JPS62219463A - Positive electrode depolarizing mix for divalent silver oxide battery - Google Patents

Positive electrode depolarizing mix for divalent silver oxide battery

Info

Publication number
JPS62219463A
JPS62219463A JP6059386A JP6059386A JPS62219463A JP S62219463 A JPS62219463 A JP S62219463A JP 6059386 A JP6059386 A JP 6059386A JP 6059386 A JP6059386 A JP 6059386A JP S62219463 A JPS62219463 A JP S62219463A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
silver oxide
divalent
divalent silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6059386A
Other languages
Japanese (ja)
Inventor
Mitsuo Hiruma
光生 晝間
Nobuaki Chiba
千葉 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6059386A priority Critical patent/JPS62219463A/en
Publication of JPS62219463A publication Critical patent/JPS62219463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To eliminate a difference in discharge voltage and suppress the self- decomposition of divalent silver oxide, by providing a silver layer on the whole surface of a formed body, and causing a titanium compound to be contained in the formed body, to constitute a positive electrode depolarizing mix for a divalent silver oxide battery. CONSTITUTION:A formed body 2 having divalent silver oxide as the main constituent of the body is treated with an aqueous solution containing titanium ions from a titanium trichloride or the like, which is a reducing agent, to contain a titanium compound inside. A silver layer 3 is then provided on the whole surface of the formed body 2 so that a pellet-like positive electrode depolarizing mix 1 is constituted. The mix 1 is then combined with a negative electrode of zinc or the like, a separator and so forth to constitute a divalent silver oxide battery. The silver layer 3 prevents the discharge voltage of the battery from taking two levels. The titanium compound suppresses the self- decomposition of the divalent silver oxide. Gas generation, two-level discharge, liquid leak and so forth are thus effectively prevented without adversely affecting the performance of the battery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二価酸化銀電池用正極合剤に関し、さらに詳し
くは、二価酸化銀電池に組み込んだ際、放電電圧の段差
を解消し、しかも二価酸化銀粒子の自己分解が抑制され
た安定な正極合剤に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a positive electrode mixture for a silver divalent oxide battery, and more specifically, when incorporated into a silver divalent oxide battery, it eliminates the difference in discharge voltage, Moreover, the present invention relates to a stable positive electrode mixture in which self-decomposition of silver divalent oxide particles is suppressed.

〔従来の技術〕[Conventional technology]

従来から酸化銀(AgO−Ag、o )を正極活物質と
して使用する酸化銀電池は、作動電圧が安定しているた
め、例えば腕時計用電源として重用されている。
Silver oxide batteries that use silver oxide (AgO-Ag, o 2 ) as a positive electrode active material have traditionally been used as power sources for wristwatches, for example, because of their stable operating voltage.

なかでも、二価酸化銀CAg0)は一価酸化銀(Agt
O)の約1.9倍の理論電気容量を有するため、Ago
を正極活物質とする二価酸化銀電池が検討されつつある
Among them, divalent silver oxide CAg0) is monovalent silver oxide (Agt
Ago
Divalent silver oxide batteries are being considered that use silver divalent oxide as the positive electrode active material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、AgOを正極活物質とする二価酸化銀電
池を実用化するにあたっては、つぎ02つの問題点が存
在する。その1つは、放電時にAg。
However, in putting into practical use a silver divalent oxide battery using AgO as a positive electrode active material, there are the following two problems. One of them is Ag during discharge.

→人goo→Agの還元工程を経るため、初期の放電電
位が1.8V、中期以降の放電電位が1.55 Vとい
う端子電圧が2段の放電過程を経ることとなってしまう
点である。また第2の問題点は、Agoがアルカリ溶液
中で不安定であるため自己分解し、電気容量が減少する
とともに、自己分解時に発生する酸素ガスによって電池
内圧が上昇し、電池の漏液と破裂を引き起こす危険性が
あるという点である。
→ Goo → Ag goes through the reduction process, so the terminal voltage goes through a two-stage discharge process, with an initial discharge potential of 1.8 V and a mid-term discharge potential of 1.55 V. . The second problem is that Ago is unstable in an alkaline solution, so it self-decomposes, reducing its electrical capacity, and the oxygen gas generated during self-decomposition increases the internal pressure of the battery, causing leakage and rupture of the battery. There is a risk of causing

まず、上記第1の問題を解消する方法として、(イ)A
g0粒子にλgtO粒子を添加したものを正極合剤とす
る方法、(ロ) Ag0粒子もしくはAgO成形体表面
をヒドラジン、アルコールなどの還元剤により還元する
方法とが提案されている。しかしながら、上記(イ)に
あっては、一段の放電電圧を得るために多量のAg2O
を添加する必要があシ、Agoを使用したことによる効
果である電気容量の増加かわずかしか得られない。また
(口)にあっては、一時的に1.6v付近の開路電圧が
得られるものの、電池の貯蔵中に1.8vまで上昇して
しまい、さらにアルカリ電解液中でのAgoの自己分解
を抑制することができないという問題が生じた。
First, as a method to solve the first problem above, (a)
A method has been proposed in which a positive electrode mixture is prepared by adding λgtO particles to g0 particles, and (ii) a method in which the surface of Ag0 particles or AgO molded bodies is reduced with a reducing agent such as hydrazine or alcohol. However, in (a) above, a large amount of Ag2O is used to obtain one stage of discharge voltage.
However, only a slight increase in capacitance, which is the effect of using Ago, can be obtained. In addition, although an open-circuit voltage of around 1.6 V was temporarily obtained in (2), it rose to 1.8 V during battery storage, and further caused self-decomposition of Ago in the alkaline electrolyte. The problem arose that it could not be suppressed.

一方、前記第2の問題を解消する手段としては、カドミ
ウム、テルルなどの安定化剤を含む層を正極容器内壁に
設ける方法(特開昭57−124852号公報)、ある
いは、アルコール/亜硫酸塩などよりなる還元剤にカド
ミウム、テルルなどの安定化剤を含有させ、この液によ
り Ago成形体を処理する方法(特開昭58−947
57号公報)などが提案されている。しかしながら、前
述したように過去に提案されている還元剤の多くは、そ
れ自体危険性もしくは毒性を持っていたり、また正極合
剤よシなる成形体中に残留した場合に、容量劣下など電
池性能に悪影響を及ぼす可能性が強く、実用に適さなか
った。
On the other hand, as a means to solve the second problem, there is a method of providing a layer containing a stabilizer such as cadmium or tellurium on the inner wall of the positive electrode container (Japanese Unexamined Patent Publication No. 124852/1982), or a method of providing a layer containing a stabilizer such as cadmium or tellurium on the inner wall of the positive electrode container, or A method of treating an Ago molded body with a reducing agent containing a stabilizer such as cadmium or tellurium (Japanese Unexamined Patent Publication No. 58-947)
Publication No. 57), etc. have been proposed. However, as mentioned above, many of the reducing agents that have been proposed in the past are dangerous or toxic by themselves, and if they remain in a molded product such as a positive electrode mixture, they can cause problems such as deterioration of battery capacity. This had a strong possibility of adversely affecting performance and was not suitable for practical use.

本発明は従来のかかる問題点を解消し、電池に組み込ん
だ際に段差のない一段の放電電圧を実現することが可能
で、しかもA20粒子の自己分解が抑制された安定な二
価酸化銀電池用正極合剤を、電池性能に悪影響を及ぼす
有害物質を使用することなく得ることを目的としている
The present invention solves these conventional problems and is a stable silver divalent oxide battery that can achieve a single discharge voltage without any step when incorporated into a battery, and in which self-decomposition of A20 particles is suppressed. The purpose of this project is to obtain a positive electrode mixture for use without using harmful substances that adversely affect battery performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記目的を達成すべく鋭意研究を重ねた結
果、Agoを主活物質とする正極合剤を、例えばペレッ
ト状に成形したのち、該成形体をチタンイオン(1)T
iNを含む水溶液で処理すると、成形体表面が、次式 %式%(1) のように還元され、逆にチタンイオンは酸化されて酸化
チタン(Tie、)などのチタン化合物となるという事
実に着目した。そしてこのチタン化合物が成形体内部に
含有されることにより、AgOの自己分解を抑制し、安
定化剤として作用することである。すなわち、チタンイ
オン(1)は正極合剤に対して還元剤として作用し、還
元すると同時に自らが酸化されて生じたTie、などの
チタン化合物が安定化剤の作用を有するという効果を確
認して、本発明を完成するに到った。
As a result of intensive research to achieve the above object, the present inventors formed a positive electrode mixture containing Ago as the main active material into, for example, a pellet shape, and then formed the formed body into a titanium ion (1)T
When treated with an aqueous solution containing iN, the surface of the molded body is reduced as shown in the following formula (1), and titanium ions are oxidized to form titanium compounds such as titanium oxide (Tie, ). I paid attention. By containing this titanium compound inside the molded body, it suppresses self-decomposition of AgO and acts as a stabilizer. In other words, it was confirmed that titanium ions (1) act as a reducing agent for the positive electrode mixture, and at the same time as they are reduced, titanium compounds such as Tie, which are produced by oxidation, have the effect of stabilizing agents. , we have completed the present invention.

すなわち、本発明の二価酸化銀電池用正極合剤は、二価
酸化銀を主成分とする成形体において、該成形体の全表
面に銀(Ag)層が形成されており、かつ、成形体内部
にチタン化合物が含有されてなることを特徴とし、その
製造法は二価酸化銀を主成分とする粉末よシなる成形体
を、チタンイオン(1)を含むアルカリ水溶液で処理す
ることを特徴としている。
That is, the positive electrode mixture for divalent silver oxide batteries of the present invention is a molded product mainly composed of divalent silver oxide, in which a silver (Ag) layer is formed on the entire surface of the molded product, and It is characterized by containing a titanium compound inside its body, and its manufacturing method involves treating a molded body made of powder containing silver divalent oxide as a main component with an alkaline aqueous solution containing titanium ions (1). It is a feature.

〔作用〕[Effect]

本発明の二価酸化銀電池用正極合剤は、正極活物質であ
るAgoを主成分とする成形体よりなるが、この成形体
はAgOのほかに、Ag、O、Ag 、バインダーなど
を含有していてもよい。成形体の形状・寸法は何ら限定
されるものではなく、例えばボタン型電池に使用するも
のであれば、第1図に示したようなペレット状とする。
The positive electrode mixture for silver divalent oxide batteries of the present invention is composed of a molded body whose main component is Ago, which is a positive electrode active material, and this molded body contains Ag, O, Ag, a binder, etc. in addition to AgO. You may do so. The shape and dimensions of the molded body are not limited in any way; for example, if it is to be used in a button-type battery, it may be in the form of a pellet as shown in FIG.

第1図において、lは本発明の正極合剤であシ、チタン
化合物を含んだ二価酸化銀を主成分とするAg0層2と
、その全表面を覆って形成されたAg層3とから構成さ
れる。
In FIG. 1, l is the positive electrode mixture of the present invention, which consists of an Ag0 layer 2 whose main component is silver divalent oxide containing a titanium compound, and an Ag layer 3 formed covering the entire surface of the Ag0 layer 2. configured.

被覆層であるAg層3は放電時に放電電圧を一段とする
ために必要な構成要素であシ、ペレット状正極合剤の全
面に形成されていることが必要である。Ag0層2が一
部でも露出していると、前述したように放電電圧が二段
になってしまうので好ましくない。なお、このAg層3
の層厚はAgが活物質ではないため、あまり厚いと電池
全体の電気容量の低下を招来するので、それを勘案して
適宜厚さを設定することが好ましい。
The Ag layer 3, which is a coating layer, is a necessary component to further increase the discharge voltage during discharge, and must be formed on the entire surface of the pelletized positive electrode mixture. If even a part of the Ag0 layer 2 is exposed, the discharge voltage will become two stages as described above, which is not preferable. Note that this Ag layer 3
Since Ag is not an active material, if the layer thickness is too thick, the capacitance of the entire battery will decrease, so it is preferable to set the thickness appropriately in consideration of this.

さらに、本発明の正極合剤においては、AgOを主成分
とするAg0層2の内部にはチタン化合物が含有されて
いる。このチタン化合物は、後述する正極合剤のチタン
イオン(1)による処理工程によシ該Ago層2内部に
浸入するものであって、Ag0層2内部においてどのよ
うな挙動を示すものかにっいては未だ明らかではないが
、このチタン化合物はAgoの自己分解を抑制するよう
に作用し、その結果、得られた二価酸化銀電池のガス発
生、二段放電、漏液などが有効に防止できる。
Furthermore, in the positive electrode mixture of the present invention, a titanium compound is contained inside the Ag0 layer 2 whose main component is AgO. This titanium compound penetrates into the Ago layer 2 during the treatment process with titanium ions (1) of the positive electrode mixture, which will be described later. Although it is not clear yet, this titanium compound acts to suppress the self-decomposition of Ago, and as a result, it effectively prevents gas generation, double discharge, leakage, etc. in the obtained silver divalent oxide battery. can.

ついで、本発明の正極合剤の製造法の一例について説明
する。
Next, an example of a method for producing the positive electrode mixture of the present invention will be explained.

本発明は前述したように、通常の方法によシ得られたA
gOを主成分とする成形体を、還元剤であるチタンイオ
ン(1)を含む水溶液で処理するものである。このチタ
ンイオン(1)を含む水溶液は、三塩化チタンTiCl
3、三フッ化チタンTip、等の三価のチタン化合物を
水に溶解することによシ容易に調製することができる。
As mentioned above, the present invention relates to A obtained by a conventional method.
A molded body containing gO as a main component is treated with an aqueous solution containing titanium ions (1) as a reducing agent. This aqueous solution containing titanium ions (1) is titanium trichloride TiCl
3. It can be easily prepared by dissolving a trivalent titanium compound such as titanium trifluoride Tip in water.

かかる還元液において、チタンイオン(1)の濃度は特
に限定されるものではないが、あまシに希薄であると充
分な還元力を発揮することができないので、通常は3重
量−チ以上とすることが好ましい。
In such a reducing solution, the concentration of titanium ions (1) is not particularly limited, but if it is too dilute, it will not be able to exhibit sufficient reducing power, so it is usually set to 3 weight - 1 or more. It is preferable.

この還元液を使用して上記Ago成形体を処理する工程
は例えば、該還元剤液中に成形体を浸漬処理することが
簡便であυ、工程的にみて有利である。この浸漬処理工
程において、還元液の液温が高ければ還元が速やかに進
行するので処理時間を短縮することが可能となるが、反
面、液温かあまシに高いと、溶解しているチタン化合物
の種類によっては分解するため、30〜60℃程度に設
定することが好ましい。また処理時間は前述した還元液
の濃度、液温または形成すべきAg層30層厚に応じて
適宜設定することが好ましいが、通常10分間〜1時間
程度である。
The step of treating the Ago molded body using this reducing solution is, for example, immersing the molded body in the reducing agent liquid, which is simple and advantageous from a process standpoint. In this immersion treatment process, if the temperature of the reducing solution is high, the reduction will proceed quickly and the processing time can be shortened, but on the other hand, if the temperature of the reducing solution is too high, the dissolved titanium compounds will Since some types decompose, it is preferable to set the temperature to about 30 to 60°C. Further, the processing time is preferably set appropriately depending on the concentration of the reducing solution, the solution temperature, or the thickness of the Ag layer 30 to be formed, but is usually about 10 minutes to 1 hour.

〔実施例〕〔Example〕

(イ)正極合剤の製造例 まず、100重量%Ag、0およびバインダーとして3
重量%のポリテトラフルオロエチレンヲ含有するAgo
粉末を加圧成形して、直径5.3am、厚さ0.58j
II+のペレット状成形体を製造する。一方で還元剤液
として3重量%の三塩化チタン溶液を用意し、液温40
°Cにてこσ還元液に前述のペレット状成形体を30分
間浸漬することにより、該成形体表面のAgOをAgに
還元するとともに、成形体内部にチタン化合物を含有せ
しめた。しかるのち、この成形体を水洗、乾燥して第1
図に示したような本発明の二価酸化銀電池用正極合剤1
を得た。なおこの正極合剤1において表面のAg層3の
厚は約50〜70μmであった。
(a) Manufacturing example of positive electrode mixture First, 100% by weight of Ag, 0 and 3 as a binder.
Ago containing % by weight of polytetrafluoroethylene
Pressure mold the powder to a diameter of 5.3am and a thickness of 0.58j.
A pellet-shaped molded body of II+ is manufactured. On the other hand, a 3% by weight titanium trichloride solution was prepared as a reducing agent solution, and the solution temperature was 40°C.
By immersing the above pellet-shaped molded body in the σ-reducing solution at °C for 30 minutes, AgO on the surface of the molded body was reduced to Ag, and a titanium compound was contained inside the molded body. Afterwards, this molded body is washed with water, dried, and then
Positive electrode mixture 1 for silver divalent oxide batteries of the present invention as shown in the figure
I got it. In addition, in this positive electrode mixture 1, the thickness of the Ag layer 3 on the surface was about 50 to 70 μm.

(ロ)二価酸化銀電池の特性評価試!倹上記により得ら
れた正極合剤1を使用して第2図に示したようなボタン
聾構造の二価酸化銀電池11を製造した。この電池の外
径は5.3zi+、高さは2.1朋であった。第2図に
おいて、正極容器12の底部に上記により得られた正極
合剤11すなわち全表面にAg層3と内部K Ag0層
2とからなる成形体が収納され、その上部にセパレータ
13を介して亜鉛よシなる負極14が充填されている。
(b) Characteristic evaluation test of silver divalent oxide battery! A divalent silver oxide battery 11 having a button deaf structure as shown in FIG. 2 was manufactured using the positive electrode mixture 1 obtained in the above process. The outer diameter of this battery was 5.3zi+, and the height was 2.1mm. In FIG. 2, the positive electrode mixture 11 obtained above, that is, the molded body consisting of an Ag layer 3 on the entire surface and an internal K Ag0 layer 2, is housed in the bottom of the positive electrode container 12, and a separator 13 is placed on the top of the molded body. A negative electrode 14 made of zinc is filled.

そしてガスケット15ヲ介して封口板16で封口し、正
極容器12の上部開口端【7を内方へ折曲することによ
シミ池全体が封口されている。
Then, by sealing with a sealing plate 16 via a gasket 15 and bending the upper open end [7] of the positive electrode container 12 inward, the entire stain pond is sealed.

かかる二価酸化銀電池100個を、それぞれ温度60”
Cにおいて20日間貯蔵したのち、開路電圧を測足する
とともに、電池内部でのガス発生個数を調べ、その結果
を表に示した。なお、ガス発生電池は電池の高さが9.
2mm以上変化した電池とした。
100 such silver divalent oxide batteries were each heated to a temperature of 60"
After being stored at C for 20 days, the open circuit voltage was measured and the number of gases generated inside the battery was investigated, and the results are shown in the table. In addition, the height of the gas generating battery is 9.
The battery was considered to have changed by 2 mm or more.

(ハ)比較例 還元剤液として、メタノールを10係(体積%)含む3
0重fチ水酸化カリウム水溶液を使用し、AgO成形体
を液温60゛Cにおいて10分間浸漬処理したことを除
いては、前記製造例と同様にして正極合剤を製造し、得
られた正極合剤を同様に電池に組み込み、かかる電池1
00個に対して各評価試験を行ない結果を表中に併記し
た。
(c) Comparative Example 3 containing 10 parts (volume %) of methanol as the reducing agent liquid
A positive electrode mixture was produced in the same manner as in the above production example, except that an aqueous solution of 0% potassium hydroxide was used and the AgO molded body was immersed for 10 minutes at a temperature of 60 °C. The positive electrode mixture is similarly incorporated into a battery, and such battery 1
Each evaluation test was conducted on 00 pieces, and the results are also listed in the table.

表 〔発明の効果〕 以上の説明から明らかなように、本発明の二価酸化銀電
池用正極合剤は、電池に組み込んだ際に、放電電圧が一
価酸化銀と同じ電圧となシ、かつ二価酸化銀の自己分解
が抑制されるため、ガス発生によるフクレなどがほとん
どなく、貯蔵安定性にμsれた二価酸化銀電池を提供で
きるので、その工業的価値は極めて大である。
Table [Effects of the Invention] As is clear from the above explanation, when the positive electrode mixture for divalent silver oxide batteries of the present invention is incorporated into a battery, the discharge voltage is the same as that of monovalent silver oxide. In addition, since self-decomposition of silver divalent oxide is suppressed, it is possible to provide a silver divalent oxide battery with almost no blisters caused by gas generation and a storage stability of μs, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の二価酸化銀電池用正極合剤の一例を示
す一部破断斜視図、第2図はこの正極合剤を使用した二
価酸化銀電池の縦断面図を示す。
FIG. 1 is a partially cutaway perspective view showing an example of the positive electrode mixture for divalent silver oxide batteries of the present invention, and FIG. 2 is a longitudinal sectional view of a divalent silver oxide battery using this positive electrode mixture.

Claims (1)

【特許請求の範囲】[Claims] 二価酸化銀(AgO)を主成分とする成形体よりなる二
価酸化銀電池用正極合剤において、該成形体の全表面に
銀(Ag)層が形成されており、かつ、成形体内部にチ
タン化合物が含有されてなることを特徴とする二価酸化
銀電池用正極合剤。
In a positive electrode mixture for a silver divalent oxide battery consisting of a molded body containing silver divalent oxide (AgO) as a main component, a silver (Ag) layer is formed on the entire surface of the molded body, and the interior of the molded body is A positive electrode mixture for a silver divalent oxide battery, characterized in that a titanium compound is contained in the positive electrode mixture.
JP6059386A 1986-03-20 1986-03-20 Positive electrode depolarizing mix for divalent silver oxide battery Pending JPS62219463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6059386A JPS62219463A (en) 1986-03-20 1986-03-20 Positive electrode depolarizing mix for divalent silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6059386A JPS62219463A (en) 1986-03-20 1986-03-20 Positive electrode depolarizing mix for divalent silver oxide battery

Publications (1)

Publication Number Publication Date
JPS62219463A true JPS62219463A (en) 1987-09-26

Family

ID=13146687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6059386A Pending JPS62219463A (en) 1986-03-20 1986-03-20 Positive electrode depolarizing mix for divalent silver oxide battery

Country Status (1)

Country Link
JP (1) JPS62219463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684328A (en) * 1992-07-29 1997-11-04 Samsung Electronics Co., Ltd. Semiconductor chip package using improved tape mounting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684328A (en) * 1992-07-29 1997-11-04 Samsung Electronics Co., Ltd. Semiconductor chip package using improved tape mounting

Similar Documents

Publication Publication Date Title
JPS58131660A (en) Reducing agent in alkali battery electrolyte
JPS58152373A (en) Silver peroxide cell
JPS62219463A (en) Positive electrode depolarizing mix for divalent silver oxide battery
JPS5812270A (en) Electrochemical storage battery
JPS6251153A (en) Positive mixture for silver oxide battery and its manufacture
JPS59132567A (en) Silver peroxide battery
EP0162411B1 (en) Process for the production of active anode materials for use in cells
JPS6158163A (en) Alkaline zinc battery
JPS6282647A (en) Manufacture of positive electrode for bivalent silver cell
CA1036665A (en) Hermetically sealed storage battery with grid-supported electrodes
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
JPH0665747A (en) Negative electrode container for alkaline battery
JPS63254671A (en) Zinc alkaline cell
JPS62105364A (en) Silver oxide cell
JPS58225565A (en) Alkaline battery
JPS6074349A (en) Divalent silver oxide battery
JPS58163152A (en) Manufacture of silver (2) oxide cell
JPS59101766A (en) Manufacture of silver (ii) oxide battery
JPS5999665A (en) Production method of silver (ii) oxide cell
JPS5832748B2 (en) Manufacturing method of silver oxide battery
JPH0345864B2 (en)
JPS5893159A (en) Manufacture of divalent silver oxide battery
JPS5893158A (en) Manufacture of divalent silver oxide cell
JPS5893167A (en) Manufacture of divalent silver oxide battery
JPS584269A (en) Argentic oxide cell