JPS6271168A - Nickel positive plate of alkali storage battery and its manufacture - Google Patents

Nickel positive plate of alkali storage battery and its manufacture

Info

Publication number
JPS6271168A
JPS6271168A JP60213182A JP21318285A JPS6271168A JP S6271168 A JPS6271168 A JP S6271168A JP 60213182 A JP60213182 A JP 60213182A JP 21318285 A JP21318285 A JP 21318285A JP S6271168 A JPS6271168 A JP S6271168A
Authority
JP
Japan
Prior art keywords
layer
nickel
hydroxide
cobalt
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60213182A
Other languages
Japanese (ja)
Other versions
JPH0677452B2 (en
Inventor
Masayuki Yoshimura
公志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60213182A priority Critical patent/JPH0677452B2/en
Publication of JPS6271168A publication Critical patent/JPS6271168A/en
Publication of JPH0677452B2 publication Critical patent/JPH0677452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve discharge characteristics of an alkali storage battery by making an active material is 3-layer structure where a layer made mainly from cobalt hydroxide and the like is sandwiched between two layers which are made mainly from nickel hydroxide. CONSTITUTION:On a porous metal substrate, first layer made mainly from nickel hydroxide is formed on which second layer made mainly from cobalt hydroxide or made by chemically oxiding the cobalt hydroxide layer into a layer made mainly from cobalt oxide is formed. Third layer made mainly from nickel hydroxide is formed on the second layer to make a positive plate. Namely, a layer made mainly from cobalt hydroxide or cobalt oxide is sandwiched between two layers made mainly from nickel hydroxide. By this configuration, active material utilization rate and discharge voltage characteristics can be improved even when the active material is packed at high density.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、水酸化ニッケルを主成分とJる2つの層の間
にサンドイッチ構);5的に水酸化コバルトあるいはコ
バルト酸(ヒ物を=し成分とする層を形成したアルカリ
蓄電池用ニッケル正極板、あるいはさらに前記構造のl
E極活物質の表面にも水酸化コバル1〜あるいはコバル
ト酸化物を主成分とする層を形成したアルカリ蓄電池用
ニッケル正極板に関する乙のである。 従来の技術・発明が解決しようとする問題点従来、アル
カリ蓄電池に用いられるニッケル正極板は、カーボニル
ニッケル扮木を還元雰囲気下で焼結した多孔性焼結ニッ
ケル基板中にニッケル塩を主成分とJる酸性溶液を含浸
し、濃縮1!2、熱アルカリ溶液に浸漬してニッケル基
板の孔中に水酸化ニッケルを主成分と16正(1翫活物
質を充填J゛るという方法によって作製されている。最
近ではアルカリ蓄電池を用いる機器の小型化などが進み
、市場の要求としてはπ電池の単(Q体積当りの容品密
度の増加を望む声が強まっているが、従来のニッケル正
極板ではこのような市場の要求を満たすことが出来なか
った。また焼結式14 )Jiliの11!I rは、
スポンジ状ニッケルに水酸化ニッケルを°主成分とげる
正極活物質層宋を物理的に充填する発泡式二ックル正極
板があるが、この場合、活物質粉末の充填量を多くした
状態では活物′i31+4用率が低下して、実質的な容
猶密度は11I]情するに1と増加が見られず、また放
電時の電位特性が低下するといった問題がある。 ニッケル正極板の容量を高める方法どしては、正極活物
質量を増加することと活物質利用率を高めることの2つ
が考えられるが、焼結式11へ板の場合、正極活物質の
増加については従来の極板では寸でに限Wに近く、さら
に増加させた場合、容はは若干増加するものの放電時の
電位特性が低下することになり適切とは言えない。一方
、活物質利用率を高める方法としては、一般に酸性のニ
ッケル塩の含浸液にコバルト・塩を数%添加し、含浸工
程後の活物質中に水酸化コバルトを均一に分散すること
が行なわれている。この方法によると、活物質の利用率
たりてなく、高温特性も向上するが、利用率向上の効果
自体はそれほど大きくなく、ニッケル正極板の高容愚化
には不充分であった。 最近、ニッケル正極板の性能を向上させる方法として、
主に3つの公知rl術が提案さセしている。 公知技術1としては例えば特開昭51〜121743弓
、特開昭51−12174453があり、これらの技術
は水酸化ニッケルを保11シた(船4反をpH3,5〜
6.0の硫酸コバルトあるいはpl]4,0− G、8
の酢酸コバルト合浸液に侵潰し、該コバルト塩を水酸化
コバルi−に変化さVろことににす、14仮容h1が増
加するというものである。 公知技術2どじては例えばL’1間昭59−16375
3翼があり、この技術は水酸化ニッリルを保持した極板
を硝酸コバルトを合むlll’l l’i? J:a水
溶液に侵イhし、次いでアルカリ処理をtrhい、水酸
化コバルト化合物の層を0.5〜5 wt%活物活物質
人形成さけるという公知技術1ど類似の操作及び効果を
持つものである。 これらの技術は活物質の構造がマクロ的に2層構造であ
って、水酸化コバルトの層が水酸化ニッケルの外側に形
成されているものである。 公知技術3としては例えば特公昭57−5018号があ
り、この技術はコバルトを主成分とすろ含浸液を1回以
上用いて正極板を作製することにより、未化成つまりプ
リチャージを行なっていないカドミウム負極板を相手極
として電池を組み立てた場合に、正極のコバルトはほと
んどが充電出来るにもかかわらず、放電においてはその
うち20〜25%程度しか出来ないため、その放電でき
ないコバルトの容量が負極をプリチャージしたのと同様
の作用をするものである。しかしその内容はコバルト1
nを主成分と1」る含浸液を用いる時l!!1や含浸す
るコバルト化合物の最適な量については明記されていな
い。つまり、コバルト塩を主成分と・Jる含浸液を用い
るのが最初でも最後でも良く、」:た二]バルト化合物
の含0出についても活物質利用率が低下してしまうよう
な吊の多い範囲< 19 iホ)でも良いことになる。 上記したような従来の公知技術1.2および3による正
極板は従来の活物質中に水酸化コバルトを均一に分散さ
せた正極板に比べ、詰物!1利用率は向上する。しかし
、この効果は多孔性金属u板への活物質充1ft密度及
び放電レートがそれほど高くない場合に右ソ1であるが
、活物質充填密度の高い場合においては、この効果はI
L減し、特に高率放電ではその効果がほどんど認められ
なくなるという欠点があった。 本発明は、上記したような公知技術1.2および3の提
案に関1ftづるものであるが、全く?Ii シい事実
を実験によって児い出し、上記したJ、うな公7Jl技
術の欠点を克服したもので、?1に活物71充填密!朝
の、nい状態にJjい
Industrial Application Field The present invention has a sandwich structure between two layers containing nickel hydroxide as the main component; A nickel positive electrode plate for alkaline storage batteries, or even a nickel positive electrode plate of the above structure.
The present invention relates to a nickel positive electrode plate for an alkaline storage battery in which a layer mainly composed of cobalt hydroxide or cobalt oxide is also formed on the surface of the E electrode active material. Problems to be Solved by Conventional Technologies and Inventions Conventionally, nickel positive electrode plates used in alkaline storage batteries are made by sintering carbonyl nickel wood in a porous sintered nickel substrate in a reducing atmosphere, with nickel salt as the main component. It was fabricated by the method of impregnating the nickel substrate with an acidic solution, concentrating 1 to 2 times, and immersing it in a hot alkaline solution to fill the pores of the nickel substrate with nickel hydroxide as the main component and 16 positive active material. Recently, devices using alkaline storage batteries have become smaller, and there is a growing demand for an increase in the packaging density per unit volume of π batteries, but the conventional nickel positive electrode plate In addition, the sintering type 14) Jili's 11!I r was not able to meet such market demands.
There is a foamed nickel positive electrode plate in which sponge-like nickel is physically filled with a positive electrode active material layer containing nickel hydroxide as the main component, but in this case, when the amount of active material powder is increased, the active material There is a problem that the i31+4 usage rate decreases, and the actual capacity density is 11I], so no increase is observed, and the potential characteristics during discharge deteriorate. There are two possible ways to increase the capacity of a nickel positive electrode plate: increasing the amount of positive electrode active material and increasing the active material utilization rate. In the conventional electrode plate, the dimension is close to the limit W, and if it is increased further, the capacity will increase slightly, but the potential characteristics during discharge will deteriorate, which is not appropriate. On the other hand, as a method to increase the active material utilization rate, a few percent of cobalt salt is generally added to the acidic nickel salt impregnation solution, and cobalt hydroxide is uniformly dispersed in the active material after the impregnation process. ing. According to this method, the utilization rate of the active material is not high, and although the high-temperature characteristics are improved, the effect of improving the utilization rate itself is not so large, and it is insufficient for increasing the volume and deterioration of the nickel positive electrode plate. Recently, as a way to improve the performance of nickel positive electrode plates,
Mainly, three known RL techniques have been proposed. Examples of known technology 1 include JP-A-51-121743 and JP-A-51-12174453.
6.0 cobalt sulfate or pl]4,0-G,8
When the cobalt acetate solution is eroded and the cobalt salt is converted to cobalt hydroxide, the temporary volume h1 increases by 14. Known technology 2, for example, L'1 period 16375/1986
There are three wings, and this technology combines a plate holding nilyl hydroxide with cobalt nitrate. J: It has operations and effects similar to those of the known technique 1 of infiltrating into an aqueous solution and then subjecting it to alkali treatment to form a layer of cobalt hydroxide compound of 0.5 to 5 wt% active material. It is something. In these technologies, the structure of the active material is macroscopically a two-layer structure, and a layer of cobalt hydroxide is formed on the outside of nickel hydroxide. As a known technique 3, for example, there is Japanese Patent Publication No. 57-5018, and this technique uses cobalt as the main component and a filter impregnating liquid at least once to produce a positive electrode plate, thereby producing unformed cadmium that has not been precharged. When a battery is assembled using the negative electrode plate as the other electrode, although most of the cobalt in the positive electrode can be charged, only about 20 to 25% of it can be discharged, so the capacity of the cobalt that cannot be discharged is larger than the negative electrode. It has the same effect as charging. However, the content is cobalt 1
When using an impregnating liquid with n as the main component, l! ! 1 and the optimum amount of cobalt compound to be impregnated is not specified. In other words, an impregnating solution containing cobalt salt as the main component can be used either first or last, and there are many problems with impregnation and extraction of balt compounds that reduce the active material utilization rate. Even if the range < 19 i), it would be good. The positive electrode plates according to conventional known techniques 1, 2 and 3 as described above are more likely to have fillers than conventional positive electrode plates in which cobalt hydroxide is uniformly dispersed in the active material. 1 Utilization rate will improve. However, this effect is significant when the active material filling density in the porous metal U plate is not so high and the discharge rate is not so high, but when the active material filling density is high, this effect is I
There was a drawback in that the effect of L reduction was hardly recognized, especially at high rate discharge. The present invention is based on the proposals of the above-mentioned known techniques 1, 2 and 3, but is it at all? Ii This fact was discovered through experiments and overcame the shortcomings of the above-mentioned technology. Packed with 71 living things in 1! I'm in a bad mood in the morning

【、し51カ?!1刊用率J3よ
びIr1市電位特性が署しく向上する正(Φ扱を提供す
るものである。即し、本発明は水酸化コバルト・の形成
状態を詳細に調べた結末、水酸化コバルト−を主成分と
する層を公知技術1.2のように水11り化ニッリルの
外側に形成させるようi!12層構造で(、!なく、水
酸化ニッケルを主成分とづる2つのTりの間に水酸化コ
バルトを主成分とする層い、その水酸化=]コバルト酸
化せしめてコバル1〜醒化物を↑成ブ)とする層を形成
uしめたサンドイツニー構造をご3層以上形成さVるこ
とにより、従来の製法でtまjiiられなかった活物質
充l11密1縫の高い状態で活物t1刊川エぐどhり電
電立性性及び各々のhり電し−ト依cj性の良好なニッ
ケル正極板を1りることができることを見い出したこと
にjtづくらのである。ざらに本発明で(4活物質の構
造の池、用いる多孔性仝腐り板の状態にも検討を加えた
結果、そのLl板表面に不働態皮膜を形成させると活物
質充填密度の高い状態において活物質利用率及び放電電
位1h性また各々の放電シー1−依存性がさらに一層良
好に4することも見い出したしのC・ある。 問題点を解決するための手段 即ら、本発明は多孔性金属桔板上に第1層目としてまず
水酸化ニッケルを主成分とする層を形成し、次にぞの上
に第2層目として水酸化コバルトを主成分とする層か、
あるいtまその水酸化コバル[・をL成分とするhづを
化学的すしくは電気化シ3(・的に酸化してコバルト酸
化物を主成分とするFMとなし、さらにその上に第3層
目として水酸化ニッケルを主成分とする層を形成した正
圃根、つまり水酸化ニッケルを主成分とする2つの層の
間にリンドイッヂW4造的に水酸化コバルトもしくはコ
バルト酸化1111 ’c +成分とJる層を形成する
ことによって、従来では1′7ることができなかった、
活物質充填密度の高い状態でも詰物71刊用室、放電電
位特性及び各々の放電レー1へ依n’r’Iが良好なニ
ッケル正極板を1ilることかでさるようにしたもので
ある。 さらに前記のリンドイッヂ構造の正極板の表面に第4層
目として水酸化コバルトを主成分とする層を形成するこ
とによって、活物質利用率をさらに数%高めることがで
さ゛るようにしたものである。 この場合、1CΔの放電電流での粘物質利用率はI:L
ぼ100%に近い1「1になる。また用いる多孔代金r
tA基板の表面に金属酸化物の不働態皮膜を形成するこ
とによって、活物′t1利用率及び放電電位特性のtI
l電レーし依存性をさらに小さくすることができる。 実施例 本発明に閏する実験及び実施例を以下に示す。 実験1 &l’llニッケルを主成分と16含浸液を用いて化学
合浸法の操作を数回繰り返して焼結式ニッケル塁仮中に
第1 F+’i 1.1の水酸(ヒニツクルを主成分と
する層を形成した。次に種々の濃度の硝酸コバル1〜溶
液を用いて1ヒ学会?2γムの操作を1回行なって第2
層目の水酸化コバルト中独の層を形成しIζ19、この
水^iイヒ:〕バルトを電気1ヒ学的に酸化しCオヤシ
水酸化コバルトMのコバルミ−酸化物の層を形成した。 さらにその上に第1居目と同様の方法で第3層目の水酸
化ニッケルを主成分とづる層を形成した。このようにし
て作製したニッケル11〜1反(極板iY△とする)の
活物質利用Fを比弔1.250(20℃>KO11溶液
中で測定した。なお、一部のく門度の硝酸コバルト含浸
液については、第2層目の水酸化コバルト単独の層を形
成した後、この水酸化コバルト・を電気化学的に酸化す
ること<r <、第3層11の水酸化ニッケルをニし成
分とする層を形成した極板(極板8Y、 Bとする)ら
作製し、同様の方法でれrll物子1刊用率測定した。 第1図に活物質として充填した水酸化ニッケル量に対す
る第2v40のコバルト化合物の割合と活物質利用率の
ill係を示す。極板の理論容量は3没した水酸化ニッ
ケルと水酸化コバルトの量を23型とし、各々が1電子
反応に従・うちのとして算出した。ニッケル焼結基板と
してはカーボニルニッケルT’t)末と水及び糊料を混
練してニッケルスラリーとイfし、該ニッケルスラリー
を鉄にニッケルメツ1した金属板に塗t5後、還元雰囲
気下において900°Cでニッケルを焼結したものを用
いた。第1図において、第2居口の水酸化コバルト8電
気化学的に酸化した極板群Δの場合、コバルト酸化物の
呈が0.6〜io、o’t−ル%の範囲で活物質利用率
が高くなっている。これはニッケルに比べてニー1バル
トの水酸化物とAヤシ水酸化物笠のコバルト酸化物どの
可逆電1ひがす?であり、充放電の電位14性からli
f定して、充電■、1は水酸化ニッケルJ、り先に水酸
化=】バルトがオ↑シ水酸化コバルト等のコバル1へ酸
1ヒ物に充電され、放電時は逆にAキシ水酸化ニッケル
の放電が先行りること、また41シ水酸化:1バルト笠
のコバルト酸化物は導電性が良OTであるなどのこと/
)+ 15、第2層目のコバルト単独の層が集電体的な
効宋を15つことによって活物質f・1」周率が高くな
ったものと考えられるが、コバルト(ヒ合物の市が多く
なった場合に逆に活物質利用率が低下している原因につ
いては不明である。一方、第2層目の水酸化コバルト単
独の居を電気化学的に酸化しなかった横板RY8の場合
には、活物質11J用率はほとんど高くなっておらず、
先の極板群Aの場合の結果とは相当5?なっている。こ
の理由としては第3層目の水酸化ニッケルを主成分とす
る層の形成において、硝酸ニッケルの溶液を含浸した[
1.’iに、第2層目の水酸化]バルト甲独の唐が溶解
し、続く中和工程で水酸化ニッケル中に水酸化コバルト
が分数するために集電体的な効果が減少し、その結果、
活物質利用率が高くならなかったものと思われる。この
ことからコバルト化合物単独の層を形成す゛る場合、そ
の前後の水酸化ニッケルを主成分とする層と出来るだI
j混じり合わないようにすることが必要であると考えら
れるので、化学含浸法によって正極板を作製する場合に
は、第2層目の水酸化コバルト単独の居を形成したIL
Im化して含?2 xhに溶解し難いコバルト酸1ヒ物
に変化させることが必要である。しかし1し学含?2ご
人1ス外のh−〃、で活1勿質を充填する場合には、例
えば発泡式極板のJ、うに物理的に活物質を充II 1
Jろ場合はこの限りで【ユなく、水酸化コバル[〜を酸
化しなくてt)活物?1の充j眞密度が高い状態で、詰
物′tLJ刊用:t、jが高いことを確:h2シている
。 なJ3、本実験では水酸jヒTlパル)−を酸化1ろの
を電気化学的に行なったが、これ以外の方法としては過
酸化水素水、次亜」n木酸ソーグ、過■lA酸カリウム
などの酸化剤を用いた場合や空気雰囲気下の熱処理によ
って酸化さけた鳴合し同様の結果が1!′7られた。 実験2 実験1で作製した極板CYΔの中で活物質利用率の向上
が見られる試料のうちから、第2層目のコバルト化合物
の吊が最も少ないO,61ニル%の試料と最も多い10
,0モル%の試料を用い、化学含浸法の操作を1回行な
ってさらに第4層目に水酸化コバルト単独の層を形成し
た正極板(極板群C1およびC2とする)を作製し、実
験1ど同様にして活物?1利用率を測定した。第2図に
活物質として充填した水酸化ニッケル分に対する第1I
ffl目の水酸化コバルトの割合と活物質利用率の関係
を承り。 第2図かられかるように、第2層目のコバルト化合物の
量が0.6シル%の極板群C1の場合、第4層目の水酸
化コバルト・出が0.8〜7.0モル%の範囲で活物r
1利用亭が高り、11ぼ100%になっている。一方、
第2層目のコバルト化合物の吊が10.Otル%の極板
群C2の場合、利用率が100%近くになっているの(
ユ、第4層目の水酸化コバルト・帛が0.4〜6.0モ
ル%の範囲である。前記の実験1と今回の実験20結末
からコバルト含有Mの最適値を求めると、活物質どして
充填された水酸化ニッケルへ1に対づる第2層目のコバ
ルト化合物の含有量はO,G〜10 、 Ot−ル%、
第4層目のコバルト化合物の含有量は0.4〜7.0モ
ル%の範囲で活物質利用率の高い正極板が(りられる。 実験3 本実験では、前記実験1.2で32明した本発明品と公
知技術でj示べた従来品の活物質利用率に及ぼす活物1
1充填密度の影響について調べた。 本発明による正極板としては、実験1で作製した極板群
A(3膚I^i)告)の内、第2層目のコバルト化合物
の吊が活物71として充填した水酸化ニラグル量に対し
3Tiル96である正ル(反(試r1Δ′とする)と、
実験2で作製した試料C1,C2と同様の4層構造であ
り、第2層目の−fバルト化合物の1−が活物質として
充11iシた水酸化ニッノノル量に対し3〔ル+36 
’(あり、第4層目の水酸化コバルトの品が同じく2モ
ル%であるiE fり仮(試料C′とするンを用いた。 また従来品どしては焼結M根土に水酸化ニッケルのi!
11111質層を形成した後、イの大面に水酸化コバル
トの居を形成した正(4k(反〈試r’l Dとする)
を用いた。大面の水酸化コバルj−の吊(」水酸化ニッ
ケル噴に対し3Tニル%にイcるJ、うに調整した。 第3図は前記各試ti汚仮の活物質充填密度と活物質利
用率とのl!I係を示したものである。なお、横軸の詰
物質充填密1哀は含浸した水酸化ニツケルと水酸化コバ
ルトが各々1電f反応に従うしのとしての出した。 第3図から明らかなJ、うに公知伎術をIt Bこして
作製した試料りは活物質充)眞密度の増大にともなって
活物質利用゛(lI7)低下が認められるのに対し、本
発明による試料A及びC′cは活物質利用率の低下がほ
とんど無く、従来品よりもIE t〜仮の、Q ′gm
化に適していることがわかる。これは本発明品にJノけ
る活物質の導電性が従来品J:りも良好で且つ均一であ
ることによるしのと考えられる。 実験4 実験1〜3でtよ第2層目及び第4層目のコバルト化合
物干独の層を形成するために硝酸コバルト甲独のaQ液
を用いたが、本実験ではこの含浸液がVIrI酸コバル
トと硝酸ニッケルの混合物である場合について前記(セ
へ詳Δと類似の構造を1,1つ1重版の活物質利用率を
8+11定し、第2層目及び第11層目として最低限必
要なコバルト化合物の含有率について求めた。試料極板
としては活物質として充1眞した水酸化ニラクル量に対
する第2層目のコバルト化合物のaを4モル%として極
板(極板群[とする)を化学含浸法lこよ・)で作製し
た。第2層目の活物質組成ど活物質利用率の関係を第4
図に示づ。′;54図からりかるように、活物質利用率
は活物t1組成によって影響を受(プており、活物質組
成がコバル]・化合物100−Uニル%の時に活物質利
用率は最ら高く、コバルト化合物の含(i率が低下する
に従い活物71利川率も低くなっている。そして活物t
′1組成がコバルト化合物70モル%の付近で活物11
刊用率の低下が大きく、それ以下の含有率では第2層目
のコバルト化合物をL成分とする層を形成した効果がほ
とんど無い状態になっている。このことから活物質組成
としては少なくとも70モル%以上のコバルト化合物を
含何し、出来れば100モル%の組成であることが望J
ニジい。 実験5 本実験では含浸工程におけるニッケル焼Fl!i体の活
物質化の影響について検討するために2種類のニッケル
焼結基板を用意し、それに同一の含浸液を用い、同一の
方法で活物質を充填した極板の性能を調べた。用いたニ
ッケル焼結草根の1つけ実験1〜4で用いたのと同じで
ある、ニッケルスラリーを金属性の集電体に塗布した1
す、還元雰囲気下900℃で焼結した物(基板1とする
)と、らう1つは還元雰囲気下q o o ’cで水蒸
気を添加しながら焼結した(す、空気雰囲気下200℃
で熱氾1!1!を行へい、ニッケル焼結体の表面にニッ
ケル酸化物の不働態皮膜を形成した物(基板2とする)
である。 この2つのニラクル焼結基板を用い、実験1の極tf2
 f!¥△(3層崩潰)と同様にして第2層目の=1パ
ル1−化合物の吊を4しル%とした正極板を作製し、i
Il物71利川率及び放電中間電位の放電レート依(I
性を−調べた結末が各々第5図と第6図である。なJ5
、ニッケル焼結体の表面にニッケル酸化物の不働態皮膜
を形成していむいl、(扱1を用いた極板をA1、ニッ
ケル酸化物を形成したFA h 2 k用いた極板をA
2とする。第5図の活物質利用率の比較ではA1とA2
の差は0.2CAの低ヰ″放電にJ3いてはけとlυど
無いが、3CA、10C△のような高率放電になるに従
いその差は拡大している。これは第6図の放電中間電位
も同様の傾向であり、ニッケル焼結体表面にニッケル酸
化1力の不Kh態皮膜を形成した!〜板A2はそうでな
いA1に比べ、tt来考えられていtこニッケル焼結体
の活物質化による極板強度の低下防止の油に、放電レー
ト依存性が小さく、;’:’bl率放電での活物M’l
刊用率周率放電電位特性の低下が少ないという♀7iた
な効果が見い出された。これはニッケル焼結体の表面に
不fll ru:皮膜を形成しない試料Δ1の場合、酸
性の含浸液に腐蝕されてニッケル鎖が細くなり導電性が
低下することや、ニッケル焼結体の及面積が減少して活
物質どの接触面積が減少することなどtこよって、1)
に高率放電はど性能低下が人Δく現われているためであ
るとtえられる。このようなニッケル焼結体の活物質化
は化学8漫の工程中だけでな・(、正極板の充電におけ
る門な電位でも起こることが知られており、電池の実使
用にJ3けるニッケル焼結体の活物質化によって、Ij
!仮性能が変化し、電池性能が徐々に低下することが予
想される。これに対し、不働態皮膜を形成した試わ1△
2でtit、酸性の含浸液によるニッケル焼結体の腐蝕
及びnh記の正極板の充電による二ン9ル焼f1′4体
の八へ1力?7化が起こらないため、本来の良好む極板
性能が持続して(11られる。つまり、本発明のりンド
?ツブ構;告が本来持つ21+甲を安定して(!するた
めには、ニッケル焼結体の表面にニッケル酸1ヒ1勿の
不匝力態皮膜を形成して、活物質の含浸工程及び正極板
の充電によるニッケル焼結体の活1カ11(ヒを防ぐこ
とが効果的である。 以上5つの実験のt、′、宋8草に、木R,明にJ、る
正極板と従来品を実施191によ−)で比較する4、多
花性3屈1.!仮として実験4で用いた焼れ′、早仮1
及び2の2腫類(多孔度85%)とフ4−ム状ニッケル
多孔体く多孔度95%)の訓3秤類を・Ill 、”、
 した。 実施例1(本発明品) 焼f古阜板1に5.0’E/し2′父の(lr1酸ニッ
ノノル水ン容液を含浸させ、淵縮(な、熱アルカリ℃中
和してニッケル焼結体の孔中に水酸Iヒニッケルを充填
するどい)通常の化学含浸法の工程を3回行なって第1
層目の水酸化ニッケルの層を形成し、次に 1.4[ル
ア・′えの硝酸コバルト水溶液を用いて化学含浸法の工
程を1回(7ない、第またVllの水酸(ヒー)バルト
甲独のトンクを形成し/、:t!2、比重 1,250
 (20℃)K011水(′8液中で、通゛1uシて水
酸化−」バルトを醇化した。この1り板/!:洗浄及び
乾燥した復、第1層[]の形成と同様にして、fL ’
;’°含浸法の]−程を5回17なって、第3層目の水
酸化ニッケル層を形成して正(〜1反どした。こl’L
を試才;1Fと寸イ)。 実施例2(本発明品) 焼結J、1(反2を用いた以外は仝(実施(i]1ど同
様にして正極板とした1、これを試tl Gとする1゜
実施例3(本発明品) 実施例1でff’FJ L t、:試1″1Fを塁にし
、ざらに2.2しル/之のl、rl l!fコバル1〜
水Fil H々を用いて化学含浸法の工程を1回11な
い、第1I層目の水酸化T]バルト11独の層を形成し
て正(組板とした3、これを試rFl11とする。 実施例4(本発明品) 実施例2で作製した′J、料0全04■、実施1311
3と同様の方法で第4層目の水酸化コバル1〜甲別1の
層を形成して正(組板とした。これを試t!l Iとす
る。 実施例5(従来品) 焼結基板1に5.0シルア/2の硝酸ニッケル水溶液を
用いて化学含浸法の工程を8回(1ない、ニッケル焼結
填(反に水酸化ニッケルを充填し、次に 2.6′fニ
ル、/λの硝酸コバルト水溶液を用い、化顎含侵法の工
程を1回(jムっで表面に水酸化−1パル1−111独
の層へ形成して正極板とした。これを試ねJとする。 実施例O(従来品) 焼結工□(板1に(4,7モル硝酸ニッケル+−O,3
CルIIrI酸コハル1〜)7/見の水溶液を用いて化
学n8法の工程を8回(7ない、ニッケル焼結j;尤+
灰に水酸化ニッケルと水酸化コバルトの浪合物を充1眞
しで正極板とした。これを試n Kとする、。 実施1?j 7 (本発明品) 水酸化ニッケルを分末86部、カーボニルニッケルわ:
1未10部、金属コバルトf5)末4部ノ〕日らなる2
00メツシユパスのilN Qn末に水とメヂル廿ル[
1−スを加えて活物質ベース1〜としたしのを、多孔1
σつ5 +、1/。 の)4−ム状ニッケル多孔体に現定帛の約5Q 9(、
の1hだり物理的に充ll黙シ、第1)14目の水酸化
ニッケルを主成分とする層4形成した。次に L4[ル
アえのUn酸]パル1−水溶液を用い−(化学含浸の′
X稈を1回行ない、第2層目の水酸化]パル1−1i独
の居を形成したiな、第1層「1の形成と同様にして残
りの活物質ペーストをヂd項し、第3層1コの水門化ニ
ツノノルを主成分と町する層り形成しlこ。さらに1り
工程として、±3己(り1反(こフッl? 〕’ rス
パージIIンを含浸さVtこ1殺、9乞燥どプレスを(
jむい1丁1〜(反どした。これを試料りとヂる。 実
f商(り18(従来品)フ4−ム伏ニッノノル多I′L
!、+1に実施1ケ17て用いたのと1同じ活物質ベー
ス1−含fi1帛充填したIど(Jで水酸(ヒ丁1パル
l〜の層4形J戊しないて正円(すλどじIこ3゜これ
を試料Mどケる。 実施例9(従来品) 実施例8で作製した試料M4九にし、さらに2、Cモル
フ′見の硝酸コバルト水溶液を用いC化゛γ・含浸の工
程を1回行なつC活1カフ1人而に水酸化面]パル1〜
!P独の層を形成し、IF極根とした。これを試を二1
Nとする。 以上のJ、うにして+’r装した試t1 r−Nの理論
゛合間を表1に、活物質組成を表2に示す。なJj、理
論’f¥聞は水酸化ニッケル及び水酸化コバルトが1電
工反応に従うものとして算出した。 次に6試71を40x 40 (mn+ )の寸法に切
断し、過剰の比・n 1.250 (20℃)KO!1
水溶液中で同寸法の焼結式カドミウム負(シ仮2枚を対
置として用いて充放電をt’+ない、活物質利用12と
放電電位1)性の放電レート依存性を調べL=oなJj
、1リイクル目の化成充電は0.1C△の11流で理論
容量の100%、2リイクルロ以後は0.2CΔの電流
で120%まで行ない、放電は仝て酸1ヒ水銀電極り準
O■までとした。第7[4は焼結基板3用い化2:5含
浸法ににつて活物質を充1iシた試f’l F〜にの活
物質利用率の放電レート依(j性を調べた結末で、利用
;rの高い物から[:= If > G > Fン−J
>Kの順になっており、2つの水酸化ニッケルの層の間
に水酸化コバルトを酸化した層を形成し、サンドイッチ
構造とした本発明品1.11. G、 I”よ従来品J
、1りに比べ、利用率が明らかに向上している。また3
CΔ、 10C△といった?3率放電においては、本発
明品と従来品の差はさらに拡大している。この1頃向は
放電電位特性について調べた第8図でbIi″il様で
ある。また活vAYffを41Fl構造にした試料1.
Itは3層構造の試わ1[、Gに比べ、活物質利用率の
向上が見られ、ニッケル焼結体の表面にニッケル酸化物
の不働態皮膜を形成した試料1.Gはそうでない試料「
、)1に比べ、主に放電電1存特性の向上が認められる
。なお、第8図にJjいて試FI Kの電1ηが0.2
C△の低T−放電でも低いのは、活物質中に分散しでい
ろ水酸化]パルI・の含イi聞が他の諸室゛1に比べ多
いことが原因と考えられる。 またフオーム状ニッケル多孔体に詰物71を1勿即的に
充填した試料L〜Nの性能を示したのが、第9図及び第
10図で、前記の焼結弐重根の性能を示した第7図及び
第8図と同様の傾向を示しでJjす、本発明品て−ある
試rl Lは従来品の試t!1 M及びNよりも高率放
電時の活物質利用率及び放電電位特性がr4好であるこ
とがわかる。 この上)に化学含浸法以外の方法で活物質を充111i
する場合にt、!、第2層目の水酸化ニ1バルトを酸化
せずとも活物質充填密度の高い状態において良t):f
な放電特性か17られた。 以トのにうに本発明品は従来の物に比べ、−ての放電特
性が明らかに良好℃−ある。 光III′lの効果 前記実施例において示した」、うに、本発明に阜づさ、
水酸化ニッケルを主成分とする2つの層の間にリンドイ
ツブー1:11漬的に水酸化コバル1〜あるいはコバル
l−酸化物を主成分とするトコ1を形成した3目の活物
711M造に11ることによって、1m来の1!++ 
J、り放電時↑1のすぐれたアルカリ蓄電池用ニッケル
正極板を1qることができる。、した前記33層!14
漬の上に第4層目として水酸化コバルトを主成分とする
層を形成することにJ、−)で、詰物質利用捧′はさら
に数%向上することが可能である1、またこれらの本発
明が木来待つ効果を安定的に1!7るには多孔性金属基
板の表面に金屈耐化物の不1動態皮膜を形成することが
効果的て゛、これに」、ってさらに良好な放電特性が1
!′?られる。
[, Shi51ka? ! This invention provides a positive (Φ) treatment in which the electric potential characteristics of J3 and Ir1 are significantly improved.In other words, the present invention is based on a detailed study of the formation state of cobalt hydroxide. The i!12-layer structure is such that a layer containing nickel hydroxide as the main component is formed on the outside of the nickel hydroxide as in the known technique 1.2. In between, a layer containing cobalt hydroxide as the main component, and its hydroxylation= ] Cobalt oxidation forms a layer of Cobal 1 ~ Phosphate ↑ Formation of three or more layers of sand German knee structure. By doing so, we can improve the electrical properties of active materials and the dependence of each electrical energy in a highly dense state of active material filling, which could not be achieved with conventional manufacturing methods. JT was created based on the discovery that it was possible to create a nickel positive electrode plate with good CJ properties.Roughly speaking, in the present invention (the structure of the four active materials, and the state of the porous rot plate used) As a result of our investigation, we found that by forming a passive film on the surface of the Ll plate, the active material utilization rate, the discharge potential 1h property, and the discharge sea 1-dependence of each of them were further improved in a state where the active material packing density was high. We have also found that there is C. To solve the problem, the present invention first forms a layer mainly composed of nickel hydroxide on a porous metal plate as a first layer. , and then a second layer on top of the groove, which is a layer mainly composed of cobalt hydroxide.
Alternatively, cobalt hydroxide [.] is chemically or electrified to form an FM containing cobalt oxide as the main component, and then As the third layer, a layer containing nickel hydroxide as the main component is formed.In other words, between the two layers containing nickel hydroxide as the main component, there is cobalt hydroxide or cobalt oxide 1111'c. By forming a layer with + component, it was impossible to achieve 1'7 in the past.
Even in a state where the active material packing density is high, the filling chamber 71, the discharge potential characteristics, and the dependence n'r'I on each discharge wire 1 are made to be satisfactory by using 1 il of nickel positive electrode plate. Furthermore, by forming a layer mainly composed of cobalt hydroxide as a fourth layer on the surface of the above-mentioned positive electrode plate having the Lindidge structure, it is possible to further increase the active material utilization rate by several percentage points. . In this case, the mucus utilization rate at a discharge current of 1CΔ is I:L
Almost 100% 1" becomes 1.Also used porous price r
By forming a passive film of metal oxide on the surface of the tA substrate, the utilization rate of active material 't1 and the discharge potential characteristics of tI can be improved.
It is possible to further reduce the dependence on electric current. Examples Experiments and examples related to the present invention are shown below. Experiment 1 Using nickel as the main component and 16 impregnating liquid, the chemical infiltration method was repeated several times, and the 1st F+'i 1.1 hydroxy acid (mainly Hnickel) was added to the sintered nickel base. A layer was formed as a component.Next, the 1st and 2nd layer was performed once using solutions of cobalt nitrate at various concentrations.
A layer of cobalt hydroxide was formed, and the water was electrolytically oxidized to form a cobalmy oxide layer of cobalt hydroxide M. Furthermore, a third layer containing nickel hydroxide as a main component was formed thereon in the same manner as the first layer. The active material utilization F of the nickel 11-1 layer (electrode plate iY△) produced in this way was measured at a temperature of 1.250 (20°C> in a KO11 solution. Regarding the cobalt nitrate impregnating solution, after forming the second layer of cobalt hydroxide alone, this cobalt hydroxide is electrochemically oxidized. Electrode plates (referred to as electrode plates 8Y and 8B) on which a layer containing the active material was formed were prepared, and the usage rate of the nickel hydroxide filled as an active material was measured in the same manner. The ratio of the 2v40th cobalt compound to the amount and the ill ratio of the active material utilization rate are shown.・Calculated as mine.For the nickel sintered substrate, mix carbonyl nickel T't) powder with water and glue to make a nickel slurry, and apply the nickel slurry to a metal plate made of iron with 1 nickel metal. After that, nickel was sintered at 900°C in a reducing atmosphere. In FIG. 1, in the case of the electrode plate group Δ in which cobalt hydroxide 8 is electrochemically oxidized at the second inlet, the active material is Usage rate is high. Which reversible electric potential of cobalt oxide and cobalt oxide of A palm hydroxide and balt hydroxide is higher than that of nickel? , and from the charging/discharging potential 14, li
f, charging ■, 1 is nickel hydroxide J, hydroxide = ] Balt is charged to cobalt 1 such as cobalt hydroxide, and acid 1 arsenic is charged, and when discharging, A x It is said that the discharge of nickel hydroxide precedes the discharge of nickel hydroxide, and that the cobalt oxide of 41 hydroxide: 1 balt cap has good conductivity.
) + 15, it is thought that the second layer of cobalt alone has an effect as a current collector, increasing the frequency of the active material f・1. It is unclear why the active material utilization rate decreases when the number of particles increases.On the other hand, the horizontal plate RY8 in which the cobalt hydroxide alone in the second layer was not electrochemically oxidized In the case of , the usage rate of active material 11J is hardly increased,
Is the result equivalent to 5 for the previous electrode group A? It has become. The reason for this is that in forming the third layer, which is mainly composed of nickel hydroxide, impregnation with a solution of nickel nitrate [
1. 'i, the second layer of hydroxide] is dissolved, and in the subsequent neutralization process, cobalt hydroxide is fractionated in nickel hydroxide, reducing its current collector effect. result,
It seems that the active material utilization rate did not increase. From this, when forming a layer consisting of a cobalt compound alone, the layer containing nickel hydroxide as the main component before and after it will
j Since it is considered necessary to prevent mixing, when producing a positive electrode plate by a chemical impregnation method, it is necessary to
Im included? It is necessary to convert it into a cobaltic acid monomer which is difficult to dissolve in 2xh. But 1 school included? When filling the active material with 2 people 1 space outside the room, for example, physically fill the active material into the foamed electrode plate J, 1
In the case of J, this is the limit [not Yu, but cobal hydroxide [without oxidizing ~]) a living substance? When the filling density of 1 is high, make sure that the filling t and j are high. In this experiment, oxidation of hydroxyl (Tl)- was performed electrochemically, but other methods include hydrogen peroxide, hypochlorite, wood acid, and peroxide. Similar results were obtained when using an oxidizing agent such as potassium chloride or heat treatment in an air atmosphere to avoid oxidation. '7. Experiment 2 Among the samples of the electrode plate CYΔ prepared in Experiment 1, in which an improvement in the active material utilization rate was observed, the sample with O, 61% and the sample with the highest amount of cobalt compounds in the second layer, respectively, had the lowest amount of cobalt compound in the second layer.
, 0 mol % of the sample, a chemical impregnation method was performed once to produce a positive electrode plate (referred to as electrode plate groups C1 and C2) in which a layer of cobalt hydroxide alone was formed as the fourth layer, Experiment 1: What about living things? 1 usage rate was measured. Figure 2 shows 1I for the amount of nickel hydroxide filled as an active material.
We received the relationship between the ratio of cobalt hydroxide in ffl and the active material utilization rate. As can be seen from Figure 2, in the case of electrode plate group C1 in which the amount of cobalt compound in the second layer is 0.6 sil%, the amount of cobalt hydroxide in the fourth layer is 0.8 to 7.0. Live substance r in the range of mol%
1 utilization rate has increased to almost 100%. on the other hand,
The hanging of the cobalt compound in the second layer is 10. In the case of Otru% plate group C2, the utilization rate is close to 100% (
Y, the cobalt hydroxide fabric in the fourth layer is in the range of 0.4 to 6.0 mol%. When determining the optimal value for the cobalt content M from the results of Experiment 1 and this Experiment 20, the content of the cobalt compound in the second layer is O, G~10, Ot-le%,
When the content of the cobalt compound in the fourth layer is in the range of 0.4 to 7.0 mol%, a positive electrode plate with a high active material utilization rate can be obtained. The effect of active material 1 on the active material utilization rate of the inventive product and the conventional product shown by the known technology
1. The influence of packing density was investigated. In the positive electrode plate according to the present invention, among the electrode plate group A (3 layers I^i) prepared in Experiment 1, the amount of the cobalt compound in the second layer is equal to the amount of niraglu hydroxide filled as the living substance 71. On the other hand, the positive (anti) (r1Δ') which is 3Ti 96,
It has a four-layer structure similar to Samples C1 and C2 prepared in Experiment 2, and 1- of the -f baltic compound in the second layer is 3 [Le + 36
(Sample C') in which the cobalt hydroxide content in the fourth layer was also 2 mol % was used. Nickel oxide i!
After forming the 11111 layer, a positive (4k (reverse) sample r'l D) was formed in which cobalt hydroxide was formed on the large surface of A.
was used. The hanging of a large surface of cobalt hydroxide was adjusted to 3T nyl% for the nickel hydroxide spray. In addition, the packing density of the packing material on the horizontal axis is calculated assuming that impregnated nickel hydroxide and cobalt hydroxide each follow a 1-electrof reaction. It is clear from Figure 3 that in the sample prepared by applying the known technique, a decrease in active material utilization (lI7) is observed as the active material density increases, whereas Samples A and C'c have almost no decrease in active material utilization, and have lower IEt~temporary Q'gm than conventional products.
It can be seen that it is suitable for This is considered to be because the conductivity of the active material in the product of the present invention is better and more uniform than that in the conventional product. Experiment 4 In Experiments 1 to 3, an aQ solution of cobalt nitrate was used to form the second and fourth cobalt compound layers, but in this experiment, this impregnating solution was VIrI. In the case of a mixture of cobalt acid and nickel nitrate, the active material utilization rate of one reprint is set as 8 + 11 for the structure similar to the above (see details Δ), and the minimum The content of the necessary cobalt compound was determined.As a sample electrode plate, the a of the cobalt compound in the second layer was set to 4 mol% with respect to the amount of niracle hydroxide filled as an active material, and the electrode plate (electrode plate group [and ) was prepared using a chemical impregnation method. The relationship between the active material composition of the second layer and the active material utilization rate is explained in the fourth section.
As shown in the figure. '; As can be seen from Figure 54, the active material utilization rate is affected by the active material t1 composition. As the content of cobalt compounds (i) decreases, the living material 71 ratio also decreases.
'1 composition is around 70 mol% of cobalt compounds, active material 11
The publication rate decreases significantly, and if the content is lower than that, there is almost no effect of forming the second layer containing the cobalt compound as the L component. From this, it is desirable that the active material composition contains at least 70 mol% or more of a cobalt compound, preferably 100 mol%.
Nijii. Experiment 5 In this experiment, nickel-baked Fl! In order to examine the influence of using i-form as an active material, two types of nickel sintered substrates were prepared, and the performance of the electrode plates filled with the active material using the same impregnating solution and the same method was investigated. The same nickel slurry used in Experiments 1 to 4 was applied to a metallic current collector.
One was sintered at 900°C in a reducing atmosphere (substrate 1), and the other was sintered at 200°C in an air atmosphere while adding water vapor at q o o'c in a reducing atmosphere.
And the heat flood 1! 1! A product in which a passive film of nickel oxide is formed on the surface of a nickel sintered body (substrate 2)
It is. Using these two Niracle sintered substrates, the pole tf2 of Experiment 1 was
f! In the same manner as ¥△ (3-layer collapse), a positive electrode plate was prepared in which the suspension of the =1pal1-compound in the second layer was 4%, and i
71 Discharge rate dependence of Igawa ratio and discharge intermediate potential (I
Figures 5 and 6 show the results of the gender investigation, respectively. Na J5
, a passive film of nickel oxide is formed on the surface of the nickel sintered body.
Set it to 2. In the comparison of active material utilization rates in Figure 5, A1 and A2
There is no difference between J3 and lυ for a low-temperature discharge of 0.2CA, but the difference increases as the discharge rate increases to 3CA and 10C△.This is due to the discharge in Figure 6. The intermediate potential had a similar tendency, and a non-Kh-state film of nickel oxidation was formed on the surface of the nickel sintered body! ~ Plate A2 was compared to A1, which did not have this type of film. The oil that prevents the decline in electrode plate strength due to active material has low discharge rate dependence, ;':'active material M'l in BL rate discharge
A special effect of ♀7i was found that there was little decrease in the discharge potential characteristics. This is because in the case of sample Δ1, which does not form a full ru: film on the surface of the nickel sintered body, the acidic impregnation solution corrodes the nickel chains, resulting in a decrease in conductivity, and the area covered by the nickel sintered body. 1) The contact area between the active material and the active material decreases.
This is thought to be due to the fact that the performance deterioration in high-rate discharge appears to be more pronounced. This conversion of nickel sintered bodies into active materials is known to occur not only during the chemical process (but also at a critical potential during charging of the positive electrode plate), and it is known that nickel sintering in J3 in actual use of batteries occurs. By turning the aggregate into an active material, Ij
! It is expected that the temporary performance will change and the battery performance will gradually deteriorate. In contrast, trial 1△ in which a passive film was formed
Tit in 2, the corrosion of the nickel sintered body by the acidic impregnating liquid and the charging of the positive electrode plate in the nh book caused the 8 to 1 force of the 2-9 ru firing f1'4 body? 7 does not occur, the original good performance of the electrode plate is maintained (11).In other words, in order to stably (! Forming an indestructible film of nickel acid on the surface of the sintered body is effective in preventing activation of the nickel sintered body during the active material impregnation process and charging of the positive electrode plate. The results of the above five experiments were compared between the positive electrode plate and the conventional product based on 191). !Temporarily used in Experiment 4, Yake', Hayakari 1
and 3 scales of 2-2 tumors (85% porosity) and 4-film-like nickel porous material (95% porosity).
did. Example 1 (Product of the present invention) A calcined wood board 1 was impregnated with a 5.0'E/2' solution of lr1 acid ninonoric acid and neutralized with hot alkali at °C. Filling the pores of the nickel sintered body with nickel hydroxide) The process of the usual chemical impregnation method is performed three times, and the first
A layer of nickel hydroxide is formed in the second layer, and then one step of the chemical impregnation method is performed using a cobalt nitrate aqueous solution of 1.4 [Lua] (7,000,000 ml of hydroxyl). Forms the Baltic and German tonks/:t!2, specific gravity 1,250
(20°C) In K011 water ('8 solution), 1 u of hydroxide-balt was dissolved. After washing and drying, the same process as in the formation of the first layer [] was carried out. te, fL'
;'°Impregnation method] - Repeat steps 5 times to form a third layer of nickel hydroxide, and repeat (~1 repeat).
1F and 1F). Example 2 (product of the present invention) Sintered J, 1 (except that 2 was used) (Example 1) A positive electrode plate was made in the same manner as in Example (i) 1, and this was used as a test tl G. 1゜Example 3 (Product of the present invention) In Example 1, ff'FJ L t: Test 1'' 1F as base, roughly 2.2 ru/no l, rl l!f Kobal 1~
Repeat the chemical impregnation process once using water Fil H to form a layer of hydroxide T] Balt 11 for the 1st layer and make a positive (assembled plate 3, which is referred to as sample rF11). Example 4 (product of the present invention) 'J produced in Example 2, material 0zen04■, implementation 1311
A fourth layer of cobal hydroxide 1 to grade A 1 was formed in the same manner as in 3 to form a positive (assembled board). This was designated as trial t!l I. Example 5 (conventional product) The chemical impregnation process was carried out on the bonded substrate 1 8 times using a nickel nitrate aqueous solution of 5.0 silua/2 (1, nickel sinter filling (filling the substrate with nickel hydroxide, then 2.6'f) Using an aqueous solution of cobalt nitrate with a concentration of 100% and 100%, a layer of hydroxide-1 and 1-111 was formed on the surface using the pore impregnation process once. This was used as a positive electrode plate. Try it as J. Example O (conventional product) Sintering process
ClIIrI acid cohal 1~) 7/chemical process step 8 times using an aqueous solution of nickel sintering;
A positive electrode plate was prepared by filling the ash with a mixture of nickel hydroxide and cobalt hydroxide. Let's call this test nK. Implementation 1? j 7 (Product of the present invention) 86 parts of nickel hydroxide, carbonyl nickel:
1 less than 10 parts, metal cobalt f5) last 4 parts] day 2
At the end of ilN Qn of 00 mesh pass, there is water and water [
Add 1-su to active material base 1~
σ5 +, 1/. 5Q9(,
After 1 hour of physical filling, a layer 4 containing nickel hydroxide as a main component (1) 14th layer was formed. Next, using an aqueous solution of L4 [Lua's acid] Pal 1 (chemical impregnation)
The remaining active material paste was treated in the same manner as in the formation of the first layer "1" to form the second layer of hydroxylation. The third layer is formed by forming a layer containing one layer of sluice-forming Nitsunonol as the main component.In addition, as a step, impregnating it with ±3 sparge II. 1 murder, 9 beggar press (
j 1 piece 1 ~ (I folded it. Take a sample of it. 18 (conventional product)
! , +1 was filled with the same active material base 1-filament as used in Example 1-17. Add this to Sample M.Example 9 (Conventional Product) Sample M49 prepared in Example 8 was further converted into C using a cobalt nitrate aqueous solution containing C morph. Perform the impregnation process once and apply the hydroxide surface to one cuff per person] Pal 1~
! A P-layer was formed and the IF polar root was formed. Try this 21
Let it be N. Table 1 shows the theoretical intervals of the test t1 r-N using the above J, and Table 2 shows the active material composition. The theoretical value was calculated assuming that nickel hydroxide and cobalt hydroxide follow one electrician reaction. Next, 6 samples 71 were cut into dimensions of 40 x 40 (mn+), and the excess ratio n 1.250 (20°C) KO! 1
In an aqueous solution, we investigated the discharge rate dependence of sintered cadmium negative (using two sheets of the same size as opposed to each other, charging and discharging at t'+, active material usage 12 and discharge potential 1) and L = o. Jj
, the chemical charging for the first recycle is carried out to 100% of the theoretical capacity at 11 currents of 0.1C△, and after the 2nd recycle, it is carried out to 120% at a current of 0.2CΔ, and the discharge is carried out at a current of 0.1C△ and 120% of the theoretical capacity. Up to. The seventh [4] shows the dependence of the active material utilization on the discharge rate in the 2:5 impregnation method using a sintered substrate. , use; from high r [:= If > G > Fn-J
> K, and a layer of oxidized cobalt hydroxide is formed between two layers of nickel hydroxide to form a sandwich structure, product 1.11. G, I” conventional product J
, the usage rate is clearly improved compared to 1. Also 3
CΔ, 10C△? In 3-rate discharge, the difference between the product of the present invention and the conventional product is further expanded. This direction is similar to bIi''il in Fig. 8, which shows the discharge potential characteristics investigated. Also, sample 1 in which the active vAYff has a 41Fl structure.
It has a three-layer structure, Sample 1[, and Sample 1.G has an improved active material utilization rate compared to Sample 1, which has a nickel sintered body and has a passive film of nickel oxide formed on the surface of the nickel sintered body. G is a sample that does not
, ) 1, an improvement in the discharge charge retention characteristics was mainly observed. In addition, in Figure 8, Jj and the electric power 1η of test FI K are 0.2.
The low T-discharge of C△ is considered to be due to the fact that the content of carbon hydroxide [Pal I] dispersed in the active material is greater than that in other chambers (1). In addition, Figures 9 and 10 show the performance of samples L to N in which the foam-like nickel porous body was immediately filled with filler 71. 7 and 8, a sample of the product according to the present invention (L) is a sample of the conventional product (T). It can be seen that the active material utilization rate and discharge potential characteristics during high rate discharge are r4 better than those of 1M and N. (on top of this) is filled with active material by a method other than chemical impregnation.
If you do, t,! , good performance in a state where the active material packing density is high without oxidizing Nibalt hydroxide in the second layer):f
The discharge characteristics were 17%. As mentioned above, the product of the present invention clearly has better discharge characteristics at -°C than the conventional product. The effects of light III'l as shown in the above examples, and the present invention,
A third active material 711M in which cobal hydroxide 1 to cobal hydroxide 1 or toco 1 mainly composed of cobal l-oxide was formed between two layers containing nickel hydroxide as the main component by dipping in 1:11 in Linder-Buch. By adding 11 to the construction, 1 from 1m! ++
J, 1q of nickel positive electrode plates for alkaline storage batteries with an excellent discharge rate of ↑1 can be obtained. , said 33 layers! 14
By forming a layer mainly composed of cobalt hydroxide as a fourth layer on top of the pickle, it is possible to further improve the utilization of the filler material by several percentage points. In order to stably achieve the effects of the present invention, it is effective to form a passive film of a metal-resistant compound on the surface of the porous metal substrate. Discharge characteristics are 1
! ′? It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は含浸増量に対りる第2層[]のコバルト含有吊
と活物質利用rの関係を示1図、第2図は含浸増量に対
づる第・1層目の=1バルト含n吊と話物質利用1・−
の関係3示り図、第3図は本発明のニッケル正隊板と従
来品との活物質充填密度に対する活物i¥j +lI 
ITI率を比較して示す図、第・1図は第2層目及び第
4層目の活物質用成と活1カ質(11用串の関係を示す
図、第5図は活物質刊用室の放電レー]へ(ム存性に及
ぼすニッケル焼結)ま板表面の影響を示づ図、第6図は
故7t2雷位1)性の放電レート17\(f性に及ぼJ
ニッケル焼結草根表面の影響を示す図、第7図及び第9
図は本発明のニラクル1t−4li仮と従来品との活物
質刊用十のIJ文電電レート1Δη性比較して示す図、
?4″S8図及び第10図は本発明のニッケル正極板と
従来品との放電電位1h性の放電レー1〜lX1(7性
を比較して示す図である。 オ 1 ガ フ〕(ルト欽青t(〜Jり) )X 2 図 コl\−ルh 、を背量(−2] 才3 g ミ 蔓 7C 資 洛々1市尭y曇3奄(営’hp”tm9)才4 g 虜拶普幌汽(勧θn 才 5 Σ 簑 及 々 =電 (ζ削 ジ[乙  ひゴ 文r 8乞 w ゴー  (CA) λ 7 囚 2文*!71(CAノ オ 8 図 λ 9 回 式 f 々* ’jAJ 方lo 囚 tUt、Δ駈(7’A〕
Figure 1 shows the relationship between the cobalt content of the second layer [ ] and active material utilization r with respect to the increase in impregnation. n Hanging and story substance use 1・-
Figure 3 shows the relationship between the active material packing density of the nickel square plate of the present invention and the conventional product, i\j +lI
Figure 1 is a diagram showing the relationship between the active material composition of the second and fourth layers and the active material (11), Figure 5 is a diagram showing the relationship between the active material composition of the second and fourth layers, and Figure 5 is a diagram showing the relationship between the active material composition of the second and fourth layers. Fig. 6 shows the influence of the cutting board surface on the discharge rate of the 7t2 lightning level 1) (nickel sintered on the discharge rate of the room).
Figures 7 and 9 showing the influence of nickel sintered grass roots surface
The figure shows a comparison of the IJ electromagnetic rate 1Δη of the active material of Niracle 1t-4li of the present invention and a conventional product,
? Figure 4''S8 and Figure 10 are diagrams showing a comparison of the 1h discharge potential of the nickel positive electrode plate of the present invention and the conventional product. t(~Jri)) Prisoner's message Fuporoki (invitation θn sai 5 Σ 瑑 and one = electric (ζ cutji [Otsu Higobun r 8 beg w Go (CA) λ 7 prisoner 2 sentence *! 71 (CA noo 8 figure λ 9 times ceremony) f t* 'jAJ way lo prisoner tUt, Δ cane (7'A)

Claims (11)

【特許請求の範囲】[Claims] (1)多孔性金属基板上に水酸化ニッケルを主成分とす
る正極活物質層を形成させたニッケル正極板において、
その正極活物質層が以下の構造であるもの、即ち、多孔
性金属基板上の第1層目は水酸化ニッケルを主成分とす
る層であり、第2層目は水酸化コバルトあるいはコバル
ト酸化物を主成分とする層であり、さらにその上の第3
層目は水酸化ニッケルを主成分とする層であるもの、つ
まり水酸化ニッケルを主成分とする2つの層の間にサン
ドイッチ構造的に水酸化コバルトあるいはコバルト酸化
物を主成分とする層を形成したことを特徴とするアルカ
リ蓄電池用ニッケル正極板。
(1) In a nickel positive electrode plate in which a positive electrode active material layer containing nickel hydroxide as a main component is formed on a porous metal substrate,
The positive electrode active material layer has the following structure, that is, the first layer on the porous metal substrate is a layer mainly composed of nickel hydroxide, and the second layer is cobalt hydroxide or cobalt oxide. It is a layer whose main component is
The layer is a layer mainly composed of nickel hydroxide, that is, a layer mainly composed of cobalt hydroxide or cobalt oxide is formed in a sandwich structure between two layers mainly composed of nickel hydroxide. A nickel positive electrode plate for alkaline storage batteries characterized by:
(2)前記第2層目の水酸化コバルトあるいはコバルト
酸化物を主成分とする層に含まれるコバルト化合物の量
が水酸化ニッケルの量に対し、0.6〜10.0モル%
である特許請求範囲第(1)項記載のアルカリ蓄電池用
ニッケル正極板。
(2) The amount of cobalt compound contained in the second layer containing cobalt hydroxide or cobalt oxide as a main component is 0.6 to 10.0 mol% relative to the amount of nickel hydroxide.
A nickel positive electrode plate for an alkaline storage battery according to claim (1).
(3)前記第2層目の水酸化コバルトあるいはコバルト
酸化物を主成分とする層のコバルト化合物の含有量が7
0モル%以上である特許請求の範囲第(1)項記載のア
ルカリ蓄電池用ニッケル正極板。
(3) The content of the cobalt compound in the second layer mainly composed of cobalt hydroxide or cobalt oxide is 7.
The nickel positive electrode plate for an alkaline storage battery according to claim (1), wherein the nickel content is 0 mol% or more.
(4)多孔性金属基板の表面に金属酸化物の不働態皮膜
を形成したことを特徴とする特許請求の範囲第(1)項
記載のアルカリ蓄電池用ニッケル正極板。
(4) A nickel positive electrode plate for an alkaline storage battery according to claim (1), characterized in that a passive film of metal oxide is formed on the surface of a porous metal substrate.
(5)多孔性金属基板にニッケル塩が主成分である酸性
溶液を含浸した後、濃縮、アルカリ処理を行なうという
通常の化学含浸の工程を数回行なって多孔性金属基板上
に第1層目の水酸化ニッケルを主成分とする層を形成し
、次にコバルト塩が主成分である酸性溶液を用いて化学
含浸の工程を少なくとも1回以上行なって第2層目の水
酸化コバルトを主成分とする層を形成した後、電気化学
的あるいは化学的に酸化して前記水酸化コバルトが主成
分である層をコバルト酸化物が主成分である層に変化さ
せ、さらに第1層目の形成と同様にして化学含浸の工程
を数回行なって第3層目として水酸化ニッケルを主成分
とする層を形成することを特徴とするアルカリ蓄電池用
ニッケル正極板の製造法。
(5) After the porous metal substrate is impregnated with an acidic solution containing nickel salt as its main component, the usual chemical impregnation process of concentration and alkali treatment is performed several times to form the first layer on the porous metal substrate. A layer containing nickel hydroxide as the main component is formed, and then a chemical impregnation process is performed at least once using an acidic solution containing cobalt salt as the main component to form a second layer containing cobalt hydroxide as the main component. After forming a layer, the layer containing cobalt hydroxide as a main component is electrochemically or chemically oxidized to change the layer containing cobalt hydroxide as a main component into a layer containing cobalt oxide as a main component, and then forming a first layer. A method for producing a nickel positive electrode plate for an alkaline storage battery, characterized in that a chemical impregnation process is performed several times in the same manner to form a third layer containing nickel hydroxide as a main component.
(6)多孔性金属基板上に水酸化ニッケルを主成分とす
る正極活物質層を形成させたニッケル正極板において、
その正極活物質層が以下の構造であるもの、即ち、多孔
性金属基板上の第1層目は水酸化ニッケルを主成分とす
る層であり、第2層目は水酸化コバルトあるいはコバル
ト酸化物を主成分とする層であり、第3層目は水酸化ニ
ッケルを主成分とする層であり、さらにその上の第4層
目は水酸化コバルトを主成分とする層であるもの、つま
り水酸化ニッケルを主成分とする層とコバルト化合物を
主成分とする層が交互に積層していることを特徴とする
アルカリ蓄電池用ニッケル正極板。
(6) In a nickel positive electrode plate in which a positive electrode active material layer containing nickel hydroxide as a main component is formed on a porous metal substrate,
The positive electrode active material layer has the following structure, that is, the first layer on the porous metal substrate is a layer mainly composed of nickel hydroxide, and the second layer is cobalt hydroxide or cobalt oxide. The third layer is a layer mainly composed of nickel hydroxide, and the fourth layer above it is a layer mainly composed of cobalt hydroxide, that is, water. A nickel positive electrode plate for an alkaline storage battery, characterized in that layers mainly composed of nickel oxide and layers mainly composed of a cobalt compound are laminated alternately.
(7)前記第2層目の水酸化コバルトあるいはコバルト
酸化物を主成分とする層に含まれるコバルト化合物の量
が水酸化ニッケルの量に対し、0.6〜10.0モル%
である特許請求の範囲第(6)項記載のアルカリ蓄電池
用ニッケル正極板。
(7) The amount of cobalt compound contained in the second layer containing cobalt hydroxide or cobalt oxide as a main component is 0.6 to 10.0 mol% with respect to the amount of nickel hydroxide.
A nickel positive electrode plate for an alkaline storage battery according to claim (6).
(8)前記第4層目の水酸化コバルトを主成分とする層
に含まれる水酸化コバルトの量が、水酸化ニッケルの量
に対し、0.4〜7.0モル%である特許請求の範囲第
(6)項記載のアルカリ蓄電池用ニッケル正極板。
(8) The amount of cobalt hydroxide contained in the fourth layer mainly composed of cobalt hydroxide is 0.4 to 7.0 mol% with respect to the amount of nickel hydroxide. A nickel positive electrode plate for an alkaline storage battery as described in scope item (6).
(9)前記第2層目及び第4層目の水酸化コバルトある
いは酸化コバルトを主成分とする層のコバルト化合物の
含有量が70モル%以上である特許請求の範囲第(6)
項記載のアルカリ蓄電池用ニッケル正極板。
(9) Claim No. 6, wherein the content of the cobalt compound in the second layer and the fourth layer whose main component is cobalt hydroxide or cobalt oxide is 70 mol% or more.
Nickel positive electrode plate for alkaline storage batteries as described in .
(10)多孔性金属基板の表面に金属酸化物の不働態皮
膜を形成したことを特徴とする特許請求の範囲第(6)
項記載のアルカリ蓄電池用ニッケル正極板。
(10) Claim (6) characterized in that a passive film of metal oxide is formed on the surface of the porous metal substrate.
Nickel positive electrode plate for alkaline storage batteries as described in .
(11)多孔性金属基板にニッケル塩が主成分である酸
性溶液を含浸した後、濃縮、アルカリ処理を行なうとい
う通常の化学含浸の工程を数回行なって多孔性金属基板
上に第1層目の水酸化ニッケルを主成分とする層を形成
し、次にコバルト塩が主成分である酸性溶液を用いて化
学含浸の工程を少なくとも1回以上行なって第2層目の
水酸化コバルトを主成分とする層を形成した後、電気化
学的あるいは化学的に酸化して前記水酸化コバルトが主
成分子ある層をコバルト酸化物が主成分である層に変化
させ、さらに第1層目の形成と同様にして化学含浸の工
程を数回行なって第3層目として水酸化ニッケルを主成
分とする層を形成した後、さらに第2層目の形成と同様
にして化学含浸の工程を少なくとも1回以上行なって第
4層目として水酸化コバルトを主成分とする層を形成す
ることを特徴とするアルカリ蓄電池用ニッケル正極板の
製造法。
(11) After impregnating a porous metal substrate with an acidic solution containing nickel salt as its main component, the usual chemical impregnation process of concentrating and alkali treatment is performed several times to form the first layer on the porous metal substrate. A layer containing nickel hydroxide as the main component is formed, and then a chemical impregnation process is performed at least once using an acidic solution containing cobalt salt as the main component to form a second layer containing cobalt hydroxide as the main component. After forming a layer, the layer containing cobalt hydroxide as a main component is electrochemically or chemically oxidized to change the layer containing cobalt hydroxide as a main component into a layer containing cobalt oxide as a main component, and then forming a first layer. After performing the chemical impregnation process several times in the same manner to form a third layer consisting mainly of nickel hydroxide, the chemical impregnation process is performed at least once in the same manner as in the formation of the second layer. A method for producing a nickel positive electrode plate for an alkaline storage battery, which comprises performing the above steps to form a layer containing cobalt hydroxide as a main component as a fourth layer.
JP60213182A 1985-09-25 1985-09-25 Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof Expired - Lifetime JPH0677452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213182A JPH0677452B2 (en) 1985-09-25 1985-09-25 Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213182A JPH0677452B2 (en) 1985-09-25 1985-09-25 Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6271168A true JPS6271168A (en) 1987-04-01
JPH0677452B2 JPH0677452B2 (en) 1994-09-28

Family

ID=16634900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213182A Expired - Lifetime JPH0677452B2 (en) 1985-09-25 1985-09-25 Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0677452B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103972A (en) * 1985-10-30 1987-05-14 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for alkaline storage battery
JPH01272050A (en) * 1988-04-21 1989-10-31 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPH02112165A (en) * 1988-10-19 1990-04-24 Sanyo Electric Co Ltd Alkaline storage battery
US5718988A (en) * 1996-04-03 1998-02-17 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
EP1006598A2 (en) * 1998-11-30 2000-06-07 SANYO ELECTRIC Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
US6193871B1 (en) * 1998-12-09 2001-02-27 Eagle-Picher Industries, Inc. Process of forming a nickel electrode
JP2010218686A (en) * 2008-03-07 2010-09-30 Tokyo Metropolitan Univ Method for filling with electrode active material and method for manufacturing all-solid-state cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103972A (en) * 1985-10-30 1987-05-14 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for alkaline storage battery
JPH01272050A (en) * 1988-04-21 1989-10-31 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPH0584026B2 (en) * 1988-04-21 1993-11-30 Yuasa Battery Co Ltd
JPH02112165A (en) * 1988-10-19 1990-04-24 Sanyo Electric Co Ltd Alkaline storage battery
US5079110A (en) * 1988-10-19 1992-01-07 Sanyo Electric Co., Ltd. Alkaline storage cell
US5718988A (en) * 1996-04-03 1998-02-17 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
US5788720A (en) * 1996-04-03 1998-08-04 Matsushita Electric Industrial Co., Ltd. Method for manufacturing positive electrode plates for an alkaline storage battery
EP1006598A2 (en) * 1998-11-30 2000-06-07 SANYO ELECTRIC Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
EP1006598A3 (en) * 1998-11-30 2006-06-28 SANYO ELECTRIC Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
EP1901373A1 (en) * 1998-11-30 2008-03-19 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
US6193871B1 (en) * 1998-12-09 2001-02-27 Eagle-Picher Industries, Inc. Process of forming a nickel electrode
JP2010218686A (en) * 2008-03-07 2010-09-30 Tokyo Metropolitan Univ Method for filling with electrode active material and method for manufacturing all-solid-state cell

Also Published As

Publication number Publication date
JPH0677452B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JP2900606B2 (en) Super capacitor electrode and method of manufacturing the same
JPH08222217A (en) Nickel active material for alkaline storage battery
JPS6271168A (en) Nickel positive plate of alkali storage battery and its manufacture
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
US4975035A (en) Method of making a nickel hydroxide-containing cathode for alkaline batteries
JP2003282062A (en) Energy storage device and manufacturing method of compound composition for energy storage device
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JPS60170167A (en) Manufacturing method for alkaline cell electrode
JPS6264062A (en) Positive plate for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS59165370A (en) Manufacture of cathode plate for alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JP3316946B2 (en) Sintered cadmium cathode plate for alkaline storage battery and method of manufacturing the same
JP3369783B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and alkaline storage battery
JP3685704B2 (en) Method for producing nickel electrode for alkaline storage battery
JPS58163152A (en) Manufacture of silver (2) oxide cell
JPS607060A (en) Manufacture of positive plate for nickel cadmium storage battery
JP2000277105A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPH09147857A (en) Manufacture of positive electrode active material for alkaline storage battery
JPS63114061A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPH1131505A (en) Alkaline storage battery electrode and its manufacture, and alkaline storage battery
JP2000277100A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPS6028165A (en) Production method of electrode plate for lead storage battery
JPS6210860A (en) Silver oxide battery