JPS58163152A - Manufacture of silver (2) oxide cell - Google Patents

Manufacture of silver (2) oxide cell

Info

Publication number
JPS58163152A
JPS58163152A JP4481982A JP4481982A JPS58163152A JP S58163152 A JPS58163152 A JP S58163152A JP 4481982 A JP4481982 A JP 4481982A JP 4481982 A JP4481982 A JP 4481982A JP S58163152 A JPS58163152 A JP S58163152A
Authority
JP
Japan
Prior art keywords
silver
lead
positive electrode
layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4481982A
Other languages
Japanese (ja)
Inventor
Kazuo Ishida
和雄 石田
Akira Asada
浅田 朗
Yukio Tamaru
田丸 行男
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4481982A priority Critical patent/JPS58163152A/en
Publication of JPS58163152A publication Critical patent/JPS58163152A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a silver (II) oxide cell with less increase of the internal resistance during storage by forming a lead-dioxide layer on the surface of a positive electrode shaped body, in the neutral aqueous solution. CONSTITUTION:260mg. of the mixture consisting of 47.5 parts of silver (II) oxide powder and 47.5 parts of silver (I) oxide powder is press-molded under 5t/ cm<2> pressure to a shaped body having a diameter of 9mm. and a thickness of 0.7mm.. Said shaped body is immersed for 60min into the aqueous solution containing 1.5gr. of lead nitrate dissolved into 1,000ml, water allowing lead dioxide to be deposited onto the surface, and then washed and dried. The amount of lead dioxide deposited onto the positive electrode thus formed is 0.3mg, and the results that the absorption rate for carbon dioxide is exceedingly small and the increase of the internal resistance during storage is little are shown in the figure.

Description

【発明の詳細な説明】 本発明は酸化第二銀電池の製造法の改良に係り、貯蔵中
における内部抵抗の増加が少ない酸化第二銀電池を提供
することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the manufacturing method of a silver oxide battery, and an object of the present invention is to provide a silver oxide battery whose internal resistance increases less during storage.

酸化第二銀電池においては、導電助剤として酸化第一銀
電池で多用されているようなりん状黒鉛やカーボンプラ
ックを使用すると、酸化第二銀の酸化力が強すぎるため
、これらは酸化されて二酸化炭素になり、導電性が失な
われるとともに、生成した二酸化炭素が電解液と反応し
て電解液を消費するので、りん状黒鉛やカーボンプラッ
ク以外のもので導竃性を付与しなければならない。
In silver oxide batteries, if phosphorescent graphite or carbon plaque, which is often used in silver oxide batteries, is used as a conductive agent, the oxidizing power of the silver oxide is too strong, so these will not be oxidized. It turns into carbon dioxide and loses its conductivity, and the generated carbon dioxide reacts with the electrolyte and consumes the electrolyte, so it is necessary to add conductivity with something other than phosphorous graphite or carbon plaque. No.

そこで、酸化第二銀の加圧成形体の表面層を還元して酸
化第二銀層の周囲に酸化第一銀の層を形成し、さらに該
酸化第一銀層の表向層を還元1〜て酸化第一銀層の周囲
に銀層を形成させ、導電性を付与するとともに、酸化第
二銀電池特有の二段放電を防止することが行なわれてい
る。
Therefore, the surface layer of the press-molded product of silver oxide is reduced to form a layer of ferrous oxide around the ferrous oxide layer, and the surface layer of the ferrous oxide layer is further reduced to 1. A silver layer is formed around the ferrous oxide layer to impart electrical conductivity and to prevent the two-stage discharge characteristic of ferric oxide batteries.

ところが、この酸化第二銀層、酸化第一銀層および銀層
からなる三層構造の正極を用いた電池は貯蔵中に表面の
銀層が消滅(2て電池の内部抵抗が増加するという問題
がある。
However, batteries using a positive electrode with a three-layer structure consisting of a silver oxide layer, a silver oxide layer, and a silver layer suffer from the problem that the silver layer on the surface disappears during storage (2) the internal resistance of the battery increases. There is.

そのため、本発明者らは銀層が消滅する原因について種
々検討を重ねたところ、銀層の消滅は表面の銀層と内部
の酸化第二銀層とがイオン的接触をもちつる同一の電解
液系内に存在するため、正極内で下記の第(1)式およ
び第m)式2Ago+H20−t−2e−+Ag20+
20H−       (T)2Ag+20H−→Ag
20+H20+2C一(+t)で示されるような酸化第
ニ銀を正極、銀を負極とする一種の電池反応が生じ、銀
が酸化されて酸化第−銀になることによって引きおこさ
れることが判明1−だ。
Therefore, the present inventors conducted various studies on the causes of the disappearance of the silver layer, and found that the disappearance of the silver layer occurs when the surface silver layer and the internal silver oxide layer have ionic contact with each other in the same electrolytic solution. Because it exists in the system, the following formulas (1) and m) 2Ago+H20-t-2e-+Ag20+ are present in the positive electrode.
20H- (T)2Ag+20H-→Ag
It has been found that a type of battery reaction using silver oxide as the positive electrode and silver as the negative electrode, as shown by 20+H20+2C-(+t), occurs when silver is oxidized to become silver oxide1- is.

本発明者らは、そのような知見に基づき、貯蔵中におけ
る内部抵抗の増加を抑制するために銀以外の物質で正極
に導電性を付与すべく鋭意研究を重ねた結果、以下に示
すようにして正極表面に二酸化鉛の層を形成するときけ
、貯蔵中における内部抵抗の増加が少ない酸化第二銀電
池が得られることを見出し、本発明を完成するにいたっ
た。
Based on such findings, the present inventors have conducted extensive research to provide conductivity to the positive electrode using a substance other than silver in order to suppress the increase in internal resistance during storage, and as a result, have developed the following. They discovered that by forming a layer of lead dioxide on the surface of the positive electrode, a silver oxide battery with little increase in internal resistance during storage could be obtained, and the present invention was completed.

すなわち、本発明は酸化第二銀を含む成形体を鉛イオン
を溶解したアルカリ水溶液に浸漬し、酸化第二銀の酸化
力により鉛イオンを酸化して成形体表面に二酸化鉛を沈
着させて導電性を付与し、これを正極と(〜で用いるこ
とを特徴とする酸化第二銀電池の製造法に関する。
That is, the present invention immerses a molded body containing ferric oxide in an alkaline aqueous solution in which lead ions are dissolved, oxidizes the lead ions using the oxidizing power of the ferric oxide, deposits lead dioxide on the surface of the molded body, and makes the molded body conductive. This invention relates to a method for manufacturing a silver oxide battery, characterized in that it is used as a positive electrode.

本発明をさらに詳細に説明すると、酸化第二銀を含む成
形体を鉛イオンを溶解した中性水溶液に浸漬すると、つ
ぎの第010式で示すように、2部gO+Pb2++2
0H−→A、O+PbO2+H20(Ill)鉛イオン
は酸化され4価の鉛である二酸化鉛となって成形体表面
に沈着する。
To explain the present invention in more detail, when a molded article containing silver oxide is immersed in a neutral aqueous solution in which lead ions are dissolved, 2 parts gO + Pb2++2 as shown in the following formula 010.
0H-→A, O+PbO2+H20 (Ill) Lead ions are oxidized to become lead dioxide, which is tetravalent lead, and deposited on the surface of the molded body.

ところで、二酸化鉛は最も高い酸化状態にある酸化物で
あるため、これ以上酸化されず、したがって耐酸化性が
きわめてすぐれており、また耐アルカリ性もよく、しか
も金属なみの良好な導電性を有するので、上N1のよう
にして正極表面に二酸化鉛の層を形成させると、この電
池は内部抵抗が小ハく、充分に実用に供することができ
、しかも貯蔵中における内部抵抗の増加が少ないものと
なる。
By the way, lead dioxide is an oxide in the highest oxidation state, so it cannot be oxidized any further, so it has extremely good oxidation resistance, good alkali resistance, and has good electrical conductivity comparable to that of metals. If a layer of lead dioxide is formed on the surface of the positive electrode as in N1 above, this battery will have a small internal resistance and can be put to practical use, and the increase in internal resistance will be small during storage. Become.

さらに、二酸化鉛は耐酸化性がきわめてすぐれているた
め、銀のように酸化されて消失することがなく、いつ捷
でも導電層としての機能を持ち続けるので、その厚さを
必要最小限にすることができる。したがって、従来電池
においては貯蔵期間に応じて銀層の厚さを変え、貯蔵期
間が長い場合には銀層を厚くせざるを得なかったのに比
べてその製造が単純化され、かつ酸化第二銀層を大きく
することができるので放電容量が向上する。また二酸化
鉛は酸化第二銀や酸化第−銀が反応しおわると活物質と
して働くので、この面からも放電容量を大きくすること
が可能である。
Furthermore, since lead dioxide has extremely high oxidation resistance, it will not be oxidized and disappear like silver, and will continue to function as a conductive layer whenever it is used, so its thickness should be kept to the minimum necessary. be able to. Therefore, in comparison with conventional batteries, where the thickness of the silver layer was changed depending on the storage period, and the silver layer had to be made thicker when the storage period was long, the manufacturing process was simplified, and the oxidation Since the two silver layers can be made larger, the discharge capacity is improved. Further, since lead dioxide acts as an active material after the reaction of ferric oxide and silver oxide, it is possible to increase the discharge capacity from this point of view as well.

ところで、本発明者らは前に正極成形体を鉛イオンを溶
解したアルカリ水溶液に浸漬して酸化第二銀の酸化力に
より鉛イオンを酸化して成形体表面に二酸化鉛を沈着さ
せ、それによって正極に導電性を付与することを見出し
7、すでに特許出願を17だが、該方法は導電性の付与
という観点からはすぐれた方法であるが、二酸化鉛層の
形成後におけるアルカリの洗滌処理が困難であることと
、アルカリ性では正極活物質が二酸化炭素を吸収しやす
くなり、そのため放電電気量が低下するという問題があ
る。本発明は二酸化鉛層の形成を中性水溶液で行なうこ
とにより上記の欠点を解消したものである。
By the way, the present inventors previously immersed the positive electrode molded body in an alkaline aqueous solution in which lead ions were dissolved, oxidized the lead ions with the oxidizing power of silver oxide, and deposited lead dioxide on the surface of the molded body. They discovered that conductivity can be imparted to the positive electrode7 and have already applied for a patent17. Although this method is excellent from the perspective of imparting conductivity, it is difficult to perform alkali cleaning treatment after forming the lead dioxide layer. In addition, there is a problem that the positive electrode active material easily absorbs carbon dioxide when it is alkaline, resulting in a decrease in the amount of discharged electricity. The present invention solves the above-mentioned drawbacks by forming the lead dioxide layer using a neutral aqueous solution.

本発明において用いる酸化第二銀を含む成形体は、たと
メば酸化第二銀と酸化第−銀とを混合した混合物を加圧
成形するか、あるいは酸化第ニ銀粉末の表面層を熱分解
して酸化第−銀に還元した粒子表面に酸化第−銀の層を
有する酸化第二銀粉末を加圧成形することによって得ら
れる。また酸化第二銀のみを加圧成形したものでもよい
。さらに、成形性を改良するために、それらの活物質に
ポリテトラフルオルエチレンなどの結着剤を若干添加し
て加圧成形したものであってもよい。
The molded article containing silver oxide used in the present invention can be produced by pressure molding a mixture of silver oxide and silver oxide, or by thermally decomposing the surface layer of silver oxide powder. It is obtained by pressure molding a ferric oxide powder having a layer of ferric oxide on the surface of the particles reduced to ferric oxide. Alternatively, it may be formed by pressure molding only silver oxide. Furthermore, in order to improve moldability, these active materials may be pressure-molded with a small amount of a binder such as polytetrafluoroethylene added thereto.

そして、上記成形体を浸漬処理するための鉛イオンを溶
解した中性水溶液は、たとλば硝酸鉛、酢酸鉛などを水
に溶解させることによって得られる。鉛イオンの濃度は
とぐに限られることはないが、通常、飽和に近い濃度が
選択される。なお本発明において鉛イオンを溶解した中
性水溶液とけ、鉛イオンを溶解しかつPHが5〜9の範
囲にある水溶液をいう。
A neutral aqueous solution in which lead ions are dissolved for dipping the molded body can be obtained by dissolving, for example, lead nitrate, lead acetate, etc. in water. Although the concentration of lead ions is not particularly limited, a concentration close to saturation is usually selected. In the present invention, a neutral aqueous solution in which lead ions are dissolved refers to an aqueous solution that dissolves lead ions and has a pH in the range of 5 to 9.

成形体表面に形成する二酸化鉛層の厚さは通常10μm
程度あれば必要な導電性が確保される。浸漬時間は液の
濃度などによっても異なるが、通常は80〜120分間
程度である。
The thickness of the lead dioxide layer formed on the surface of the molded product is usually 10 μm.
A certain degree of conductivity can be ensured. The immersion time varies depending on the concentration of the liquid and other factors, but is usually about 80 to 120 minutes.

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例 酸化第二銀粉末47.5部(重量部、以下同様)と酸化
第−銀粉末47.5部からなる混合物260りを5 t
 7部m2で加圧成形して直径9sm、厚さ0.7ff
の成形体を作製した。
Example: 5 tons of 260 parts of a mixture consisting of 47.5 parts (by weight, the same applies hereinafter) of ferric oxide powder and 47.5 parts of ferric oxide powder
Pressure molded in 7 m2 parts, diameter 9sm, thickness 0.7ff
A molded body was produced.

つぎにこの成形体を硝酸鉛1.59 ?水100077
jlに溶解した水溶液に浸漬し、浸漬時間を変えて成形
体表面への二酸化鉛の沈着量を変化させた成形体を得た
。この成形体の二酸化鉛の付着量と成形体の電気抵抗と
の関係を第1図に示す。
Next, this molded body was mixed with lead nitrate of 1.59? Water 100077
A molded body was obtained by immersing the molded body in an aqueous solution dissolved in Jl and changing the immersion time to vary the amount of lead dioxide deposited on the surface of the molded body. FIG. 1 shows the relationship between the amount of lead dioxide deposited on this molded body and the electrical resistance of the molded body.

第1図に示すように、二酸化鉛の付着量を0.2岬にす
れば成形体の電気抵抗が望ましいところまで低下する。
As shown in FIG. 1, if the amount of lead dioxide deposited is 0.2 cap, the electrical resistance of the molded body can be reduced to a desirable level.

上記実験結果に基づき、二酸化鉛を0.3岬付着させた
成形体を正極としてつぎに示すように電池組立を行なっ
た。
Based on the above experimental results, a battery was assembled as shown below using a molded body to which 0.3 cap of lead dioxide was attached as a positive electrode.

すなわち、電解液の一部が注入された正極缶(4)に前
記の正極(1)を挿入し、該正極(1)上に七ノくレー
タ(5)および電解液吸収体(6)を順次載置した。
That is, the above-mentioned positive electrode (1) is inserted into the positive electrode can (4) into which a part of the electrolytic solution is injected, and the seven filters (5) and the electrolytic solution absorber (6) are placed on the positive electrode (1). They were placed sequentially.

つぎに、この状態の正極缶(4)f周縁部に環状ガ” 
   7ケツ) (7) f*合、7.ッ。アー、ヵ4
イ、工。オ。
Next, an annular gas is attached to the periphery of the positive electrode can (4) f in this state.
7 pieces) (7) f*combined, 7. Wow. Ah, ka4
I, engineering. Oh.

極活物質とする負極(9)と残り大半物の電解液とを内
填した負極端子板(8)に嵌合し、正極缶(4)の開口
部を内方へ締め付は彎曲させてその内周面を環状ガスケ
ット(7)に圧接させて封口することにより、第2図に
示すような構成のボタン形酸化第二銀電池を製造した。
Fit the negative electrode terminal plate (8) containing the negative electrode (9) as the electrode active material and the remaining half of the electrolyte, and tighten the opening of the positive electrode can (4) inward by bending it. A button-shaped ferric oxide battery having the structure shown in FIG. 2 was manufactured by pressing the inner peripheral surface of the battery against an annular gasket (7) and sealing the battery.

なお第2図において正極(1)を構成する(2)は酸化
第二銀を含む層であり、この実施例では酸化第二銀と酸
化第−銀との混合物を加圧成形して形成されたものであ
る。(3)は前記のようにして形成した二酸化鉛層であ
る。
In FIG. 2, (2) constituting the positive electrode (1) is a layer containing ferric oxide, and in this example, it is formed by pressure molding a mixture of ferric oxide and ferric oxide. It is something that (3) is the lead dioxide layer formed as described above.

比較例 酸化第二銀粉末260岬を加圧成形して直径9mg。Comparative example Pressure molded silver oxide powder 260 cape to a diameter of 9 mg.

厚さ0.71nIの成形体を作製した。A molded body having a thickness of 0.71 nI was produced.

この成形体を30%水酸化カリウム水溶液とエチルアル
コールとの容蓋比が9=1の混合液に60分間浸漬し、
表面より厚さ約100μmの部分全酸化第−銀に還元し
、ついで、これをヒドラジンの1%アルコール溶液に1
0分間浸漬し、表面より厚さ約50μmの部分の酸化第
−銀を銀に還元した。
This molded body was immersed for 60 minutes in a mixed solution of 30% potassium hydroxide aqueous solution and ethyl alcohol in a container ratio of 9=1.
It is reduced to a partially fully oxidized argonium oxide with a thickness of about 100 μm from the surface, and then it is dissolved in a 1% alcohol solution of hydrazine for 1 hour.
The sample was immersed for 0 minutes, and the silver oxide in a portion approximately 50 μm thick from the surface was reduced to silver.

このようにして作製した酸化第二@層、酸化第一銀層お
よび銀層からなる三層構造の正極を用いたほかは実施例
と同様にしてボタン形酸化第二銀電池を製造した。
A button-shaped ferric oxide battery was manufactured in the same manner as in the example except that the positive electrode having a three-layer structure consisting of the second @ oxide layer, the ferrous oxide layer, and the silver layer thus prepared was used.

以上のようにして製造さ゛れた実施例の電池および比較
例の電池を60°Cで所定期間貯蔵し、その際の内部抵
抗変化を調べた。その結果を第3図に示す。
The battery of the example and the battery of the comparative example manufactured as described above were stored at 60°C for a predetermined period of time, and changes in internal resistance at that time were examined. The results are shown in FIG.

第3図に示すように、実施例の電池は比較例の電池に比
べて貯蔵による内部抵抗増加が少ない。
As shown in FIG. 3, the increase in internal resistance due to storage in the battery of the example is smaller than that of the battery of the comparative example.

つぎに本発明における正極aとアルカリ溶液で二酸化鉛
層を形成させた正極すとの二酸化炭素の吸収率の相違を
第1表に示す。
Next, Table 1 shows the difference in carbon dioxide absorption rate between the positive electrode a in the present invention and the positive electrode in which a lead dioxide layer was formed using an alkaline solution.

本発明における正極aは、酸化第二銀粉末47.5部と
酸化第一銀粉末47.5部からなる混合物260岬を5
 t /cm2で加圧成形した直径9m、厚さ0.7餌
の成形体を、硝酸鉛1.5fを水1000m/に溶解し
た水溶液に60分間浸漬して表面に二酸化鉛を沈着させ
、水洗、乾燥してつくられたものである。正極すは上記
と同様の加圧成形体f80%水酸化カリウム水溶液20
0m1に一酸化鉛1fを溶解させた溶液中に60分間浸
漬して成形体表面に二酸化鉛を沈着させ、水洗、乾燥し
てつくられたものである。水洗はいずれも200m1の
水に二酸化鉛層を形成させた成形体を100個入れ、軽
く振動を与えて洗滌することによって行なわれた。水洗
回数は両者とも5回である。二酸化鉛の付着量は両者と
もo、aMgで、二酸化炭素の吸収率は正極を大気中で
24時間放置し測定したものである。
The positive electrode a in the present invention contains 5 parts of a mixture of 47.5 parts of ferric oxide powder and 47.5 parts of ferrous oxide powder.
A molded body having a diameter of 9 m and a thickness of 0.7 bait molded under pressure at t/cm2 was immersed in an aqueous solution of 1.5 f of lead nitrate dissolved in 1000 m of water for 60 minutes to deposit lead dioxide on the surface, and then washed with water. , made by drying. The positive electrode is a pressure molded product similar to the above f80% potassium hydroxide aqueous solution 20
The molded body was made by immersing it in a solution of 1f lead monoxide dissolved in 0ml for 60 minutes to deposit lead dioxide on the surface of the molded body, washing with water, and drying. In each case, 100 molded bodies with lead dioxide layers formed thereon were placed in 200 ml of water, and the molded bodies were washed by gently shaking the molded bodies. The number of times of water washing was 5 for both. The amount of lead dioxide deposited was o and aMg in both cases, and the carbon dioxide absorption rate was measured after leaving the positive electrode in the atmosphere for 24 hours.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二酸化鉛の付着量と成形体の電気抵抗との関係
を示す図、第2図は本発明の実施例により製造された酸
化第二銀電池の断面図、第3図は本発明による電池と従
来法による電池の貯蔵に伴なう内部抵抗変化を示す図で
ある。 (1)・・・正極、 (2)・・・酸化第二銀を含む層
、”(3)・・・二酸化鉛層 特許出願人  日立マクセル株式会社 代理人弁理士  三 輪  鐵 雄−゛卸1□パ贈荘 、1 a乃 第1図 0     0.1    0.2    0.3  
  0.4    0.5二酸化鉛の付着量(mP) 第2図
FIG. 1 is a diagram showing the relationship between the amount of lead dioxide deposited and the electrical resistance of the molded body, FIG. 2 is a cross-sectional view of a ferric oxide battery manufactured according to an embodiment of the present invention, and FIG. 3 is a diagram of the present invention. FIG. 3 is a diagram illustrating changes in internal resistance due to storage of a battery according to the conventional method and a battery according to the conventional method. (1)...Positive electrode, (2)...Layer containing ferric oxide, (3)...Lead dioxide layer Patent applicant Hitachi Maxell Co., Ltd. Representative Patent Attorney Tetsuo Miwa Wholesaler 1□Pasho, 1 ano 1st figure 0 0.1 0.2 0.3
0.4 0.5 Adhesive amount of lead dioxide (mP) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1.酸化第二銀を含む成形体を鉛イオンを溶解した中性
水溶液に浸漬し、酸化第二銀の酸化力により鉛イオンを
酸化して成形体表面に二酸化鉛を沈着させることにより
正極を作製することを特徴とする酸化第二銀電池の製造
法。
1. A positive electrode is produced by immersing a molded body containing ferric oxide in a neutral aqueous solution in which lead ions are dissolved, and oxidizing the lead ions using the oxidizing power of the ferric oxide to deposit lead dioxide on the surface of the molded body. A method for producing a ferric oxide battery, characterized by:
JP4481982A 1982-03-20 1982-03-20 Manufacture of silver (2) oxide cell Pending JPS58163152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4481982A JPS58163152A (en) 1982-03-20 1982-03-20 Manufacture of silver (2) oxide cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4481982A JPS58163152A (en) 1982-03-20 1982-03-20 Manufacture of silver (2) oxide cell

Publications (1)

Publication Number Publication Date
JPS58163152A true JPS58163152A (en) 1983-09-27

Family

ID=12702046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4481982A Pending JPS58163152A (en) 1982-03-20 1982-03-20 Manufacture of silver (2) oxide cell

Country Status (1)

Country Link
JP (1) JPS58163152A (en)

Similar Documents

Publication Publication Date Title
US4391668A (en) Mixed oxide oxygen electrode
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JPS58163152A (en) Manufacture of silver (2) oxide cell
JPS6271168A (en) Nickel positive plate of alkali storage battery and its manufacture
JPS5854564A (en) Porous catalyst layer for gas diffusion electrode
JPH06124734A (en) Oxygen catalytic electrode and air cell using the electrode
JPH0514382B2 (en)
JPS58163165A (en) Manufacturing method of argentic oxide cell
JP2737233B2 (en) Zinc alkaline battery
JPS6158163A (en) Alkaline zinc battery
JPS62222566A (en) Nickel electrode for alkaline battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH0410179B2 (en)
JPS5893159A (en) Manufacture of divalent silver oxide battery
JPS5893158A (en) Manufacture of divalent silver oxide cell
JPH0259587B2 (en)
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPS63114061A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPS5853159A (en) Air cell
JPS6266570A (en) Cathode for alkaline storage battery
JPS62219463A (en) Positive electrode depolarizing mix for divalent silver oxide battery
JPH0577148B2 (en)
JP2988218B2 (en) Manufacturing method of sintered cathode plate for alkaline storage battery
JPS6266572A (en) Manufacture of sintered substrate for alkaline storage battery
JPS6340255A (en) Sintered nickel electrode for alkaline storage battery