JPS58158981A - Manufacture of tunnel type josephson junction element - Google Patents

Manufacture of tunnel type josephson junction element

Info

Publication number
JPS58158981A
JPS58158981A JP57041293A JP4129382A JPS58158981A JP S58158981 A JPS58158981 A JP S58158981A JP 57041293 A JP57041293 A JP 57041293A JP 4129382 A JP4129382 A JP 4129382A JP S58158981 A JPS58158981 A JP S58158981A
Authority
JP
Japan
Prior art keywords
gas
barrier layer
tunnel
thin film
base electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57041293A
Other languages
Japanese (ja)
Other versions
JPS6258677B2 (en
Inventor
Yujiro Kato
加藤 雄二郎
Osamu Michigami
修 道上
Keiichi Tanabe
圭一 田辺
Hisataka Takenaka
久貴 竹中
Shizuka Yoshii
吉井 静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57041293A priority Critical patent/JPS58158981A/en
Publication of JPS58158981A publication Critical patent/JPS58158981A/en
Publication of JPS6258677B2 publication Critical patent/JPS6258677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a barrier layer of high quality with good reproducibility by RF sputtering the surface of base electrode made of an Nb superconductive thin film in Ar-CF4 gas or Ar-CF4-O2 gas, then oxidizing or accumulating different material and forming by oxidizing a tunnel barrier layer. CONSTITUTION:An Si substrate formed with a thermally oxidized film on the surface is held at 400 deg.C, and a base electrode Nb thin film of 2,000Angstrom thick is formed by an electron beam deposition method in vacuum of 2X10<-8>Torr by using Nb tablet of 99.99%. Then, this substrate is coated with resist, exposed, developed, and etched as the base electrode of the prescribed width. Thereafter, this surface is RF sputtered in Ar-10%CF4 or Ar-5%CF4-2%O2 gas, oxidized, and a tunnel barrier layer is formed. After sputtering, different substance is accumulated by discharging of SiH4 gas, and then similarly oxidized.

Description

【発明の詳細な説明】 し発明の技術分野] 本発明はトンネル形ノ、セノソン接合素子の作製方法、
特に安定したトンネルバリヤ層全形成する方法に関する
ものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a tunnel-type, Senoson junction element,
In particular, it relates to a method for forming a stable tunnel barrier layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

トンネル形ジ、セ7ソン接合素子は基本的に基板(St
やサファイア等)上に下地電極(超伝導体)がありその
上に電気的に絶縁性のトンネルバリヤ層があシ更にその
上に上部電極(超伝導体)のある構造をしている。この
トンネルバリヤ層は20〜50Xと非常に薄い絶縁層で
あり木子特性管大きく左右する。例えばトンネルバリヤ
層の膜厚が1111変動するとトンネルバリヤ層f:流
れるノ、セフノン電流は1桁変動する。
Tunnel-type junction devices basically have a substrate (St
It has a structure in which there is a base electrode (superconductor) on top of (or sapphire, etc.), an electrically insulating tunnel barrier layer on top of that, and an upper electrode (superconductor) on top of that. This tunnel barrier layer is a very thin insulating layer with a thickness of 20 to 50X, and it greatly influences the characteristics of the tree. For example, if the thickness of the tunnel barrier layer changes by 1111, the Cefnon current will change by one order of magnitude.

またトンネルバリヤの物質や品質が素子特性に大きな影
41t−及はす。このため良質のバリヤ層を制御性よく
形成する方法を開発することは素子の信頼性、歩留りの
向上の点からも重要であり、トンネルバリヤ層の形成は
索子作製工程の中で歳も117j!な製造1稚となる。
Furthermore, the material and quality of the tunnel barrier have a large influence on the device characteristics. Therefore, developing a method for forming a high-quality barrier layer with good control is important from the viewpoint of improving device reliability and yield. ! The first stage of production will be poor.

一般にトンネル形ノーセ7ソン累子は■下地電極超伝導
薄膜形成■この薄膜の・臂ターン形成■トンネルバリヤ
鳩形成■対向電極形成に大別できる。■のトンネル・噌
リヤ層の形成には2通りの方法がある。
In general, tunnel-shaped nosesons can be roughly divided into 1) Formation of a superconducting thin film on a base electrode, 2) Formation of an arm turn of this thin film, 2) Formation of a tunnel barrier, and 2) Formation of a counter electrode. There are two methods for forming the tunnel/soriya layer (2).

一つは・量ターン形成後の下地電極t−i接酸化(自然
酸化、又はグラズマ酸化)して所定のバリヤ層を形成す
る方法であシ、他は下地11Efik上に異種物質(k
l、 Si、 Bi、 To等)を蒸NあるいはCVD
等によシ極薄膜に形成しく数lOXの厚さ)バリヤとす
るかおるいは七fLを酸化してトンネルバリヤ層とする
方法である。前者はトンネルバリヤ層の厚さを制御し易
いか下地電極の種類によって定まったバリヤ物質しか得
られないことになる。一方後者は一ト地電極とは異種の
At205 、8102 、 B1 、 Te等の防電
率の小さなバリヤを形成する方法であるが極薄膜O膜厚
制御が容易でない。このようにバリヤ層の形成法の双方
に一長一短がある。バリヤ層の制御14I性に1点を置
いた場合下地電極を直接線化してバリヤ層を形成するが
Nbにこの方法を適用した場合の問題点に次のようなも
のが存在する。1誉目の問題点はトンネルバリヤ増形成
罰のス・fツタクリーニングをAr ガスによシ行うと
ス・母ツタ収量が小さい九め放電電圧を^くする必要が
あるがエネルギーの高いArイオンの衝突により下地電
極表向がダメージを受けその後の酸化においてNb2o
5以外の金属性のNb−0化合物が形成され謳いことで
おる。2査目の問題点はNbが非常に酸化され易くグラ
フ1酸化のためAr −02混合ガスを0.01 To
rr程度導入したたけでも放電前に数Xの酸化膜が成長
するため放電時間のみによるトンネルバリヤ層の膜厚W
i制御は制御性に欠けることである。以上のようにAr
でのスi4 yタフリーニングを行った場合表面はクリ
ーニングされるもののNb表面には欠陥が導入されその
後iL像緻化全竹った場合酸化腺の1IIJ御性が恋い
という欠点を有していた。
One method is to form a predetermined barrier layer by oxidizing the base electrode t-i (natural oxidation or glazema oxidation) after forming a large turn.
1, Si, Bi, To, etc.) by steaming N or CVD.
In this method, a tunnel barrier layer is formed by forming an extremely thin film (with a thickness of several 1 OX) to form a barrier, or by oxidizing 7fL. In the former case, it is easy to control the thickness of the tunnel barrier layer, or only a predetermined barrier material can be obtained depending on the type of underlying electrode. On the other hand, the latter is a method of forming a barrier with a low electrical resistivity such as At205, 8102, B1, Te, etc., which is different from the single-layer electrode, but it is not easy to control the thickness of the ultra-thin O film. As described above, both barrier layer formation methods have advantages and disadvantages. Controlling the Barrier Layer 14I One point to note is that the barrier layer is formed by directly forming a line on the underlying electrode, but there are the following problems when this method is applied to Nb. The first problem is that if the tunnel barrier growth penalty is used to clean the vines using Ar gas, the yield of vines will be small. The surface of the underlying electrode is damaged by the collision, and the subsequent oxidation results in Nb2o
Metallic Nb-0 compounds other than No. 5 are formed. The problem with the second inspection is that Nb is very easily oxidized, and for graph 1 oxidation, Ar -02 mixed gas is mixed at 0.01 To
Even if about rr is introduced, an oxide film of several X will grow before discharge, so the thickness W of the tunnel barrier layer depends only on the discharge time.
i-control lacks controllability. As above, Ar
Although the surface was cleaned by cleaning the surface, defects were introduced into the Nb surface, and when the whole bamboo was then subjected to iL image densification, the 1IIJ characteristics of the oxidation glands were lost. .

〔発明の目的およびa景J 本発明の目的は尚品質のトンネルバリヤ層を書#L性よ
く形成することのできるトンネル形)1七フノン菓子の
作表方法を提供することである0 本発明の−っの恕様によればNb超伝導薄膜がら成る下
地電極の表面をkr−CF41fス又はAr−cF4−
o2trx中でRFスノ4ツタした後、酸化シテトンネ
ルパリャ層を形成するととt−%黴とするトンネル形ノ
、七フソン接合素子の作製方法が提供される。
[Object of the Invention and A View] The object of the present invention is to provide a tabulation method for 17-funon confectionery (tunnel-shaped) that can form a high-quality tunnel barrier layer with good properties.0 The present invention According to Mr. No-no, the surface of the base electrode made of Nb superconducting thin film was coated with kr-CF41f or Ar-cF4-
A method for fabricating a tunnel-type junction device is provided, in which the oxidized tunnel barrier layer is formed after RF sintering in an 02trx, and the oxidized tunnel barrier layer is formed to have a t-% mold.

本発明の他O態様によれはNb超伝導薄膜から成る下地
電極の表面をAr −CFAガス又はAr −CF4−
02がス中でRFスi!ツタした後、異種物質を堆積し
ついでこの異種物質を酸化してトンネルバリヤ層を形成
することを特徴とするトンネル形ノ、セフソン接合素子
の作製方法が提供される。
According to another aspect of the present invention, the surface of the base electrode made of the Nb superconducting thin film is heated with Ar-CFA gas or Ar-CF4-
02 is in the air RF i! A method for manufacturing a tunnel-type Sefson junction device is provided, which comprises depositing a foreign material after forming a vine, and then oxidizing the foreign material to form a tunnel barrier layer.

上記本発明の方法において、好ましくはAr−CF4−
O2ガスのCF4濃度は0.5%〜20参でおり、02
濃度は20%以下であり、そして、RFス・平、夕は0
.003〜0.1 Torrのガス圧で冥施される。
In the above method of the present invention, preferably Ar-CF4-
The CF4 concentration of O2 gas is 0.5% to 20%, and 02%
The concentration is less than 20%, and the RF level is 0 in the evening.
.. The ritual is performed at a gas pressure of 0.003 to 0.1 Torr.

フォト工程を用いてトンネル形ノ、セフソ/素子を作製
する場合下地電極の・9タ一ニング時にViNb表面が
レノスト、酸5アルカリにより汚染されあるいは大気中
の酸素を吸着することによって下地電極表向は酸化皮膜
で被れている。
When producing a tunnel type device using a photo process, the ViNb surface may be contaminated with renost, acid, and alkali during tanning of the underlying electrode, or the surface of the underlying electrode may be contaminated by adsorption of atmospheric oxygen. is covered with an oxide film.

このためトンネル・191層を形成する前にAtガス中
でス・!ツメエツチング処理を付いその後Ar −02
m合ガス中でのRFプラズマ酸化により籠化物バリヤを
形成する。5仁の方法はPb、Nb累子において従来よ
り竹わnているかNb累子では必ずしも優れたバリヤ、
t−形成できない(、Arffスによるスノ臂ツタエツ
チングはArイオンが衝突することによって!li!閣
から粒子を叩き出す物理的作用上利用しているがNbに
対してはス・膏ツタ収量が小さいため下地%極嚢面付近
の100X程度の汚染層を比軟的短時間(660分)で
除去するには自己バイアスを400v程展に上げる必豊
かあり表向のダメージのためその彼の酸化においてNb
2O5以外の金麺的なNb−0化合物も形成されバリヤ
品質が低下する。また自己/4イアス1に200層m度
に下けてスフ9ツタエツチングを行うと表面のダメージ
は避けられるが汚染層の除去に長時間(8時間以上)を
喪し木子化プロセスの迅速さを欠くことになる。またN
bの清浄表面は非常に酸化され易くスパッタエツチング
後、Ar −02混合ガスを導入した際、I放電を開始
する前に数Xの酸化層が成長しこれが酸化膜厚の初期値
となるため放電時間のみによる制御では所定の酸化膜厚
を得ることはできない。以上Arガスによるス/9ツタ
エツチング処理はRFfラズマ酸化の前処理としてはN
b素子に関する限9制御性t−mうという欠点を有して
いた。そこでNb4膜において高品質なNb2o5バリ
ヤを再現−性よく形成し、しかもプロセスの能率化t−
図るためにはエツチングの迅速さを保ちつつツノ4ツタ
時の電圧を下げて表面のダメーゾを避け、エツチング終
了後は直ちにNbの清浄表面を昇華性の保#!1膜で被
ってがス交換時の劣化を防止することが必要である。こ
れらの条件を満足するの′にCF4ガスの化学的作用を
利用すればよい。CF4ガスゾラズマはNbをフ、化し
て取り去るのみでなく表面の酸化物中のal累をC02
ガスとして取如去る。さらに酸素の不足状−では昇華性
のカーボンを表11に堆積させる。放電安定化の九めA
rを用い所定のCF4ガスにエッチレートの向上とカー
ボンの堆st:iiを制御するため所定の02を混合さ
せたがス中でのRFスノ々ツタを行えば低電圧でNb表
向にダメーゾを与えることなく迅速に汚染皮膜の除去が
できるのみでなくNbの清浄表面を10数Xの昇華性の
アモルファス状のカーメンが保鰻することになり、カー
ボン膜厚が制御できるのでその後のkr +02中での
プラズマ酸化においてまずカーメンをCO2として取9
去りたa、Nb2O5のみのバリヤを放電時間によって
膜厚制御することができる0表1はムrとCF4による
Nbのエッチレートである。この表から明らかなように
ArはCF4よシエッチング速度が着しく小さく Ar
ガス圧を上げて放電をjjc1 安定化させてもエツチング速度の制御性は何ら変化しな
い。また第1図はAr −CF4−02混合ガスの02
濃度を変化させたときのNb表面に付着したカーがンの
膜厚を示す。第2図はAr −CF4−02混合ガスに
おいて自己バイアスを変化させた時のカーボン膜厚を示
す。Ar −CF4−02混合ガス中でNbをスノ母、
夕するとカーボンの堆I!R菫がlO数Xの範囲であれ
ば離脱するカーがン換と新たに堆積するカーボンとがパ
2 ンスL テNb 表面を保睦しつつエツチングは進
行する。その後低電圧でプラズマ酸化を行えはカーボン
をCO2として取り去った後、Nb2O5のみの高品質
のバリヤか形成されることKなる。
For this reason, before forming the tunnel 191 layer, smear it in At gas! After nail etching treatment, Ar-02
The cage barrier is formed by RF plasma oxidation in mixed gas. 5. The method of 5th generation is better than the conventional method for Pb and Nb layers, and does not necessarily provide a better barrier for Nb layers.
T-cannot be formed (, Arff etching using Arff is used for the physical effect of knocking out particles from the !li! cabinet due to the collision of Ar ions, but the yield is small for Nb. Therefore, in order to remove a contamination layer of about 100X near the base surface in a relatively short time (660 minutes), it is necessary to increase the self-bias to about 400V. Nb
Gold noodle-like Nb-0 compounds other than 2O5 are also formed and the barrier quality deteriorates. In addition, surface damage can be avoided by performing 9 ivy etching at a depth of 200 m degrees on self/4 Ias 1, but it takes a long time (more than 8 hours) to remove the contaminated layer and speeds up the wood graining process. It will be missing. Also N
The clean surface of b is very easily oxidized, and when an Ar-02 mixed gas is introduced after sputter etching, an oxide layer of several X grows before the I discharge starts, and this becomes the initial value of the oxide film thickness, so the discharge A predetermined oxide film thickness cannot be obtained by controlling only by time. The above S/9 etching treatment using Ar gas is recommended as a pretreatment for RFf plasma oxidation.
It has a drawback that the controllability of the b-element is limited. Therefore, it is possible to form a high-quality Nb2o5 barrier in the Nb4 film with good reproducibility and to improve the efficiency of the process.
In order to achieve this, while maintaining the speed of etching, lower the voltage when etching the horns to avoid damage to the surface, and immediately after etching the clean Nb surface to maintain its sublimation properties. It is necessary to cover with one film to prevent deterioration during replacement. The chemical action of CF4 gas can be used to satisfy these conditions. CF4 gas zolazma not only removes Nb by converting it to fluorine, but also converts Al accumulation in the surface oxide to C02.
Removed as gas. Further, in a state of oxygen deficiency, sublimable carbon is deposited as shown in Table 11. Ninth A of discharge stabilization
In order to improve the etch rate and control carbon deposition, a specified amount of 02 was mixed with a specified CF4 gas using r, but if RF snotting in the gas was carried out, the Nb surface would be damaged at low voltage. Not only can the contaminated film be quickly removed without giving any damage, but the clean surface of Nb is protected by a sublimable amorphous carmen of several tens of times, and the carbon film thickness can be controlled, so the subsequent kr +02 In the plasma oxidation process, carmen is first extracted as CO2.
The thickness of the Nb2O5-only barrier can be controlled by the discharge time.Table 1 shows the etch rate of Nb by CF4 and the mura. As is clear from this table, the etching rate of Ar is significantly lower than that of CF4.
Even if the discharge is stabilized by increasing the gas pressure, the controllability of the etching rate does not change at all. Also, Figure 1 shows 02 of Ar-CF4-02 mixed gas.
The graph shows the thickness of carton deposited on the Nb surface when the concentration is changed. FIG. 2 shows the carbon film thickness when changing the self-bias in an Ar-CF4-02 mixed gas. Nb in Ar-CF4-02 mixed gas,
Carbon pile in the evening! If R violet is in the range of lO number Plasma oxidation is then performed at low voltage to remove the carbon as CO2, and then a high quality barrier consisting only of Nb2O5 is formed.

〔発明の実施例〕 実施例199.99饅のNbタブレットを用いて電子ビ
ーム蒸着法によシ熱酸化展のある81基& (5iOz
農JII100OX ) 上IC400℃(D基板温[
’t”2 X 1O−8TorrOX2中テ2000 
@(D下地11極用Nb薄編を形成した0この薄膜の超
伝導臨界温度は9.2Kを示した。この薄膜基板をレソ
ストコート、露光、現像、エツチングし・昔ターン42
0μmの下地llIc&を形成した。次にこれらの薄膜
基板を用いてトンネル形の素子を作製した。すなわち・
!ターニングした2枚の下地基板上K11l12500
1の810ステンシルをリフトオフ法によシ形成し1枚
は下地電極表面をAr1fス中でスバ、り(20mTo
rr + v、、、−=aoov、 20分)し、他の
1枚はAr−10%CF4がス中でツノ9ツタ(20m
Torr 、 V(11;200 v+ 20分)した
0ス・9ツタ1Ar−10*o27/スに交換してプラ
ズマ酸化(30mTorr、V  =10QV、5分)
シ水冷C1鵬 基板で上部電極用Nbを電子ビーム蒸着法により形成(
4000X)L篇光・現像・エツチングにより・リーニ
ングした。得られた素子の特性はArでス・平、夕した
1枚はプリツノ形の特性であったがAr−10%CF4
でツノ4 vりしたものは第3図に示すようにリークの
少ない単粒子トンネリ/グの特性でおった。この時のギ
ヤ、グミ圧は4.2Kにおいて3.0 mVであった。
[Embodiments of the Invention] Example 199.99 Nb tablets were used to produce 81 groups with thermal oxidation (5iOz
Agriculture JII100OX) Upper IC400℃ (D board temperature [
't'2
@(A Nb thin film was formed on the D base for 11 electrodes. The superconducting critical temperature of this thin film was 9.2 K. This thin film substrate was coated with light, exposed, developed, and etched.
A 0 μm underlayer llIc& was formed. Next, tunnel-shaped elements were fabricated using these thin film substrates. In other words,
! K11l12500 on two turned base boards
One 810 stencil was formed by the lift-off method, and one was coated on the surface of the underlying electrode in an Ar1f bath (20 mTo
rr + v, , - = aoov, 20 minutes), and the other one is a 9-horned ivy (20 m) in Ar-10% CF4.
Torr, V (11; 200 V + 20 min) was replaced with 0 S. 9 Ivy 1 Ar-10*O27/S and plasma oxidized (30 mTorr, V = 10 QV, 5 min)
Nb for the upper electrode is formed by electron beam evaporation on a water-cooled C1 substrate (
4000X) L-edited by light, development, and etching. The characteristics of the obtained device were flat in Ar, and the one obtained in the evening had Pritsuno type characteristics, but Ar-10%CF4
As shown in Fig. 3, the one with the horn of 4V had the characteristics of a single-particle tunneling device with little leakage. The gear and gummy pressure at this time was 3.0 mV at 4.2K.

実施例2 実施例1で下地を憔、SiOのステンシルを
形成した4枚の基板をAr −CF4−02混合ガス(
10mTorr )のCF4濃度を変化させてRFス″
ツタ(■(s+s=200V、  20 分) シfc
後、Ar−5102,/7ス中(30znTorr )
でプラズマ酸化(V、、、=100V、2分)しその後
Nb O土lB[極を形成して素子を作製した。これら
4種類の菓子の特性を表2に示す。CF4濃度が高いと
カーボンの堆積量が増大しその後の酸化でもカーメンか
除去できなかったものと考えられる。
Example 2 The four substrates on which the base was removed and SiO stencils were formed in Example 1 were treated with an Ar-CF4-02 mixed gas (
10mTorr) by changing the CF4 concentration.
Ivy (■(s+s=200V, 20 minutes) sifc
After, Ar-5102, /7 speed (30znTorr)
After plasma oxidation (V, = 100 V, 2 minutes), a Nb 2 O soil IB electrode was formed to fabricate the device. Table 2 shows the characteristics of these four types of confectionery. It is thought that when the CF4 concentration was high, the amount of carbon deposited increased and even the subsequent oxidation could not remove carmene.

表   2 実施例3 実施例1で下地電極、StOのステンシルを
形成した4枚の基板をlr −CF4−02混合カス(
30mTorr )の02濃度をi化させてビス・母り
(VCl、=250V 、 20分)した後^r−3%
02ガス中(40mTorr )でプラズマ酸化(VC
,1=80 V、4分)しその後A&t−水乍t。
Table 2 Example 3 Four substrates on which base electrodes and StO stencils were formed in Example 1 were treated with lr-CF4-02 mixed scum (
After converting the 02 concentration (30mTorr) to i and performing bis-concentration (VCl, = 250V, 20 minutes), it becomes ^r-3%.
Plasma oxidation (VC) in 02 gas (40 mTorr)
, 1=80 V, 4 minutes) and then A & t-water.

なから上部電極用Nbを蒸着、・lターニングして素子
を作製しfCo各粂件で得られた菓子の時性t−#!3
に示す。
From above, Nb for the upper electrode was evaporated, and elements were fabricated by turning. 3
Shown below.

表  3 このように酸系一度が尚いとAr −CF4−02ガス
中でのスバ、り時にエツチングと同時に酸化も遍打する
ためその後の酸化により酸化膜厚が厚くなっている。
Table 3 As shown in the above, if the acid system is not applied once, the oxidation will occur at the same time as the etching during slubbing in the Ar-CF4-02 gas, and the oxide film will become thicker due to subsequent oxidation.

実施例4 実施例1でF地蝋億、SiOのステンシルf
:形成した4枚の基板倉Ar−5チCF4−2%02混
合ガスのガス圧を変化させてガス・母ツタ(VC,、=
20UV、 20分) シfc彼Ar −4%o2ガス
中(30mTorr )でゾラズーvfli化(Vo、
、=70V。
Example 4 In Example 1, F base wax and SiO stencil f
: By changing the gas pressure of the CF4-2%02 mixed gas in the four substrate warehouses Ar-5, the gas and mother ivy (VC,,=
20UV, 20 minutes) Solarization (Vo,
,=70V.

3分)シ、その後Nbの上部電極を変形して素子を作製
した。表4に各素子の特性を示す。
3 minutes) After that, the Nb upper electrode was deformed to produce a device. Table 4 shows the characteristics of each element.

表   4 ガス圧が低いとエツチングが不十分であシガス圧が高す
ぎるとエツチングが進行しすき゛てダメージになってい
る〇 実施例5 実施例1で下地電極、S10のステンシルを
形成した2枚の基板をAr−5%CF4−2%02混合
ガス中(15mTorr )でスノ母ツタ(■。、、=
200V、20分)した後1枚は抵抗加熱でStを約1
00X蒸看し大気管導入して自然酸化して5102のバ
リヤを形成した後排気してにガス中(30mTorr 
)でスパッタ(vcsm=100V、 5分)した、そ
の後Nbの上部電極を形成して素子を作製した。得られ
た素子特性はトンネル形でおったが図−5に示すように
リークの多い特性であった。これはStの蒸着時にピン
ホールができた友めである。一方他の1枚はス/4ツタ
後Ar −31J6SiH4ガス中でRF放亀(0,2
Torr 、 V(B=200V。
Table 4: If the gas pressure is low, etching is insufficient; if the gas pressure is too high, etching progresses and causes damage. The substrate was grown with snow ivy (■.,,=
200V, 20 minutes), one sheet was heated to a St of about 1 by resistance heating.
After introducing 00X steam into an atmospheric pipe and naturally oxidizing it to form a 5102 barrier, it was exhausted and placed in a gas atmosphere (30 mTorr).
) sputtering (vcsm=100V, 5 minutes), and then an Nb upper electrode was formed to fabricate a device. The obtained device characteristics were tunnel type, but as shown in Figure 5, they had characteristics with a lot of leakage. This is a result of pinholes created during the deposition of St. On the other hand, the other one was exposed to RF radiation (0,2
Torr, V (B=200V.

100分)するcとにより約100 !(2)Bit−
付着させその後Siの一部又は全部自然酸化して510
2のバリヤを形成しArで処理(30mTorr。
100 minutes) c and about 100! (2) Bit-
After deposition, some or all of the Si is naturally oxidized to form 510
2 barrier was formed and treated with Ar (30 mTorr).

VC,、=100V、5分)した後Nbの土部電極全形
成して素子を作製した得られた素子特性は図−4の特性
と同様のIJ−りの少ないトンネル形の特性であった。
VC, = 100 V for 5 minutes), the entire Nb soil electrode was formed and a device was fabricated.The device characteristics obtained were tunnel-shaped characteristics with less IJ-resistance, similar to the characteristics shown in Figure 4. .

このような特性上のオリ点の他にSiH4ガスをRF放
電して前記基板上に異槓物′Xを堆積する方法では単に
反応容器内にAr −5IH4がス奮導入するだけでよ
いので簡率な1根で特性のよい索子t−実埃できる。
In addition to this characteristic point, the method of depositing the foreign material 'X on the substrate by RF discharge of SiH4 gas is simple because it is sufficient to simply introduce Ar-5IH4 into the reaction vessel. One root with a high rate can produce a t-seed with good characteristics.

〔発明の幼果〕[Young fruit of invention]

以上説明したようにNb農表向をAr −CFa −0
2混合ガスの混合比を辿んでRFス・母ツタすれば低電
圧においても短時間でしかもNb表面にダメーノを与え
ることな(Nbの清浄表面を得ることができ、その清浄
表面は10数Xのカーメンにより保躾されているためガ
ス交侠時の表(3)の劣化を防止することができる。そ
の後直接酸化法あるいは異種物質堆積法によシバリヤを
形成すれはフォト工程を通したことによるNbの劣化を
全て回復することができる利点がある。
As explained above, the Nb agricultural surface is changed to Ar −CFa −0
If you follow the mixing ratio of the two mixed gases and apply RF gas, you can obtain a clean Nb surface in a short time even at low voltage without damaging the Nb surface. Because it is protected by the carmen, it is possible to prevent the deterioration of Table (3) during gas exchange.Then, the shibariya is formed by direct oxidation method or foreign material deposition method by passing through the photo process. There is an advantage that all the deterioration of Nb can be recovered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAr −CF4− O2混合ガスのO2濃度を
変化させてスノ母ツタした時のNb表面へのカーメンの
堆積膜厚を示すグラフ、第2図はAr−CF4−O2混
合ガス中で自己バイアスを変化させてスパッタした時の
Nb表面へのカーボ/の堆積膜厚を示すグラフ、第3図
はリークの少ない準粒子トンネルリングのV−I%性を
示すグラフ、@41:dはトンネル形のジ、セフンン接
合のV−1%iを示すグラフ、そして第5図は蒸*5t
t−酸化して形成した5102バリヤの素子のV−I特
性を示すグラフである。 第4図 第5図
Figure 1 is a graph showing the thickness of carmen deposited on the Nb surface when the O2 concentration of the Ar-CF4-O2 mixed gas is changed, and Figure 2 is the graph showing the thickness of carmen deposited on the Nb surface when the O2 concentration of the Ar-CF4-O2 mixed gas is changed. A graph showing the deposition film thickness of carb/ on the Nb surface when sputtering with varying self-bias. Figure 3 is a graph showing the V-I% characteristic of quasiparticle tunneling with little leakage. @41:d is A graph showing V-1%i of a tunnel-shaped junction, and Fig.
3 is a graph showing the VI characteristics of a 5102 barrier element formed by t-oxidation. Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)  Nb超伝導薄膜から成る−を地電極の表面を
Ar −CF4ガス又はAr −CF’4−0.2ガス
中でRFスノ!ツタした後、酸化してトンイ・ルバリャ
層を形成することを特徴也するトン坏ル形ノヨセノノ/
接合素子の作製力流。
(1) The surface of a ground electrode made of a Nb superconducting thin film was exposed to RF snow in Ar-CF4 gas or Ar-CF'4-0.2 gas. After it vines, it oxidizes and forms a ton-i-rubarya layer.
Process for manufacturing bonding elements.
(2)  Nb超伝導薄膜から瓜る下地電極の表(8)
をAr−CF4ガス又はAr −CF”a −02ガス
中でRFス、eツタした後1.異樵物實を堆積し、つい
でこの異櫨物貿を酸化してトンネルバリヤ層を形成する
こと金%倣とする1ンイル形ノヨセフン/嫉ム素子の作
製方法。
(2) Table of the base electrode extending from the Nb superconducting thin film (8)
1. Deposit a foreign material and then oxidize the foreign material to form a tunnel barrier layer. A method for producing a 1-in-1 type noyosefun/jewel element imitating gold.
JP57041293A 1982-03-16 1982-03-16 Manufacture of tunnel type josephson junction element Granted JPS58158981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041293A JPS58158981A (en) 1982-03-16 1982-03-16 Manufacture of tunnel type josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041293A JPS58158981A (en) 1982-03-16 1982-03-16 Manufacture of tunnel type josephson junction element

Publications (2)

Publication Number Publication Date
JPS58158981A true JPS58158981A (en) 1983-09-21
JPS6258677B2 JPS6258677B2 (en) 1987-12-07

Family

ID=12604399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041293A Granted JPS58158981A (en) 1982-03-16 1982-03-16 Manufacture of tunnel type josephson junction element

Country Status (1)

Country Link
JP (1) JPS58158981A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126889U (en) * 1989-03-29 1990-10-18
JPH0535364U (en) * 1991-10-24 1993-05-14 益弘 光山 File

Also Published As

Publication number Publication date
JPS6258677B2 (en) 1987-12-07

Similar Documents

Publication Publication Date Title
US5264077A (en) Method for producing a conductive oxide pattern
JPS58158981A (en) Manufacture of tunnel type josephson junction element
JP2785313B2 (en) Photomask blank and photomask
CN111453692A (en) Nano-pillar array and preparation method thereof
EP0591312B1 (en) Structured conductor tracks and process for making them
JPS58192390A (en) Manufacture of tunnel type josephson junction element
CN115802873A (en) ALD Josephson junction preparation method based on metal mask etching
JPS5979585A (en) Manufacture of josephson junction element
JP2533233B2 (en) Manufacturing method of oxide superconducting thin film
JPS58134484A (en) Manufacture of josephson junction element
JPH0494179A (en) Production of oxide superconducting thin film device
JPH0544184B2 (en)
JPH0145218B2 (en)
JPS587890A (en) Manufacture of tunnel type josephson junction element
JPS5934626A (en) Method for formation of semiconductor film
JPS60148178A (en) Tunnel type josephson junction element and manufacture thereof
JPH04340775A (en) Superconducting element and its manufacture
JPS62165379A (en) Manufacture of josephson junction device
JPH05152276A (en) Manufacture of semiconductor device
JPH04345075A (en) Superconducting element and its manufacture
JPS63283179A (en) Manufacture of jusephson-junction device
JPS6260835B2 (en)
JPS61111589A (en) Manufacture of tunnel type josephson element
JPH0548159A (en) Oxide superconductor device and manufacture thereof
JPS58112375A (en) Manufacture of photovoltaic device