JPS59132567A - Silver peroxide battery - Google Patents

Silver peroxide battery

Info

Publication number
JPS59132567A
JPS59132567A JP58007932A JP793283A JPS59132567A JP S59132567 A JPS59132567 A JP S59132567A JP 58007932 A JP58007932 A JP 58007932A JP 793283 A JP793283 A JP 793283A JP S59132567 A JPS59132567 A JP S59132567A
Authority
JP
Japan
Prior art keywords
silver
positive electrode
oxide
battery
ago
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58007932A
Other languages
Japanese (ja)
Inventor
Nobuo Kamata
鎌田 伸男
Takashi Sekiya
関屋 孝
Kazutoshi Takeda
和俊 竹田
Toyoo Hayasaka
豊夫 早坂
Tomohisa Yoshida
友久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP58007932A priority Critical patent/JPS59132567A/en
Publication of JPS59132567A publication Critical patent/JPS59132567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase electric performance, storage life, and leakage resistance by using a positive mix mainly comprising AgO containing Cd and Te, or at least one of Pb, Hg, Tl, Ge, Y, Sn, and others in addition to Cd and Te. CONSTITUTION:A positive mix 12 mainly containing AgO containing Cd and Te, or at least one of Pb, Hg, Tl, Ge, Y, Sn, W, La, RE (rare earth elements), Zn, Se, and Al in addition to Cd and Te is pressed to form a pellet. The positive mix 12 obtained by forming an Ag2O layer 12 on its whole surface is accommodated in a positive can 11 with a separator 14 and an electrolyte absorbing material 12, and an electrolyte mainly comprising NaOH is filled. A negative can 17 with a negative material 16 is placed, then they are sealed with a gasket 18 to form an AgO battery.

Description

【発明の詳細な説明】 本発明は、過酸化銀電池に係り、酸化銀(II)(Ar
o)のアルカリ液中での安定性の改良及び正極製造方法
の改良とにより、電池の電気特性、保存特性及び耐漏液
性を著しく向上させるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silver peroxide battery containing silver(II) oxide (Ar
By improving the stability in an alkaline solution and improving the positive electrode manufacturing method in (o), the electrical characteristics, storage characteristics, and leakage resistance of the battery are significantly improved.

従来の安定化剤を添加していない酸化銀(D)は、アル
カリ液中で分解して酸素ガスを発生する量が大きく、不
安定なものであった。
Conventional silver oxide (D) to which no stabilizer is added is unstable because it decomposes in an alkaline solution and generates a large amount of oxygen gas.

コノために、従来の酸化銀(II)はアルカl tv中
にて自己分解し7て、酸化銀(II ’)としての電気
容量を減する欠点があった。さらに、酸化銀(II)の
分解により発生した酸素ガスは、セパレータを酸化する
ため、セパレータが脆化したり、セパレータとしての機
能が低下し、電池の自己放電が促進される欠点があった
。′−1:た、正極で発生した酸素ガスは、セパレータ
を通して負極に拡散・透過してゆき、亜鉛を酸化させて
、亜鉛の電気容量を低下せしぬる欠点があった。さらに
、この亜鉛の酸化現象が促進されると、亜鉛の表面が酸
化亜鉛などの不動態被膜で被覆されて、電池活物質とし
て未反応亜鉛か残存しているにもかかわらず、電池の放
電が止ってしまう欠点があった。
For this reason, conventional silver (II) oxide has the disadvantage that it self-decomposes in an alkali solution, reducing its electrical capacity as silver (II') oxide. Furthermore, oxygen gas generated by the decomposition of silver (II) oxide oxidizes the separator, resulting in the separator becoming brittle, its function as a separator decreasing, and self-discharge of the battery being accelerated. '-1: Another disadvantage was that the oxygen gas generated at the positive electrode diffused and permeated through the separator to the negative electrode, oxidized the zinc, and reduced the electrical capacity of the zinc. Furthermore, when this oxidation phenomenon of zinc is promoted, the surface of the zinc is coated with a passive film such as zinc oxide, and even though unreacted zinc remains as a battery active material, battery discharge is delayed. It had the drawback of stopping.

このように、従来の安定化剤を添加しない不安定な酸化
銀(II)を正極に用いた電池は、保存特性が悪くなる
欠点を有していた。
As described above, conventional batteries using unstable silver (II) oxide as a positive electrode without the addition of a stabilizer had the disadvantage of poor storage characteristics.

捷1こ、従来の酸化銀(II)は、アルカリ液中で分解
し易く、不安定であるため、この酸化銀(II)を用い
た電池は、徐々に電池内に酸素ガスが蓄積さhてくるた
め、′重油内圧が高くなり、アルカリ電解液の外部への
漏出を促進する欠点を有していた。
1) Conventional silver (II) oxide easily decomposes in alkaline liquid and is unstable, so batteries using this silver (II) oxide gradually accumulate oxygen gas inside the battery. As a result, the internal pressure of the heavy oil becomes high, which has the disadvantage of promoting leakage of the alkaline electrolyte to the outside.

この欠点を除くために、Ali’O粒子の表面を鉛酸銀
で被覆することが米国特許第6,01ス448号明+U
l書に記献されている。この鉛酸銀で被覆したA40粒
子は表面が還元しにくいため、正極ベレット表面Vcf
IM層が形成し、VC<い欠点があり、′離油のインピ
ーダンスが高くな る欠点を肩している。
In order to eliminate this drawback, coating the surface of Ali'O particles with lead acid silver has been proposed in US Pat.
It is recorded in the book l. Since the surface of A40 particles coated with lead acid silver is difficult to reduce, the positive electrode pellet surface Vcf
The IM layer has the disadvantage of forming a VC layer, and has the disadvantage of high oil separation impedance.

271、A4dar  TVarukq%J’−Fit
ectrochemSac、、  116.1071(
1969)、には、Z n 、 H! 、 A ’ e
工n、Tt、P’b、W f 100 F3PPM ?
1liS加し7霞AyOのガス発生蓋が調べられている
271, A4dar TVarukq%J'-Fit
electrochemSac, 116.1071 (
(1969), Z n, H! , A'e
Eng n, Tt, P'b, W f 100 F3PPM?
A gas generating cap of 7 haze AyO with 1liS has been investigated.

さらに、この文献の中で、Jl’Oの安定性の改善のk
めに、Od、 A t 、 P b 、 V 、 L!
 rの効果が示されているが、未だ十分なものではfz
vs。
Furthermore, in this literature, the improvement of the stability of Jl'O
To, Od, A t, P b, V, L!
Although the effect of r has been shown, it is still insufficient fz
vs.

不発明は、上記欠点を除くもので、安定化剤として、カ
ドミウムとテルル、またはカドミウムと7 ルルb ヨ
び鉛、水銀、タリウム、ゲルマニウム。
The invention eliminates the above-mentioned disadvantages, and uses cadmium and tellurium, or cadmium and iodine, mercury, thallium, and germanium as stabilizers.

イツトリウム、錫。タングステン、ランタン、希土類、
亜鉛、アルミニウム、セレ・ンがち選ばれた少なくとも
1つの成分全含有した酸化銀(II)全主体とする正極
合剤を正伶として用いることにより、′眠気%注9放電
容几、貯蔵後の酸気特注、保存性及び耐漏液性に侯れ女
過酸什銀を池を提供するものである。
Yztrium, tin. tungsten, lanthanum, rare earths,
By using a positive electrode mixture mainly composed of silver(II oxide) containing at least one selected component such as zinc, aluminum, selenium, etc., the discharge capacity after storage can be reduced by This product is specially designed to provide a silver peroxide solution with special acidity, storage stability, and leakage resistance.

フす、不発明について説明スル。Well, let me explain about non-invention.

第1図に示す実験装置を用いて、本発明の電池に用いら
れる酸化銀(n)粉末と従来酸化銀(It)粉末のガス
発生t’を測定し、アルカリ液中での安定性を比!!2
調査した。
Using the experimental apparatus shown in Figure 1, the gas evolution t' of the silver oxide (n) powder used in the battery of the present invention and the conventional silver oxide (It) powder was measured, and the stability in an alkaline solution was compared. ! ! 2
investigated.

ブた、安定化剤の添加量?変えて、ガス発生蓋を調査し
た。
But, how much stabilizer do you add? I changed it and investigated the gas generating lid.

図中、1は目盛付ガラス骨部、2は40%水酸化カリウ
ム水溶液、51Iゴ1?の酸化銀(It)粉末、4は恒
温1曹、5は40℃父に60℃の温水である。
In the figure, 1 is a glass bone with a scale, 2 is a 40% potassium hydroxide aqueous solution, and 51I Go 1? Silver oxide (It) powder, 4 is constant temperature 1 carbon dioxide, and 5 is hot water at 40°C and 60°C.

〈実施例1〉 第2図はイ」々なジ灸17JI]物を65力口したl’
o  の酸素ガス)も生血を示す図である。
〈Example 1〉 Figure 2 shows the case of mouthing an object with 65 force.
o oxygen gas) is also a diagram showing fresh blood.

6加物ff Od O、T e 02 、 T A20
3の形テAS’OK対して金+f、元系として0.3%
、0.1%、0.1%添加されている。
6 addition ff Od O, T e 02, T A20
Gold + f for 3 form te AS'OK, 0.3% as elemental system
, 0.1%, 0.1%.

第2図より明らかな、J: ′)VC,OdO+TeO
2及びCdO+TeO2+TA203 f客加し7m 
AfOの酸素ガス発生iは無添加A f Oに比べて極
めて少なくAつだ。
It is clear from Fig. 2 that J: ') VC, OdO + TeO
2 and CdO + TeO2 + TA203 f customer addition 7m
The oxygen gas generation i of AfO is extremely less than that of non-additive AfO.

ぼた、cao+’re○2 に加えて各種元素を加えた
方が芒らにAJOが安定することは第1表から明らかで
ある。
It is clear from Table 1 that AJO is more stable in awns when various elements are added in addition to cao+'re○2.

第  1  表 表中、caouca元素とし、てAgOに対して03%
、TeO2,pbo、’rx203.()e02.Hg
In Table 1, caouca element is 03% relative to AgO.
, TeO2, pbo, 'rx203. ()e02. Hg
.

lAgoに対して各々Te、 ’pb、 TR,Ge、
 Hg (7)元素として0.1%添加されている。
Te, 'pb, TR, Ge, respectively for lAgo.
0.1% of Hg (7) element is added.

このように、添加物が含有されている酸化銀(n)がア
ルカリ液中で安定になる理由は、含有している金属元素
もしくは金属化合物のイオン種が酸化銀(II)結晶格
子内に取込まれて、結晶構造が強固になるためと推定さ
れるが、正確な安定化メカニズムについては不明である
In this way, the reason why silver oxide (n) containing additives becomes stable in an alkaline solution is that the ionic species of the contained metal element or metal compound is incorporated into the silver (II) oxide crystal lattice. It is presumed that this is because the crystal structure is strengthened by the stabilization, but the exact stabilization mechanism is unknown.

〈実施例2〉 第5図は、Agoに対して添加しfl CaとTeの量
と酸素ガス発生量の関係を示す図である。
<Example 2> FIG. 5 is a diagram showing the relationship between the amount of fl Ca and Te added to Ago and the amount of oxygen gas generated.

なお、図中の数字は、A g O1t +7) 40℃
、40%K o H水溶液中での240時間後のガス発
生量を示している。
In addition, the numbers in the figure are A g O1t +7) 40℃
, shows the amount of gas generated after 240 hours in a 40% K o H aqueous solution.

CdとTeは、0dO):、TeO2の化合物としてA
goに対して添加さノtた。
Cd and Te are 0dO):, A as a compound of TeO2
It was not added to go.

図より、cdの添加量が増加するに従い、酸素ガス発生
量は少なくなる。一方、Teの添加量は、0.05〜0
.3%の範囲内で酸素ガス発生量が少なくなることが分
る。
From the figure, as the amount of CD added increases, the amount of oxygen gas generated decreases. On the other hand, the amount of Te added is 0.05 to 0.
.. It can be seen that the amount of oxygen gas generated decreases within the range of 3%.

これら添加物を多く添加すれば、AgO?:主体とする
正極合剤の4気容量が減少するので、電気8鼠を確保す
ると同時に、酸素ガス発生量を最小とするために、Cd
:Tθ=0.3%:0.1%(CdO:Te02=0.
34%二〇13%)を選定した。
If you add a lot of these additives, AgO? : Since the capacity of the main positive electrode mixture decreases, in order to secure electricity and at the same time minimize the amount of oxygen gas generated,
:Tθ=0.3%:0.1% (CdO:Te02=0.
34%2013%) were selected.

以降、Cd:Te:Tn=0.3二〇、1:0.1%の
組成で添加物を添加したAgoを用いて、本発明を詳述
する。
Hereinafter, the present invention will be described in detail using Ago to which additives have been added with a composition of Cd:Te:Tn=0.320, 1:0.1%.

〈実施例6〉 第2表 Chemicai ’and physical pr
opertiesAgo  Ago Co 02 ga
s AE+、2 CO3Aver響Ap[BT’ent
Ap[B1”ant−ntent =singCont
ent Brticle density tappi
ng(%)  Volume  (%)  5ize 
 (ji’/cC) density(μψ0Uhr)
    ’(μ)(1/ω)廿−〇KOH 40℃ New     9B、3    16   0.41
    2.96   0,79   1.95第2表
に、CdO、TeO2、Tn203 をAg。
<Example 6> Table 2 Chemical 'and physical pr
opertiesAgo Ago Co 02 ga
s AE+, 2 CO3Aver Hibiki Ap[BT'ent
Ap[B1”ant-tent=singCont
ent Brticle density tappi
ng (%) Volume (%) 5ize
(ji'/cC) density (μψ0Uhr)
'(μ)(1/ω)廿-〇KOH 40℃ New 9B, 3 16 0.41
2.96 0.79 1.95 Table 2 shows CdO, TeO2, and Tn203 in Ag.

に対してCd: Te : T4J= 0.3 : U
、1 : 0.1%の割合で添加しf(A gOの化学
的及び物理的特性を示す。
For Cd: Te: T4J= 0.3: U
, 1 : added at a ratio of 0.1% f(A) to show the chemical and physical properties of gO.

高いAgO含有M′を有し、酸素ガス発生量が少ないこ
とがvf技である。さらに、平均粒径が大きく、カサ密
度、タップ密度も大きいので、Ag。
The vf technique has a high AgO content M' and a small amount of oxygen gas generated. Furthermore, since the average particle size is large, and the bulk density and tap density are also large, Ag.

粉末の流動性がよく、ベレットの成形性も向上するとい
うメリットも有する。
It also has the advantage of good powder flowability and improved pellet formability.

〈実施例4〉 第4図は、CdO、TeO2,TfizO3kAg○に
対してOd:Te:TR=0.3:[11,1:0.1
%の割合で添加したAgoと添加物の添加されていない
従来Agoについて、Ag○含有量と時間の関係を示し
た図である。
<Example 4> Figure 4 shows Od:Te:TR=0.3:[11,1:0.1 for CdO, TeO2, TfizO3kAg○.
It is a figure showing the relationship between Ag◯ content and time for Ago added at a ratio of % and conventional Ago to which no additives were added.

Ago含有彊の定量分析は、従来一般に採用さ力でいる
方法、即ち、ヨウ化カリ還元滴定法を用いた。
Quantitative analysis of Ago-containing water was carried out using a conventional method generally employed, that is, a potassium iodide reduction titration method.

AgOサンプルに、60℃、40%KOHに浸漬さね、
20日間毎に、Ago含有量の定量が行なわれた。
The AgO sample was immersed in 40% KOH at 60°C.
Ago content was quantified every 20 days.

この図より、40日浸漬保存後、Ago含有=縦の差が
大きくなり、従来AgOは60日目で30係、80日目
で10%に低下してし、まっ。
From this figure, after 40 days of immersion storage, the vertical difference in Ago content becomes larger, and the conventional AgO content decreases to 30% on the 60th day and 10% on the 80th day.

一方、本発明に係るAgoに200日目で50頭のAg
O含有量を維持しており、長期間にわたって、大幅に安
定化していることが分る。
On the other hand, the Ago according to the present invention had 50 Ag on the 200th day.
It can be seen that the O content is maintained and is significantly stabilized over a long period of time.

〈実施例5〉。<Example 5>.

実施例3,4に説明した本発明に係るAg。Ag according to the present invention explained in Examples 3 and 4.

を用いた本発明電池を組立て穴。Assemble the battery according to the invention using the holes.

第5図は、本発明の一実癩例を示す電池の断面図である
FIG. 5 is a sectional view of a battery showing one example of the present invention.

図中、11は正極缶で、還元銀層13で被われた正極合
剤12、セパレータ14、電解液含浸剤15を収納して
いる。電解液は、水酸化ナトリウムを主体としているア
ルカリ液である。
In the figure, reference numeral 11 denotes a positive electrode can, which houses a positive electrode mixture 12 covered with a reduced silver layer 13, a separator 14, and an electrolyte impregnating agent 15. The electrolyte is an alkaline solution mainly containing sodium hydroxide.

こめ正極合剤12は、本発明の電池に用いられる酸化銀
(II)粉末95〜9−94重量部と四フッ化エチレン
粉末1〜5重量部の混合物からなり、加圧成形されてい
る。
The positive electrode mixture 12 is made of a mixture of 95 to 9-94 parts by weight of silver (II) oxide powder used in the battery of the present invention and 1 to 5 parts by weight of tetrafluoroethylene powder, and is molded under pressure.

−また、有機結着剤として、ポリ四フッ化エチレン粉末
以外にも、加圧成形する上で必要な特性である潤滑性、
結着性を有している物質で、耐酸化性、耐アルカリ性?
:肩し穴安定な物質であれば、(吏用に適する。
- In addition to polytetrafluoroethylene powder, as an organic binder, we can also use lubricity, which is a necessary property for pressure molding.
Is it a substance that has binding properties and is oxidation and alkali resistant?
:If it is a stable substance, it is suitable for use as an official.

例として、ポリエチレン、ポリスチレンなどのオレフィ
ン系樹脂粉末、ナイロンなどのポリアミド樹脂粉末、カ
ルボキシメチルセルローズ、ポリビニルアルコール、ポ
リアクリル酸ソーダなどの水浴性高分子粉末等が、有機
結着剤として適している。
For example, olefin resin powders such as polyethylene and polystyrene, polyamide resin powders such as nylon, water-bathable polymer powders such as carboxymethyl cellulose, polyvinyl alcohol, and sodium polyacrylate are suitable as organic binders.

また、前記有機結着剤以外にも、ディスパージョン溶液
や水浴液々どの液体状でも用いることができる。
In addition to the organic binder described above, any liquid such as a dispersion solution or a water bath liquid can be used.

なお、結着剤の添加片は、下限値は結着効果から1%で
ある。上限値は特に制約にないが、5%を越えると、正
極合剤中の酸化銀(■)の量が減少するため、電池容量
の減少をもたらす。さらに、5係を越えて添加すると、
これら結着剤は電気絶縁物質であるため、正極合剤内の
電気抵抗がアップし、電池の内部抵抗が太きくなる。
Note that the lower limit of the binder-added piece is 1% due to the binding effect. Although there is no particular upper limit, if it exceeds 5%, the amount of silver oxide (■) in the positive electrode mixture decreases, resulting in a decrease in battery capacity. Furthermore, if you add more than 5 parts,
Since these binders are electrically insulating substances, the electrical resistance within the positive electrode mixture increases and the internal resistance of the battery increases.

従って、本発明においては、結着剤の添加量は1〜5%
が適切である。
Therefore, in the present invention, the amount of binder added is 1 to 5%.
is appropriate.

なお、結着剤の添加量が5%を越えても、本発明の電池
に用いられる酸化銀(II)の安定性は損なわれない。
Note that even if the amount of the binder added exceeds 5%, the stability of the silver (II) oxide used in the battery of the present invention is not impaired.

また、図中、15は正極6剤120表面に設けら:iた
銀層である。この銀層13は、正極合剤12の表面全適
当な還元手段にて還元することによシ形成される。
Further, in the figure, 15 is a silver layer provided on the surface of the positive electrode 6 agent 120. This silver layer 13 is formed by reducing the entire surface of the positive electrode mixture 12 using an appropriate reducing means.

17は負極缶で、氷化亜鉛粉末とカルボキンメチルセル
ロース、ポリアクリル酸ナトリウムなどのゲル化剤の一
つもしくは二つとの混合物からなる負極合剤16Jr:
収納している。この負汐合剤16il−i′、この捷捷
使用さtまたり、もしくはアルカリ電解液と共にゲル状
にさrして使用される。
17 is a negative electrode can, which contains a negative electrode mixture 16Jr consisting of a mixture of frozen zinc powder and one or two gelling agents such as carboquine methylcellulose and sodium polyacrylate:
It is stored. This negative tide mixture 16il-i' can be used either by stirring or in the form of a gel together with an alkaline electrolyte.

また、この負極合剤16を軽く加圧成形しても差支えが
々い。
Moreover, there is no problem even if this negative electrode mixture 16 is lightly pressurized.

18は、負極と正極全電気的に絶縁する封口ガスケット
である。この18はポリアミド樹脂からなる。
18 is a sealing gasket that electrically insulates the negative electrode and the positive electrode. This 18 is made of polyamide resin.

まず、Tu726sw(外径Z8粘、高さ2.6課、Z
n/NaOH/Ago) の電池についで、自己放電率
を調べ、その結果全第6図に示す。
First, Tu726sw (outer diameter Z8 thickness, height 2.6 sections, Z
The self-discharge rate of the (n/NaOH/Ago) battery was investigated, and the results are shown in FIG.

保存性試験1法は、60℃で恒湖槽内に放電し、20日
もしくは40日後、電池(i一槽内より取出して、負荷
抵抗7.5にΩで放電し文、残存容量を求める。
Storage test method 1 is to discharge the battery into a constant lake tank at 60°C, and after 20 or 40 days, remove the battery from the tank and discharge it to a load resistance of 7.5 Ω to determine the remaining capacity. .

自己放電率は、60℃、20日もしくは40日保存後算
出し北。自己放電率は次式より求めた。
Self-discharge rate was calculated after storage at 60°C for 20 or 40 days. The self-discharge rate was calculated from the following formula.

データは、n=24の平均値である。Data are average values of n=24.

さらに、電池製造後、室温下で14ケ月貯蔵した電池の
自己放電率も従来電池と比較した。
Furthermore, the self-discharge rate of the battery, which was stored at room temperature for 14 months after battery manufacture, was also compared with that of a conventional battery.

60℃、40日保存後の自己放電率は、従来に池に比べ
て1/3−2  に低減している。
The self-discharge rate after storage at 60°C for 40 days was reduced to 1/3-2 compared to conventional ponds.

また、室温下、14ケ月保存後の自己放電率は従来電池
に比べて’/L35〜l//2.8に低減している。
Furthermore, the self-discharge rate after storage for 14 months at room temperature is reduced to '/L35 to l//2.8 compared to conventional batteries.

次に、電池の低温特性を調べた。その結果を第7図(a
) 、 (b) 、 (C)に示す。
Next, we investigated the low-temperature characteristics of the battery. The results are shown in Figure 7 (a
), (b), and (C).

−10℃の閉路電圧は、RL = 2 KΩでの Z8
υtsecパルス放電時の電圧である。
The closed circuit voltage at −10°C is Z8 at RL = 2 KΩ
This is the voltage during υtsec pulse discharge.

本発明電池はn=10のX5従来電池は10ロツトのX
を示す。
The battery of the present invention has n=10 x5, and the conventional battery has 10 lots of x
shows.

第7図より、初期に於いて、本発明電池の低温閉路電圧
が低いけれども、その経時変化は少なくなっていること
が分る。
From FIG. 7, it can be seen that although the low-temperature closed circuit voltage of the battery of the present invention is low in the initial stage, its change over time is small.

この本発明電池の低温閉路電圧の経時変化が従来電池に
比べて少ない環内け、本発明に係るAg。
The Ag according to the present invention has a smaller change over time in the low temperature closed circuit voltage of the battery of the present invention than that of conventional batteries.

がアルカリ水溶液中で安定なため、正極表面に形成され
た銀層がAgoの分解酸素−ガスで酸化されたり、負極
に用いられている亜鉛が酸化され、たりすることが少な
いためである。
This is because the silver layer formed on the surface of the positive electrode is less likely to be oxidized by the decomposed oxygen gas of Ago, and the zinc used in the negative electrode is less likely to be oxidized, since it is stable in an alkaline aqueous solution.

上述した実施例1〜5の如く、本発明は保存特性のすぐ
れ、かつ低温閉路電圧の経時変化が少ない、極めてイi
頼性の高い過酸化銀電池を提供することができる。
As in Examples 1 to 5 described above, the present invention has excellent storage characteristics and little change over time in low-temperature circuit voltage.
A highly reliable silver peroxide battery can be provided.

しかし、ランプ付液晶表示式デジタルウォッチに用いる
大電流用重油(Z n / K OH/ A t;< 
0 )に本発明に係るAEI、Oを用いた場合、電池製
造直後の低温閉路電圧が、従来Ag’0電池に比べて7
0〜10077LV低いといつ課題が残されている。
However, heavy oil for high current (Zn/KOH/At;<
When AEI, O according to the present invention is used for 0), the low-temperature closed circuit voltage immediately after battery manufacture is 7
0-10077 When the LV is low, there are still issues to be solved.

この課題は、 1)Ofio、TeO2、TR203などの添加物量の
厨適化 2)本Agoを用いた正極表面に形成された銀層とAg
00間に介在しているAg20H2内の金属Agをなく
すこと 及び3)同一還元−1にお′いて、本Agoを用いた正
険表面の還元銀層の厚みを従来AgOを用いた正極並と
すること 等により解決できた。
The challenges are: 1) Optimization of the amount of additives such as Ofio, TeO2, TR203, etc. 2) Adjustment of the silver layer formed on the surface of the positive electrode using this Ago and Ag
00 and 3) In the same reduction-1, the thickness of the reduced silver layer on the positive surface using this Ago is equal to that of the conventional positive electrode using AgO. I was able to resolve the issue by doing the following.

以下、これら解決例を、実施例にて示す。Examples of these solutions will be shown below in Examples.

〈実施例6〉 まず、CdO、TeO2、TR203などの添加物の添
加量の最適化を図った実姉例を示す。
<Example 6> First, a sister example will be shown in which the amounts of additives such as CdO, TeO2, and TR203 were optimized.

第8図は、安定化剤の添加量と酸素ガス発生量の関係を
示す図である。
FIG. 8 is a diagram showing the relationship between the amount of stabilizer added and the amount of oxygen gas generated.

図中、Aは安定化剤としてOdQ+TeO2、Bは安定
化剤としてcao−1−Teoz+Tfizo3である
In the figure, A is OdQ+TeO2 as a stabilizer, and B is cao-1-Teoz+Tfizo3 as a stabilizer.

−ti、添加量−がゼロの点が従来酸化銀(II)粉末
の酸素ガス発生量である。
The point where -ti, addition amount - is zero is the amount of oxygen gas generated by the conventional silver (II) oxide powder.

第8図より明らかなように、Aに比べてBの方が酸素ガ
ス発生が少ないことが分る。
As is clear from FIG. 8, it can be seen that oxygen gas is generated less in case B than in case A.

これは、酸化カドミウム、二酸化テルルに加えて、酸化
タリウムを添加したためである。
This is because thallium oxide was added in addition to cadmium oxide and tellurium dioxide.

さらに、第8図より、添加量が増加するにつれて、酸素
ガス発生量も減少してくることが分る。
Furthermore, from FIG. 8, it can be seen that as the amount added increases, the amount of oxygen gas generated also decreases.

添加−1J5000〜10000 PPMT最も少ない
酸素ガス発生量となる。
Addition-1J 5000 to 10000 PPMT produces the least amount of oxygen gas.

捷た、こわら含有成分の形態は、金属元素もしくは金属
化合物のいすねの場合でも、酸化銀(II)のアルカリ
液中での安定性に大きな効果がある。
The form of the shredded, stiff-containing component has a great effect on the stability of silver(II) oxide in an alkaline solution, even in the case of metal elements or metal compounds.

次に、安定化剤の添加tv変えた酸化銀(It)粉末を
用いた本発明這池全、実姉例5と同様に組み立てた。
Next, it was assembled in the same manner as in Example 5 of the present invention using silver oxide (It) powder with different addition tv of the stabilizer.

ただし、本実施例の電池は、TR926W(外径9.5
 wtt 、高さ2.6 wn、Z n / K o 
H/ A gO、公称52 m A h )である。
However, the battery of this example is TR926W (outer diameter 9.5
wtt, height 2.6 wn, Zn/Ko
H/A gO, nominally 52 mA h).

この電池製造後、室温下で6ケ月貯蔵した電池の低温特
性、自己放電率、漏液発生率について調べた。第6表、
第4表に結果を示す。
After manufacturing this battery, the battery was stored at room temperature for 6 months and its low temperature characteristics, self-discharge rate, and leakage rate were investigated. Table 6,
Table 4 shows the results.

低温特性は、−10℃の恒温槽内に電池を′入ね、第4
図の測定回路にて、スイッチSを閉じ、そののち、5秒
間以内の閉路電圧最低(iff ’i電圧計■にて読み
取る。データはn=10の平均値を示す。
Low-temperature characteristics are determined by placing the battery in a -10°C thermostat.
In the measurement circuit shown in the figure, switch S is closed, and then the lowest closed circuit voltage (if 'i) is read with a voltmeter (■) within 5 seconds.The data shows the average value of n=10.

第6表 第  4  表 保存特性試験方法(自己放電率の測定)は、60℃で恒
温槽内に放置し、40日後、電池を槽内より取り出して
、負荷抵抗7.5 KΩで放電して残存容量を求める。
Table 6 Table 4 Storage characteristics test method (measuring self-discharge rate): Leave the battery in a thermostatic chamber at 60°C, and after 40 days, remove it from the chamber and discharge it with a load resistance of 7.5 KΩ. Find remaining capacity.

下記の式により(2)、出した。It was given by the following formula (2).

但し、初期各回とは、保存前の電池容量である。However, each initial cycle is the battery capacity before storage.

データはn−24の平均値である。Data are average values of n-24.

漏液試験方法に、電池を60℃、相対湿度90〜95%
の恒温恒湿槽内に放置し、1000時間後、電池を槽内
より取出して漏液の有無(f−実体顕微鏡により観察し
た。尚、電池負極缶外面に漏液が認めら;iL*:もの
を不良とした。
The leak test method is to test the battery at 60℃ and relative humidity of 90-95%.
After 1000 hours, the battery was taken out from the tank and observed for leakage (f- observed with a stereomicroscope.Leakage was observed on the outer surface of the battery negative electrode can; iL*: marked something as defective.

データはn=100の漏液発生率を示す。The data shows the leakage rate for n=100.

第3表(は、酸化カドミウムと二酸化テルルからなる安
定化剤の添加量ヲ変化させて、電池の低温特性、自己放
電率及び、漏液発生率音調べたものである。安定化剤の
組成は、およそCaO:Te02=6−1となるように
設定した。
Table 3 shows the results of investigating the low-temperature characteristics, self-discharge rate, and leakage rate of the battery by varying the amount of stabilizer made of cadmium oxide and tellurium dioxide. Composition of stabilizer was set to approximately CaO:Te02=6-1.

表中、従来電池は、安定化剤を含有していない酸化銀(
n)を用いた電池であり、本発明電池A −Gは、安定
化剤の添加量を10〜110000PPまで変化させた
酸化銀(II)を用いた電池である。
In the table, conventional batteries contain silver oxide (silver oxide) that does not contain a stabilizer.
Batteries A to G of the present invention are batteries using silver (II) oxide in which the amount of stabilizer added is varied from 10 to 110,000 PP.

この第5表より明らかなように、本発明電池A〜Gは従
来′准池に比べて、自己放電率及び漏液発生率が低く、
極めて優11fC電池であることが判る。
As is clear from Table 5, the batteries A to G of the present invention have a lower self-discharge rate and a lower leakage rate than the conventional batteries.
It can be seen that this is an extremely superior 11fC battery.

この安定化剤の添加のない酸化銀(n)e用いた電池の
自己放電率及び漏W7.発生率が悪い理由は、安定化剤
を含有しない酸化銀(II)は、アルカリ電解液に接触
すると徐々に分解してゆくことによる。
Self-discharge rate and leakage W7 of a battery using silver oxide (n)e without the addition of this stabilizer. The reason for the low incidence is that silver (II) oxide that does not contain a stabilizer gradually decomposes when it comes into contact with an alkaline electrolyte.

この酸化銀(lが分解すわば、 1) 酸化銀(ll)の電気容量の減少2)酸化8(■
)の分解酸素ガスによるセパレータの劣化及びi[fL
鉛の消耗 3)酸化銀(It)の分解酸素ガスの蓄積による電池内
圧アップ 等が起生ずる。
If this silver oxide (l) decomposes, 1) Decrease in the capacitance of silver oxide (ll) 2) Oxidation 8 (■
) and deterioration of the separator due to decomposition of oxygen gas and i[fL
Lead consumption 3) Decomposition of silver oxide (It) Accumulation of oxygen gas causes an increase in battery internal pressure.

一方、本発明′電池の優れている理由は、酸化銀(n)
に含有している安定化剤の効果による。
On the other hand, the reason why the battery of the present invention is superior is that silver oxide (n)
This depends on the effect of the stabilizer contained in the.

号だ、安定化剤の形態は、酸化物、水酸化物。The stabilizers are in the form of oxides and hydroxides.

金属粉、硫化物、各種1頃のいづれの場合でも、酸化銀
(II)のアルカリ液中での安定性に大きな効果がある
Whether it is metal powder, sulfide, or various substances, it has a great effect on the stability of silver (II) oxide in an alkaline solution.

尚、低温特性1:j、安定化剤の添加量と密接に関連し
ていることが分る。
It can be seen that the low temperature property 1:j is closely related to the amount of stabilizer added.

すなわち、安定化剤の添加量が増加するにつれて、低温
特性が悪くなっている。
That is, as the amount of stabilizer added increases, the low-temperature properties worsen.

この理由は、安定化剤が酸化銀(n)k安定化させテイ
ルfcメ、RL = 2 o oΩの大電流放電し 、
1合に、酸化銀(11)の放電反応が律速となり、低温
特性が悪くなるものと推定される。
The reason for this is that the stabilizer stabilizes the silver oxide (n)k and discharges a large current of RL = 2 ohm.
In the first case, it is presumed that the discharge reaction of silver oxide (11) becomes rate-determining, and the low-temperature characteristics deteriorate.

ランプ付液、1¥3表示式デジタルウォッチの場合、低
湿特性として105■す、上必要なので、バラツキ等も
考慮り一で、本発明′4¥池Fの低温特性値を最下限値
と考えるのが妥轟に思わねる。
In the case of a liquid watch with a lamp and a 1 yen 3 display type digital watch, 105 mm is required as the low humidity characteristic, so taking into account variations etc., the low temperature characteristic value of the 4 yen pond F of the present invention is considered to be the lowest limit value. That doesn't seem reasonable.

すなわち、安定化剤の添加♀、が10〜5000PPM
の範囲で、低温特性を適切な値に保ちながら、自己放電
率及び漏液発生率を従来電池以上にすることが可能でち
る、。
That is, the addition of stabilizer♀ is 10 to 5000 PPM
Within this range, it is possible to increase the self-discharge rate and leakage rate higher than conventional batteries while maintaining the low-temperature characteristics at appropriate values.

次に、第4表について説明する。Next, Table 4 will be explained.

第4表は、酸化カドミウム、二酸化テルル及び酸化タリ
ウムからなる安定化剤の添加量を変化させて、;第3表
と同様、電池の低温特性、自己放電率及び漏液発生率を
調べたものである。
Table 4 shows the results of investigating the low temperature characteristics, self-discharge rate, and leakage rate of the battery by varying the amount of stabilizers made of cadmium oxide, tellurium dioxide, and thallium oxide; similar to Table 3. It is.

捷た、安定化剤の組成は、第5表と同様に、およそCご
O:TeO2:Tfi203二3:1:1  となるよ
うに設定し1こ。
The composition of the stabilizer was set to be approximately C: O: TeO: T: 1:1, as shown in Table 5.

第8図に示し7たように、安定化剤が、CdO。As shown in FIG. 8, the stabilizer is CdO.

Teo2.Tn、、o3の3成分からなる酸化銀(It
)(7)方が、C,10、TeO2の2成分からなる酸
化銀(11)より、アルカIJ i中での酸素ガス発生
が少なく、安定であるので、本発明電池A′〜Glu、
本発明電池A−()に比べて、さらに自己放′市率及び
漏液発生率が小さくなっており、優れていることが分る
Teo2. Silver oxide (It
)(7) generates less oxygen gas in alkali IJi than silver oxide (11) consisting of two components of C, 10, and TeO2, and is more stable.
Compared to the battery A-() of the present invention, the self-release rate and the rate of leakage are further reduced, and it can be seen that the battery is superior.

一方、本発明電池A′〜G′の低温特性lは、第3表と
同様に、安定化剤の添加量の増加と共に、低下しでいる
On the other hand, as in Table 3, the low-temperature characteristics 1 of the batteries A' to G' of the present invention continue to decrease as the amount of stabilizer added increases.

さらに、本発明電池E′〜G′は、本発明゛電池E〜G
に比べて、さらに低温特性が低下している。この理由は
、本発明電池E′〜G′に使用された酸化銀(n)が、
本発明電池E−()に使用さね、た酸化銀(II)に比
べて安定しているため、反作用としてRI、 =200
ヲ Ωでの放電反応に対して、IR分極が大きいためと推定
さ八る。
Furthermore, the batteries E' to G' of the present invention are the batteries E' to G' of the present invention.
The low-temperature properties are even worse than that of . The reason for this is that the silver oxide (n) used in the batteries E' to G' of the present invention is
Since it is more stable than silver(II) oxide used in the battery E-() of the present invention, as a reaction, RI = 200
It is presumed that this is because the IR polarization is large compared to the discharge reaction at Ω.

以上詳述した様に、本発明(1,10〜5000PPM
の安定止剤全含有しり酸化銀(If)を主体とする正極
合剤を正極とすることにより、低温特性を良好に保ちな
がら、保存特性及び耐漏液性に優れた過酸化銀電池を提
供することができる。
As detailed above, the present invention (1,10 to 5000 PPM
To provide a silver peroxide battery having excellent storage characteristics and leakage resistance while maintaining good low-temperature characteristics by using a positive electrode mixture mainly composed of silver oxide (If) containing all the stabilizers of be able to.

さらに、従来の酸化銀(It)を用いに酸化銀(II)
電池は、電池電圧1.55 Vを出すたぬ、正極として
用いる酸化鋼(II)を遷元処理等の方法を用いて、酸
化・銀(II)の表面に銀層を形成させ、高電位1.8
5 V(酸化銀(II)−亜鉛との電位差)を消去して
いた。
Furthermore, silver (II) oxide can be produced using conventional silver (It) oxide.
The battery produces a battery voltage of 1.55 V, and the oxidized steel (II) used as the positive electrode is treated with a hydrogenation process to form a silver layer on the surface of the oxidized silver (II). 1.8
5 V (potential difference between silver(II) oxide and zinc) was erased.

ところが、前記銀層に経時変化に伴い、次第に酸化され
酸化銀(1)に変化し、結果的には、高電位(ta5v
)が出現してしまう欠点を有していた。
However, as the silver layer changes over time, it gradually oxidizes and changes to silver oxide (1), resulting in a high potential (ta5v).
) had the disadvantage of appearing.

本原因は、酸化銀(n)表面に銀層を形成時に、酸化督
(1)と銀層の間に酸化銀(+)層が形成される際、前
記酸化銀(1)層に一部金属銀が生成するためである。
This is because when forming a silver layer on the silver oxide (n) surface, when a silver oxide (+) layer is formed between the oxidation director (1) and the silver layer, some of the silver oxide (1) layer is This is because metallic silver is generated.

そのため、酸化銀(II)と銀層との電子的絶縁がなさ
九々〈なり、表面の銀層が再酸化を受けて、下記の反、
応が堆石し、内部抵抗が高くなる欠点を有していた、 A g O−1−A g −+  A g20本発明は
上記欠点全除去するもので、以下、その実施例につき説
明する。
Therefore, there is no electronic insulation between silver(II) oxide and the silver layer, and the silver layer on the surface undergoes re-oxidation, resulting in the following reaction:
The present invention completely eliminates the above-mentioned drawbacks, and examples thereof will be described below.

実施例 酸化カドミウム(CdO)粉末01重量部、酸化テルル
(TeO2)粉末006重量部(i−酸化銀(Il)(
A gO)粉末95重量部に添加し、さらに、四フッ化
エチレン粉末5重量部を加え、1時間混合した。該・昆
合物を整粒後、8 t o n/cr、4 で加圧成形
し、ベレットを作製した。次に10チのKoHを含む9
00重量部メタノール溶液30分間浸漬後、水洗した。
Examples Cadmium oxide (CdO) powder 01 parts by weight, tellurium oxide (TeO2) powder 006 parts by weight (i-silver oxide (Il) (
AgO) powder was added to 95 parts by weight, and further 5 parts by weight of tetrafluoroethylene powder was added and mixed for 1 hour. The agglomerate was sized and then pressure-molded at 8 ton/cr, 4 to produce pellets. Next, 9 including 10 chi KoH
After being immersed in a 00 parts by weight methanol solution for 30 minutes, it was washed with water.

ざらに液温(z 60 ’Cとした20重量%KoH水
溶液に15分間浸漬した。次に0.5係のヒドラジンを
含む500重量部エタノール溶液3分間浸漬後、本溶液
から取り出し、室温で乾燥させ、デシケータ中に保管し
た。
The sample was immersed in a 20 wt% KoH aqueous solution with a liquid temperature of z 60'C for 15 minutes.Next, it was immersed in a 500 parts by weight ethanol solution containing 0.5% hydrazine for 3 minutes, taken out from the solution, and dried at room temperature. and stored in a desiccator.

以−ヒの要領で、添加物の量ヲ変えたベレットも同様に
作製し女。
I made berets with different amounts of additives in the same way as described above.

実施例 酸化カドミウム(CdO)粉末101重量部、酸化テル
ル(TeO2)粉末(3,003% !Itfls及び
酸化タリウム(I[[) (T ih 03)粉末0.
 [] 03重量部を酸化銀(It) (AgO)粉末
95重量部に添加し、さらに四フッ化エチレン粉末5重
量部を加え、1時間混合した。該混合粉全整粒後、8 
tOn/cA で加圧成形し、これを正極缶に載置し1
こ。
Example 101 parts by weight of cadmium oxide (CdO) powder, tellurium oxide (TeO2) powder (3,003%!Itfls) and 0.0 parts by weight of thallium oxide (I[[) (T ih 03) powder].
[ ] 03 parts by weight were added to 95 parts by weight of silver oxide (It) (AgO) powder, and further 5 parts by weight of tetrafluoroethylene powder were added and mixed for 1 hour. After sizing the mixed powder, 8
Pressure molded at tOn/cA and placed it in a positive electrode can.
child.

次に、0,1重量%の酒石酸及び5重二緻チのKoHを
含む500重量部メタノール溶液1時間浸漬後水洗した
。さらに2重量%の過硫酸カリウムを含む10%KoH
水溶液中に15分間浸漬後、十分水洗した。次に、1重
−訃チの酒石酸を含む100重量部KOH水溶液中に2
0分間浸漬した。この還元後40〜50℃で乾燥し、デ
シケータ中に保管した。以上の要領で、添加物の量を変
えたベレットも同様に作製した。
Next, it was immersed for 1 hour in a 500 parts by weight methanol solution containing 0.1% by weight of tartaric acid and 5 times double densities of KoH, and then washed with water. 10% KoH with an additional 2% by weight of potassium persulfate
After being immersed in the aqueous solution for 15 minutes, it was thoroughly washed with water. Next, in a 100 parts by weight KOH aqueous solution containing 1-fold tartaric acid, 2
It was immersed for 0 minutes. After this reduction, it was dried at 40 to 50°C and stored in a desiccator. In the same manner as described above, pellets with different amounts of additives were also produced.

〈実施例9〉 水酸化カドミウム(ca(oH)z)粉末0.1重量部
、水酸化テルル〔Te(OH)6〕粉末0,03重量部
及び水酸化タリウム〔TλOH〕粉末α0粉末α0金 レン粉末4重量部を加え、1時間混合した。該混合粉全
整粒後、8ton/r:rA  で加圧成形し、これを
正極缶に静置した。こ′rLを1%のKOHを含むメタ
ノール溶液に30分間浸漬後、水洗した。さらに、液温
を60℃とした20重搦%KOH水浴液に15分間浸漬
後、水洗した。次に、0.5%のヒドラジンを含む50
0重量部エタノール溶液6分間浸漬後、本溶液から取り
出し、室温で乾燥させ、デシケータ中に保管した。以上
の要領で・添加物の量を変えたベレットも作製した。
<Example 9> Cadmium hydroxide (ca(oH)z) powder 0.1 part by weight, tellurium hydroxide [Te(OH)6] powder 0.03 parts by weight, and thallium hydroxide [TλOH] powder α0 powder α0 gold 4 parts by weight of Ren powder was added and mixed for 1 hour. After the mixed powder was completely sized, it was press-molded at 8 ton/r:rA, and left in a positive electrode can. This 'rL was immersed in a methanol solution containing 1% KOH for 30 minutes and then washed with water. Furthermore, it was immersed in a 20% KOH water bath solution at a temperature of 60° C. for 15 minutes, and then washed with water. Next, 50% containing 0.5% hydrazine
After being immersed in a 0 parts by weight ethanol solution for 6 minutes, it was taken out from the solution, dried at room temperature, and stored in a desiccator. Berets with different amounts of additives were also produced in the above manner.

以上のようにして作製した正極合剤を用いて、前述(2
だ第5図に示す酸化銀(II)電池を組み立てた。
Using the positive electrode mixture prepared as described above,
A silver (II) oxide battery as shown in FIG. 5 was assembled.

電池に、実施例6と同様にTR926Wを組み立てた。TR926W was assembled into a battery in the same manner as in Example 6.

電池製造後、室温下で3ケ月貯蔵し′f?L電池の低温
特性、自己放電率、漏液発生率について調べた。
After manufacturing the battery, store it at room temperature for 3 months'f? The low-temperature characteristics, self-discharge rate, and leakage rate of the L battery were investigated.

第5表にその結果を示す。Table 5 shows the results.

第5表 この第5表から明らかなように、本発明電池■〜■Vま
従来電池に比べて、自己放電率及び漏液発生率が低く、
極めて優れた電池であることが判る。
Table 5 As is clear from Table 5, the self-discharge rate and leakage rate of the batteries of the present invention are lower than those of the conventional batteries.
It turns out that it is an extremely excellent battery.

第8図、第5表より、低温特性を適切な値としながら自
己放1kが小さくなる添加物量に、10〜5000PP
Mの範囲であることがわかる。
From Figure 8 and Table 5, the amount of additives that reduces self-emission 1k while keeping the low-temperature characteristics at an appropriate value is 10 to 5000PP.
It can be seen that the range is M.

第10図は、従来電池と本発明電池の60℃保存後の内
部抵抗の推移を示す。この図からも明らかなように、従
来電池イ(鍵、保存40日で内部抵抗が上昇してぐるが
、本発明電池口の内部抵抗は保存80日でも上昇にほと
んどみられなかった。
FIG. 10 shows the change in internal resistance of the conventional battery and the battery of the present invention after storage at 60°C. As is clear from this figure, the internal resistance of the conventional battery increased after 40 days of storage, but the internal resistance of the battery of the present invention hardly increased even after 80 days of storage.

この理由は、@層16と酸化銀(II)12との絶縁が
完全になされているからである。つまり、本発明の実施
例7〜9においてなされたKOH−メタノール還元後生
成する酸化銀(+)と−都銀が生成するのを酸化処理に
より前記銀を酸化銀(1)に再酸化することにより、銀
と酸化銀(11)の電子的リードを隔離しているから、
銀層12の再酸化に起らないからである。
The reason for this is that the @ layer 16 and the silver (II) oxide 12 are completely insulated. That is, by reoxidizing the silver to silver oxide (1) through oxidation treatment, the silver oxide (+) and -Togin produced after the KOH-methanol reduction performed in Examples 7 to 9 of the present invention are , since it isolates the electronic leads of silver and silver oxide (11),
This is because reoxidation of the silver layer 12 does not occur.

以上詳述したように、本発明電池は、添加物10〜50
0’OPPMを含む酸化銀(It)を弱還元処理後、酸
化処理をすることにより、その後形成する銀層との絶縁
を完全になされることにより、低温特性を良好に保ち、
内部抵抗の増大全防ぎ、さちに保存%性、耐漏液性に優
ねた酸化銀(■)′電池全提供することができる。
As detailed above, the battery of the present invention contains additives of 10 to 50%.
The silver oxide (It) containing 0'OPPM is subjected to a weak reduction treatment and then an oxidation treatment to completely insulate it from the silver layer that will be formed later, thereby maintaining good low-temperature characteristics.
It is possible to provide a silver oxide (■)' battery that completely prevents increase in internal resistance and has excellent storage stability and leakage resistance.

最後に、本発明Ago及び従来Agoを用いた正極表面
に対して、同一還元量によって還元処理を旋’L、7を
場合、本発明に係る正極表面の還元銀層の厚、21. 
f従来Ag0f用いた正極並とすることにより、電池の
低温閉路電圧が改善できることを、以下の実施例にて示
す。
Finally, when the positive electrode surfaces using the Ago of the present invention and the conventional Ago are subjected to reduction treatment with the same amount of reduction, 7, the thickness of the reduced silver layer on the surface of the positive electrode according to the present invention, 21.
The following examples will show that the low-temperature closed circuit voltage of the battery can be improved by using f as the positive electrode using conventional Ag0f.

実施例 本発明Ag○と従来Ago會用いて、TR616SW(
外匝6.81B 、箭さ1,6:簸)の正極ペレットを
作成し、このペレットの表面に還元処理して銀層を形成
した。
Example Using the present invention Ag○ and the conventional Ago meeting, TR616SW (
A positive electrode pellet with an outer casing of 6.81 B and a casing of 1 and 6: elutriation was prepared, and a silver layer was formed on the surface of this pellet by reduction treatment.

本発明AgoはCdO,Te0z、Tj1203が各各
Oa、Te、TRとして06%、0.1%、0.1係添
加されている。
In the Ago of the present invention, CdO, Te0z, and Tj1203 are added as Oa, Te, and TR in amounts of 0.6%, 0.1%, and 0.1%, respectively.

第6表に、本発明Agoと従来Agoについて、正極ペ
レットの銀層厚み(A)、還元処理量(B)及びp−/
 Bを示す。
Table 6 shows the silver layer thickness (A), reduction processing amount (B), and p-/ of the positive electrode pellet for the Ago of the present invention and the conventional Ago.
Indicates B.

第6表 第6表から明らかなように、本Agoは、従来A gO
に比べて大変安定なために、従来Agoに比べて同−還
元処理時における正極表面の銀層が薄くbす、電池の低
温での閉路電圧が従来電池より70〜100roV低く
なると考えられる。
Table 6 As is clear from Table 6, this Ago is different from the conventional Ago
Because it is very stable compared to conventional Ago, the silver layer on the surface of the positive electrode during the reduction treatment is thinner than conventional Ago, and the closed circuit voltage of the battery at low temperature is thought to be 70 to 100 roV lower than that of conventional batteries.

従って、本発明に係る正極表面に4.4μ/ m A 
h以上で、81μ/ynAh位までの銀層を形成すれば
、低温閉路電圧が向上、改暑さね、ることか分る。
Therefore, 4.4 μ/m A on the surface of the positive electrode according to the present invention.
It can be seen that if a silver layer of up to about 81μ/ynAh is formed at a temperature of more than h, the low-temperature closed circuit voltage will improve and the heat will be improved.

また、本笑施例と前述した実姉例6〜9を併用すhば、
さらに改善効果は顕著になる。
In addition, if this example and the sister examples 6 to 9 described above are used together,
The improvement effect becomes even more noticeable.

以上詳述したように、本発明電池は、低温特性を良好に
保ちながら、保存特性及び耐漏液性に優れた過酸化銀電
池全提供することができ、その工業的価値は極めて大な
るものであり、ペース・メーカー、電子腕時計、カメラ
、電車、補聴器などに最適である。
As detailed above, the battery of the present invention can provide a silver peroxide battery that has excellent storage characteristics and leakage resistance while maintaining good low-temperature characteristics, and its industrial value is extremely large. It is ideal for pacemakers, electronic watches, cameras, trains, hearing aids, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガス測j定装置の断面図、第2図は種々な添加
物を添加し7たAgoの02ガス発生量を示す図、箇6
図はcd添加冒及びTe添加量と02ガス発生・計の関
係を示す図、第4図に、本発明A g Oと従来A g
 Oの60℃、40%KOH浸漬日数とAg○含有量の
関係を示す図、第5図は本発明の一実施例を示す電池の
断面図、第6図は、60℃、室温での保存期間と容量減
少率の関係を示すグラフ、第7図(a、) 、 (b)
 、 (c)は、室温保存期間と電圧安定性の関係を示
すグラフ、第8図は添加物の添加11−と02ガス発生
侶゛の関係を示すグラフ、第9図は低温特性の測定回路
図、第10図は、保存期間と内部抵抗の関係を示すグラ
フである。 1・・・目盛付ガラス管部 2・・・40%水酸化カリウム水浴液 J・・・酸化銀(II)粉末   4・・・恒温槽5・
・・40℃の混水  11・・・正極缶12・・・lE
極合剤    13・・・還元i層14・・・セパレー
タ   15・・・電解液含浸材16・・・負極合剤 
   17・・・負極缶18・・・封口ガスケット  
B・・・被測定電池R・・・200Ωの負荷抵抗 811.ユイッチ     ■・・・電圧計重   上 出願人 株式会社 第二精玉舎 代理人 弁理士 最上  務
Figure 1 is a cross-sectional view of the gas measuring device, Figure 2 is a diagram showing the amount of 02 gas produced by Ago with various additives added, and
The figure shows the relationship between the CD addition effect, the Te addition amount, and the 02 gas generation/meter.
Figure 5 is a cross-sectional view of a battery showing an embodiment of the present invention; Figure 6 is a diagram showing the relationship between the number of days immersed in 40% KOH at 60°C and the Ag○ content. Graphs showing the relationship between period and capacity reduction rate, Figure 7 (a,), (b)
, (c) is a graph showing the relationship between room temperature storage period and voltage stability, Figure 8 is a graph showing the relationship between additive addition 11- and 02 gas generation content, and Figure 9 is a measurement circuit for low temperature characteristics. 10 are graphs showing the relationship between storage period and internal resistance. 1...Glass tube part with scale 2...40% potassium hydroxide water bath solution J...Silver (II) oxide powder 4...Thermostatic bath 5.
...Mixed water at 40℃ 11...Positive electrode can 12...lE
Pole mixture 13... Reduction i layer 14... Separator 15... Electrolyte impregnated material 16... Negative electrode mixture
17... Negative electrode can 18... Sealing gasket
B...Battery to be measured R...200Ω load resistance 811. Yuichi ■・・・Voltmeter weight Upper applicant: Daini Seidokusha Co., Ltd. Agent Patent attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】 (1)  カドミウムとテルル、またはこれ等前記二成
分に鉛水銀、タリウム、ゲルマニウム、イツトリウム、
錫、タングステン、ランタン、希土類。 亜鉛、セレン及びアルミニウムから選ばれた少なくとも
1つの成分を含有した酸化銀(n)を主体とする正極合
剤を正極としたことを特徴とする過酸化銀電池。 (2)前記正極合剤の成形体全面に金属を含壕ない酸化
銀(1)層を設けさらに前記酸化銀層(1)上の一部も
しくは全面に銀層を設けたことを特徴とする特許請求の
範囲第1項記載の過酸化銀電池。 (3)該成分を含有した酸化銀(11)を主体とする正
極合剤からなる正極ベレットもしくは正極ユニットの表
面の一部もしくは全面に銀層を設けたことを特徴とする
特許請求の範囲第1項記載の過酸化銀電池。 (4)正極合剤が酸化銀(II)と有機結着剤とからな
ることを特徴とする特許請求の範囲第1項。 第2項もしくは第3項記載の過酸化銀電池。 (5)該成分の合計添加葉が酸化銀(n)に対して10
〜500[IPPM含有することを特徴とする特許請求
の範囲第1項、第2項、第5項、もしくは第4項記載の
過酸化銀電池。 (6)正極ペレットもしくは正極ユニットの表面の一部
もしくは全面に形成された銀層の厚み(A)と正極合剤
中の酸化銀(II)の還元処理量(B)の関係A/B=
4.4〜a1μ/ m A hであることを特徴とする
特許請求の範囲第2項、第6項、第4項、もしくは第5
項記載の過酸化銀電池。 (7)水酸化カリウムを主体とするアルカリ電解液を用
いることを特徴とする特許請求の範囲第1項、第2項、
第3項、第4項、第5項もしくは第6項記載の過酸化銀
電池。 (3)開路電圧が1.62V以下であり、−10℃での
2000定抵抗放電電圧が1.5V以上を5秒間以上維
持できることを特徴とする特許請求の範囲第7項記載の
過酸化銀電池。
[Claims] (1) Cadmium and tellurium, or these two components include lead mercury, thallium, germanium, yttrium,
Tin, tungsten, lanthanum, rare earths. A silver peroxide battery characterized in that the positive electrode is a positive electrode mixture mainly composed of silver oxide (n) containing at least one component selected from zinc, selenium, and aluminum. (2) A metal-free silver oxide (1) layer is provided on the entire surface of the molded body of the positive electrode mixture, and further a silver layer is provided on a part or the entire surface of the silver oxide layer (1). A silver peroxide battery according to claim 1. (3) A silver layer is provided on a part or the entire surface of a positive electrode pellet or positive electrode unit made of a positive electrode mixture mainly composed of silver oxide (11) containing said component. Silver peroxide battery according to item 1. (4) Claim 1, wherein the positive electrode mixture consists of silver (II) oxide and an organic binder. The silver peroxide battery according to item 2 or 3. (5) The total added amount of the ingredients is 10% relative to silver oxide (n).
The silver peroxide battery according to claim 1, 2, 5, or 4, characterized in that the silver peroxide battery contains 500 [IPPM]. (6) Relationship between the thickness (A) of the silver layer formed on a part or the entire surface of the positive electrode pellet or positive electrode unit and the amount of reduction treatment of silver (II) oxide in the positive electrode mixture (B) A/B =
4.4 to a1μ/mA h
The silver peroxide battery described in Section 1. (7) Claims 1 and 2, characterized in that an alkaline electrolyte mainly containing potassium hydroxide is used;
The silver peroxide battery according to item 3, 4, 5, or 6. (3) The silver peroxide according to claim 7, wherein the open circuit voltage is 1.62 V or less, and the 2000 constant resistance discharge voltage at -10°C can be maintained at 1.5 V or more for 5 seconds or more. battery.
JP58007932A 1983-01-20 1983-01-20 Silver peroxide battery Pending JPS59132567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007932A JPS59132567A (en) 1983-01-20 1983-01-20 Silver peroxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007932A JPS59132567A (en) 1983-01-20 1983-01-20 Silver peroxide battery

Publications (1)

Publication Number Publication Date
JPS59132567A true JPS59132567A (en) 1984-07-30

Family

ID=11679287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007932A Pending JPS59132567A (en) 1983-01-20 1983-01-20 Silver peroxide battery

Country Status (1)

Country Link
JP (1) JPS59132567A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224063A (en) * 1983-06-02 1984-12-15 Seiko Electronic Components Ltd Silver peroxide cell
JP2012522336A (en) * 2009-03-27 2012-09-20 ゼットパワー, エルエルシー Improved cathode
US8936775B2 (en) 2008-10-29 2015-01-20 Zpower, Llc Cathode active material (higher oxides of silver)
US9184440B2 (en) 2010-11-03 2015-11-10 Zpower, Llc Electrodes and rechargeable batteries
US9184444B2 (en) 2009-11-03 2015-11-10 Zpower, Llc Electrodes and rechargeable batteries
US9799886B2 (en) 2012-09-27 2017-10-24 Zpower, Llc Cathode with silver material and silicate dopant and method of producing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136770A (en) * 1981-01-26 1982-08-23 Seiko Instr & Electronics Ltd Silver peroxide cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136770A (en) * 1981-01-26 1982-08-23 Seiko Instr & Electronics Ltd Silver peroxide cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224063A (en) * 1983-06-02 1984-12-15 Seiko Electronic Components Ltd Silver peroxide cell
US8936775B2 (en) 2008-10-29 2015-01-20 Zpower, Llc Cathode active material (higher oxides of silver)
JP2012522336A (en) * 2009-03-27 2012-09-20 ゼットパワー, エルエルシー Improved cathode
US9209454B2 (en) 2009-03-27 2015-12-08 Zpower, Llc Cathode
EP2411563B1 (en) * 2009-03-27 2018-02-07 ZPower, LLC Improved cathode
US9184444B2 (en) 2009-11-03 2015-11-10 Zpower, Llc Electrodes and rechargeable batteries
US9184440B2 (en) 2010-11-03 2015-11-10 Zpower, Llc Electrodes and rechargeable batteries
US9799886B2 (en) 2012-09-27 2017-10-24 Zpower, Llc Cathode with silver material and silicate dopant and method of producing

Similar Documents

Publication Publication Date Title
US4209574A (en) Long-life alkaline primary cell having low water content
US4078127A (en) Additive for an alkaline battery employing divalent silver oxide positive active material
NO148393B (en) ALKALIC PRIMARY ELEMENT WITH STABLE DOUBLE SOX FOX DEPOLARIZER MIXTURE.
US5034291A (en) Aluminum compound additives to reduce zinc corrosion in anodes of electrochemical cells
US4520087A (en) Divalent silver oxide cell including cadmium and tellunium
US4397925A (en) Alkaline battery with reducing agents in the electrolyte
JPS59132567A (en) Silver peroxide battery
US4056664A (en) Electrochemical cell having an AgO electrode discharging at an Ag2 O voltage level
JP2003151569A (en) Alkaline zinc primary battery and alkaline zinc secondary battery
JP6734155B2 (en) Alkaline battery
US4250234A (en) Divalent silver oxide cell
JP2002298862A (en) Aluminum battery
JPH028418B2 (en)
JPS59224063A (en) Silver peroxide cell
JP3505824B2 (en) Flat alkaline battery
JPS6158163A (en) Alkaline zinc battery
JPS5842171A (en) Silver peroxide cell
JP2003142087A (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPS5894761A (en) Silver peroxide cell
GB2119160A (en) Divalent silver oxide cell
JPH0750612B2 (en) Zinc alkaline battery
KR810000418Y1 (en) High drain rate, primary alkaline cell having a divalent silver oxide/monovalent silver oxide depolarizer blend coated with a layer of silver
JPS58111258A (en) Silver peroxide battery
JPS5894757A (en) Silver peroxide cell
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same