were washed with hexane, they were dried under reduced pressure at 1 torr.
[0019]
As described above, 118.5 g of a crystal was obtained. When obtained and confirmed the composition subjected to elemental analysis of the crystal, it was confirmed that the addition compounds represented by LiPF 6 · 2 (diethyl carbonate). The melting point of this addition compound was 36 ° C. The concentration of hydrogen fluoride as an impurity was 50 ppm or less (the lower limit of quantification).
[0020]
Example 2
8 g of lithium hexafluorophosphate was dissolved in 33 g of ethylene carbonate at 80 ° C. When this solution was cooled to 20 ° C., crystals having a particle size of 1 to 2 mm were precipitated. The crystals were washed with hexane and dried under reduced pressure at 1 torr.
[0021]
As described above, 26 g of a crystal was obtained. When obtained and confirmed the composition subjected to elemental analysis of the crystal, it was confirmed that the addition compounds represented by LiPF 6 · 4 (ethylene carbonate). The melting point of this addition compound was 40 ° C. The concentration of hydrogen fluoride as an impurity was 50 ppm or less (the lower limit of quantification).
[0022]
To confirm the stability against hydrolysis, the crystals of the additional compound were allowed to stand in an atmosphere at a dew point of −10 ° C. for 1 hour. The concentration of hydrogen fluoride considered to be generated by hydrolysis was 60 ppm.
[0023]
Next, ethylene carbonate at 40 ° C. was added to the addition compound to prepare a solution having a concentration of 1 mol / l. At that time, the temperature of the solution rose to 50 ° C. due to heat of dissolution.
[0024]
Comparative Example 1
The concentration of hydrogen fluoride in lithium hexafluorophosphate was measured and found to be 100 ppm. This test for confirming the stability of lithium hexafluorophosphate against hydrolysis was carried out in the same manner as in Example 2. As a result, the hydrogen fluoride concentration increased to 300 ppm.
[0025]
Next, ethylene carbonate at 40 ° C. was added to the lithium hexafluorophosphate to prepare a solution having a concentration of 1 mol / l. At that time, the temperature of the solution rose to 65 ° C. due to the heat of solution and the heat of solvation.
[0026]
【The invention's effect】
The lithium hexafluorophosphate addition compound of the present invention is excellent in hydrolysis resistance and self-decomposition resistance as compared with conventional lithium hexafluorophosphate, is easy to handle, and uses the addition compound. Accordingly, an electrolyte for a lithium battery with few impurities can be provided.

Claims (4)

ヘキサフルオロリン酸リチウムとエステル化合物からなり、ヘキサフルオロリン酸リチウム1分子に対して、エステル化合物が1から6分子配位しているヘキサフルオロリン酸リチウムの付加化合物であって、該エステル化合物が、炭酸エステルまたは酢酸エステルであることを特徴とするヘキサフルオロリン酸リチウムの付加化合物。It consists of lithium hexafluorophosphate and ester compound, with respect to lithium hexafluorophosphate one molecule, the ester compound is an addition compound of lithium hexafluorophosphate are 6 molecules coordinated from 1, the ester compound An addition compound of lithium hexafluorophosphate, which is a carbonic acid ester or an acetic acid ester. 請求項記載の炭酸エステルが、プロピレンカ−ボネ−ト、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートのいずれかであることを特徴とするヘキサフルオロリン酸リチウムの付加化合物。The addition compound of lithium hexafluorophosphate, wherein the carbonate according to claim 1 is any of propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. 請求項1または2記載のヘキサフルオロリン酸リチウムの付加化合物を、−20℃から40℃の温度範囲で蒸発または冷却により晶出させることを特徴とするヘキサフルオロリン酸リチウムの付加化合物の製造方法。A method for producing a lithium hexafluorophosphate adduct according to claim 1 or 2, wherein the lithium hexafluorophosphate adduct is crystallized by evaporation or cooling in a temperature range from -20 ° C to 40 ° C. . 請求項1または2記載のヘキサフルオロリン酸リチウムの付加化合物を少なくとも1種類以上含む電解質とすることを特徴とするリチウム電池用電解液。An electrolyte for a lithium battery, comprising an electrolyte containing at least one kind of the lithium hexafluorophosphate addition compound according to claim 1 .
JP06495797A 1997-03-18 1997-03-18 Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same Expired - Fee Related JP3555720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06495797A JP3555720B2 (en) 1997-03-18 1997-03-18 Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06495797A JP3555720B2 (en) 1997-03-18 1997-03-18 Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same

Publications (2)

Publication Number Publication Date
JPH10259189A JPH10259189A (en) 1998-09-29
JP3555720B2 true JP3555720B2 (en) 2004-08-18

Family

ID=13273047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06495797A Expired - Fee Related JP3555720B2 (en) 1997-03-18 1997-03-18 Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same

Country Status (1)

Country Link
JP (1) JP3555720B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058465A1 (en) * 2004-12-03 2006-06-08 Institute Of Physics, Chinese Academy Of Sciences Complex plastic-crystal solid electrolyte and its application
JP5732785B2 (en) * 2010-09-08 2015-06-10 宇部興産株式会社 Stabilized solvent solution of lithium perfluorinated inorganic acid
JP5862015B2 (en) * 2011-02-17 2016-02-16 宇部興産株式会社 Method for producing lithium hexafluorophosphate-carbonate complex and precursor thereof
JP6184200B2 (en) * 2012-07-04 2017-08-23 株式会社東芝 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6256642B2 (en) * 2017-02-06 2018-01-10 宇部興産株式会社 Method for producing lithium hexafluorophosphate ether complex
JP6879812B2 (en) * 2017-03-31 2021-06-02 三井化学株式会社 Lithium salt complex compounds, battery additives, non-aqueous electrolytes for batteries, and lithium secondary batteries
JP6978361B2 (en) * 2018-03-26 2021-12-08 三井化学株式会社 Method for manufacturing lithium salt complex compound

Also Published As

Publication number Publication date
JPH10259189A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US6383688B1 (en) Electrolyte for lithium cells and method of producing the same
TWI295117B (en) High purity lithium polyhalogenated boron cluster salts useful in lithium batteries
CA2193119C (en) Electrolytic solution for lithium cell and method for producing same
EP3045426B2 (en) Granules or powder of disulfonylamide salt, and method for producing same
US10756390B2 (en) Concentrated electrolyte solution
JP5862094B2 (en) Method for producing lithium hexafluorophosphate concentrate
KR101955096B1 (en) Novel preparing method of very efficient and simple lithium bis(fluorosulfonyl)imide
KR100971065B1 (en) Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
CN108408711B (en) Preparation method of lithium difluorophosphate
JP3034202B2 (en) Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
JP3555720B2 (en) Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same
JPS5981870A (en) Manufacture of solute for nonaqueous electrolyte
CN113929711A (en) Preparation method of lithium difluoroborate
US7833660B1 (en) Fluorohaloborate salts, synthesis and use thereof
JPH10316410A (en) Production of lithium hexafluorophosphate
US6248883B1 (en) Methods of purifying lithium salts
JP3375049B2 (en) Method for producing lithium tetrafluoroborate
KR101982603B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (2)
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JPH10316409A (en) Production of lithium hexafluorophosphate
JP4747654B2 (en) Purification method of electrolyte for lithium ion battery
JPS5953216B2 (en) Synthesis method of anhydrous lithium borofluoride
US20230187700A1 (en) 1,4-dioxane slovate of lithium difluorobis(oxalato)phosphate, method for preparing the same, and electrolyte composition comprising the same
JP4104090B2 (en) Lithium borofluoride monohydrofluoride and process for producing the same, and process for producing anhydrous lithium borofluoride using the same
KR20220156229A (en) Mass Production Method of Metal bis(fluorosulfonyl)imide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees