JPH04345075A - Superconducting element and its manufacture - Google Patents

Superconducting element and its manufacture

Info

Publication number
JPH04345075A
JPH04345075A JP3117279A JP11727991A JPH04345075A JP H04345075 A JPH04345075 A JP H04345075A JP 3117279 A JP3117279 A JP 3117279A JP 11727991 A JP11727991 A JP 11727991A JP H04345075 A JPH04345075 A JP H04345075A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting layer
thin film
layer
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3117279A
Other languages
Japanese (ja)
Inventor
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3117279A priority Critical patent/JPH04345075A/en
Publication of JPH04345075A publication Critical patent/JPH04345075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a multilayered superconducting element having a stable junction structure using oxide superconductor. CONSTITUTION:A superconducting element of a planar type structure is formed as follows; a junction is formed by bringing a non-superconducting layer 12 into contact with a superconducting layer 13 formed of a lead based superconducting oxide thin film in which at least lead, copper and oxygen are contained as main components, the superconducting layer 13 is isolated into at least two parts and turned into superconducting poles, the non- sperconducting layer 12 is formed of a lead based oxide thin film containing oxygen more than the superconducting layer 13, and a superconducting junction part is formed by using the above layers 12, 13.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高臨界温度を有する酸
化物超伝導体薄膜により形成した超伝導素子、およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting element formed from an oxide superconductor thin film having a high critical temperature, and a method for manufacturing the same.

【0002】0002

【従来の技術】高温超伝導体として、ミューラ(Mul
ler)等によりペロブスカイト類型構造の酸化物超伝
導体が発見された。それ以後種々の酸化物系で超伝導性
の確認がなされ、主体成分が、鉛(Pb)、アルカリ土
類元素(A)、希土類元素(Ln)、銅(Cu)の酸化
物からなるPb系超伝導体は、70K程度の超伝導臨界
温度をもつということが発見され、例えばネイチャー第
336巻第211〜214頁[R.J.Cava, B
.Batlogg,J.J.Krajewski, L
.W.Rupp, L.F.Schneemeyer,
 T.Siegrist, R.B.van Dove
r, P.Marsh, W.F.Peck,Jr, 
P.K.Gallagher, S.H.Glarum
, J.H.Marshall, R.C.Farro
w,J.V.Waszczak, R.Hull an
d P.Trevor, Nature, Vol.3
36, 211−214 (1988)]に記載された
[Prior Art] Muller (Muller) is a high-temperature superconductor.
An oxide superconductor with a perovskite-type structure was discovered by E.L.R. Since then, superconductivity has been confirmed in various oxide systems. It has been discovered that superconductors have a superconducting critical temperature of about 70K, for example, as reported in Nature, Vol. 336, pp. 211-214 [R. J. Cava, B.
.. Batlogg, J. J. Krajewski, L.
.. W. Rupp, L. F. Schneemeyer,
T. Siegrist, R. B. van Dove
r, P. Marsh, W. F. Peck, Jr.
P. K. Gallagher, S. H. Glarum
, J. H. Marshall, R. C. Farro
w, J. V. Waszczak, R. Hull an
dP. Trevor, Nature, Vol. 3
36, 211-214 (1988)].

【0003】詳細な解析の結果、この物質は他の高温酸
化物超伝導体と同様に層状構造をとり、ペロブスカイト
構造ユニット(A,Ln)CuO3の2層が隣接するP
bO−Cu−PbOブロック層で挟まれた構造となって
いる。理想化学組成は(Pb2Cu)(A,Ln)3C
u2Oxであり、代表的な物質として(Pb2Cu)S
r2(Y,Ca)Cu2Oxが知られている。
[0003] As a result of detailed analysis, this material has a layered structure similar to other high-temperature oxide superconductors, with two layers of perovskite structural units (A, Ln) and CuO3 adjacent to each other.
It has a structure sandwiched between bO-Cu-PbO block layers. The ideal chemical composition is (Pb2Cu)(A,Ln)3C
u2Ox, and (Pb2Cu)S is a typical substance.
r2(Y,Ca)Cu2Ox is known.

【0004】一方超伝導体材料を用いた代表的な素子と
して超伝導接合素子が挙げられる。この素子は非超伝導
層を2つの超伝導体により挟んだ構造を特徴としており
、超高速スイッチ、超高周波信号処理などとして期待さ
れている。現在のところ高温超伝導材料を用いたこの種
の素子としては、YBa2Cu3Oy などの酸化物超
伝導体を二つに割り、再びわずかに接触させた点接触型
超伝導接合素子、酸化物超伝導体を薄膜化してくびれ状
に加工したブリッジ型超伝導接合素子などが試作されて
いる。
On the other hand, a superconducting junction element is a typical element using a superconductor material. This device features a structure in which a non-superconducting layer is sandwiched between two superconductors, and is expected to be used as an ultra-high-speed switch, ultra-high frequency signal processing, etc. At present, this type of device using high-temperature superconducting materials includes a point-contact superconducting junction device in which an oxide superconductor such as YBa2Cu3Oy is split in half and brought into slight contact again; Prototype bridge-type superconducting junction devices have been produced in which the thin film is processed into a constricted shape.

【0005】[0005]

【発明が解決しようとする課題】従来試作されている超
伝導接合素子のうち、酸化物超伝導体どうしを接触させ
る点接触型では再現性が得られず、また特性が不安定で
あった。また酸化物超伝導体にくびれをつけたブリッジ
型では、わずかな静電的ショックで破損するという欠点
があった。
[Problems to be Solved by the Invention] Among the superconducting bonding devices that have been prototyped so far, the point contact type in which oxide superconductors are brought into contact with each other has not been able to achieve reproducibility and has unstable characteristics. Another disadvantage of the bridge type, in which the oxide superconductor is constricted, is that it can be damaged by even the slightest electrostatic shock.

【0006】そこで酸化物超伝導体を用いた安定な接合
構造を持つ平面型超伝導素子が望まれている。これは超
伝導薄膜と非超伝導薄膜を積層し、この超伝導薄膜を少
なくとも2つの部分に分離して超伝導電極とした構造を
特徴とするが、酸化物超伝導体と非超伝導体の積層は比
較的高温で行なうため、超伝導層と非超伝導層を構成す
る元素が拡散するか、あるいは超伝導層に用いた材料と
非超伝導層の材料の熱膨張係数が違うため、熱ストレス
により超伝導層の超伝導性が損なわれたり、非超伝導層
にピンホールができる等の問題があった。
[0006] Therefore, a planar superconducting element having a stable junction structure using an oxide superconductor is desired. This is characterized by a structure in which a superconducting thin film and a non-superconducting thin film are laminated, and this superconducting thin film is separated into at least two parts to form a superconducting electrode. Since the lamination is carried out at a relatively high temperature, the elements constituting the superconducting layer and non-superconducting layer may diffuse, or the materials used for the superconducting layer and the material for the non-superconducting layer may have different coefficients of thermal expansion, resulting in heat loss. There were problems such as the stress impairing the superconductivity of the superconducting layer and the formation of pinholes in the non-superconducting layer.

【0007】また、超伝導層に用いた材料と非超伝導層
の材料の結晶構造の違いによる格子の不整合性などによ
って、超伝導層の結晶性が悪くなるなどの問題点も指摘
されていた。
[0007] Furthermore, problems have been pointed out, such as poor crystallinity of the superconducting layer due to lattice mismatch due to differences in crystal structures between the materials used for the superconducting layer and the materials for the non-superconducting layer. Ta.

【0008】本発明は、化学的に安定な結晶構造を有し
、超伝導層の超伝導特性の劣化が少なく、非超伝導層上
に積層した超伝導電極の超伝導特性が保持できる超伝導
素子およびその製造法を提供することを目的とする。
The present invention provides a superconductor that has a chemically stable crystal structure, has little deterioration in the superconducting properties of a superconducting layer, and can maintain the superconducting properties of a superconducting electrode laminated on a non-superconducting layer. The purpose of the present invention is to provide an element and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明は主体成分が少な
くとも鉛、銅および酸素を含む鉛系酸化物薄膜により積
層形成した超伝導層と非超伝導層とを用い、この超伝導
層を少なくとも2つの部分に面方向に分離し、これら2
つの超伝導層に形成された分離部分を、これら超伝導層
の含有酸素量よりも多量の酸素量を含有した非超伝導層
を介して電流が流れる超伝導接合部を形成し、この平面
形構造を特徴とする超伝導素子により前期課題を解決す
るものである。
[Means for Solving the Problems] The present invention uses a superconducting layer and a non-superconducting layer formed by stacking lead-based oxide thin films containing at least lead, copper and oxygen as main components, Separate into two parts in the plane direction, and
A superconducting junction is formed by separating the two superconducting layers into a superconducting junction where current flows through a non-superconducting layer containing a larger amount of oxygen than the superconducting layers. This aims to solve the previous problem by using a superconducting element with a unique structure.

【0010】0010

【作用】本発明の超伝導素子は鉛系薄膜酸化物を基体上
に積層し、基体直上の鉛系酸化物は非超伝導層であり、
この非超伝導層上の鉛系酸化物は超伝導層であり、この
超伝導層を少なくとも2つに面方向に分割した構成であ
り、非超伝導層形成時には酸素分圧を高く制御し、超伝
導層形成時には逆に酸素分圧を低めることで達成できる
。酸素分圧が低い方が良好な薄膜構造が出来る原因は定
かではないが、PbO−Cu−PbOブロック層の金属
元素の価数が低いため、酸化が過剰になるとブロック層
の構造が壊れるからではないかと考えられる。
[Operation] In the superconducting element of the present invention, a lead-based thin film oxide is laminated on a substrate, and the lead-based oxide directly above the substrate is a non-superconducting layer.
The lead-based oxide on this non-superconducting layer is a superconducting layer, and this superconducting layer is divided into at least two in the plane direction, and when forming the non-superconducting layer, the oxygen partial pressure is controlled high, Conversely, this can be achieved by lowering the oxygen partial pressure when forming a superconducting layer. The reason why a thin film structure is better when the oxygen partial pressure is lower is not clear, but it may be because the valence of the metal element in the PbO-Cu-PbO block layer is low, so excessive oxidation will destroy the structure of the block layer. It is thought that there is.

【0011】また非超伝導層も超伝導層と同じ鉛を含む
ため、蒸気圧の高い鉛元素に対しても熱的に安定で拡散
が少なく、ほぼ完全に近い均一な非超伝導層を再現性よ
く形成でき、良好な電流電圧特性を示す超伝導素子が形
成できる。同時に、この超伝導素子の非超伝導層が超伝
導層と同系列の結晶構造であるため、非超伝導層自体お
よびこの上に形成した超伝導層材料の結晶性を向上させ
る。
[0011] Furthermore, since the non-superconducting layer contains the same lead as the superconducting layer, it is thermally stable and has little diffusion even with the lead element, which has a high vapor pressure, making it possible to reproduce an almost perfectly uniform non-superconducting layer. It is possible to form a superconducting element with good properties and exhibit good current-voltage characteristics. At the same time, since the non-superconducting layer of this superconducting element has the same crystal structure as the superconducting layer, the crystallinity of the non-superconducting layer itself and the superconducting layer material formed thereon is improved.

【0012】0012

【実施例】本発明は酸素分圧を調整することで酸化物超
伝導特性が制御できる点、これを利用して酸化物薄膜積
層時に酸素分圧を変化させることで任意の層で非超伝導
層と超伝導層とが作成できる点、鉛系酸化物超伝導体は
他の酸化物超伝導体と異なり酸素分圧を低くする方が良
好な薄膜構造と超伝導特性が得られる点、鉛系酸化物薄
膜超伝導体は他の酸化物超伝導体よりも基板温度が比較
的低温で形成できる点、およびこれらのことを利用して
平面型の薄膜超伝導素子の非超伝導層上に積層する超伝
導層の原子構造が変化することなく積層できる点の5つ
の要素に基づき成されたものである。
[Example] The present invention has the advantage that the oxide superconducting properties can be controlled by adjusting the oxygen partial pressure, and by using this to change the oxygen partial pressure when stacking oxide thin films, any layer becomes non-superconducting. lead-based oxide superconductors, unlike other oxide superconductors, can obtain a better thin film structure and superconducting properties by lowering the oxygen partial pressure; The fact that oxide thin film superconductors can be formed at relatively lower substrate temperatures than other oxide superconductors, and by taking advantage of these factors, they can be formed on non-superconducting layers of planar thin film superconducting elements. This was achieved based on five factors: the superconducting layers can be stacked without changing their atomic structures.

【0013】従来の酸化物超伝導薄膜作成においては、
良好な超伝導特性を得るため酸化の促進が重要であり、
作成雰囲気中の酸素分圧を出来る限り上げるか、あるい
は通常の酸素分子の代わりに酸化能力のより高い活性酸
素、原子酸素、オゾン等を用いて製造されていた。
In the conventional production of oxide superconducting thin films,
It is important to promote oxidation to obtain good superconducting properties.
They were produced by increasing the oxygen partial pressure in the production atmosphere as much as possible, or by using active oxygen, atomic oxygen, ozone, etc., which have higher oxidizing ability, in place of ordinary oxygen molecules.

【0014】しかしながらこの技術を同じ高温酸化物超
伝導体であるPb系超伝導体Pb−A−Ln−Cu−O
に応用した場合には、薄膜において超伝導体の結晶構造
を得ることが出来なかった。これは前述したようにPb
O−Cu−PbOブロック層の金属元素の価数が低く、
酸化が過剰になるとブロック層の構造が壊れるためと想
定し、本発明者らは、作成雰囲気中の酸素分圧を極端に
下げていった実験を行ったところ、酸化物材料であるに
もかかわらず、意外にもある酸素分圧以下でPb系超伝
導体の結晶構造の薄膜が良好に得られることを発見した
。酸素分圧は適度に低い方がよいが、上限は0.1Pa
程度であった。
However, this technology was applied to Pb-based superconductor Pb-A-Ln-Cu-O, which is the same high-temperature oxide superconductor.
When applied to , it was not possible to obtain the crystal structure of a superconductor in a thin film. As mentioned above, this is Pb
The valence of the metal element in the O-Cu-PbO block layer is low,
Assuming that excessive oxidation would destroy the structure of the block layer, the inventors conducted an experiment in which the oxygen partial pressure in the creation atmosphere was extremely lowered, and found that although it was an oxide material, First, it was surprisingly discovered that a thin film having a crystalline structure of a Pb-based superconductor can be obtained satisfactorily below a certain oxygen partial pressure. It is better for the oxygen partial pressure to be moderately low, but the upper limit is 0.1 Pa.
It was about.

【0015】この結果例えばスパッタリング蒸着でこの
Pb系の薄膜を作成する場合、通常酸化物薄膜ではスパ
ッタガスとして酸素と不活性ガスの混合ガスが使用され
るところを、酸素を含まない不活性ガスのみにすると良
好なPb系超伝導薄膜が得られる。またMBE、電子ビ
ーム蒸着、イオンビームスパッタ、あるいはレーザー蒸
着などの高真空蒸着装置を用いてこのPb系の薄膜を作
成する場合には、前述のように酸化力の強い活性酸素、
原子酸素、オゾンのような特別なガスを使う必要がなく
、その際の基体近傍の真空度が例えば10−3Pa以下
の高真空で作成が可能であり、原子層制御蒸着を行なう
上で特に効果を発する。
As a result, when creating a Pb-based thin film by sputtering deposition, for example, instead of the usual sputtering gas that uses a mixed gas of oxygen and inert gas for oxide thin films, only an inert gas that does not contain oxygen is used. If this is done, a good Pb-based superconducting thin film can be obtained. In addition, when creating this Pb-based thin film using a high vacuum evaporation apparatus such as MBE, electron beam evaporation, ion beam sputtering, or laser evaporation, active oxygen, which has strong oxidizing power,
There is no need to use special gases such as atomic oxygen or ozone, and the vacuum level near the substrate can be created at a high vacuum of, for example, 10-3 Pa or less, making it particularly effective for atomic layer controlled deposition. emits.

【0016】またこのPb系の材料は、薄膜作成中の基
体の温度が他の酸化物超伝導材料に比べて比較的低く、
400〜600℃で作成可能である。基体温度がこれ以
上高いと、膜中のPb元素が再蒸発するため、やはりP
b系超伝導体の良好な結晶構造が得られないことを確認
した。
[0016] Furthermore, with this Pb-based material, the temperature of the substrate during thin film formation is relatively low compared to other oxide superconducting materials.
It can be produced at 400-600°C. If the substrate temperature is higher than this, the Pb element in the film will re-evaporate, so P
It was confirmed that a good crystal structure of the b-based superconductor could not be obtained.

【0017】超伝導素子として例えば超伝導接合の超伝
導層および非超伝導層の材料としてこのようなPb系層
状酸化物を用いると、超伝導層のPb系超伝導薄膜が比
較的低温で成膜でき、かつPb系以外の酸化物超伝導材
料を薄膜化して超伝導性を実現するために問題となる酸
化条件に対し、特別の注意をはらう必要がなく、さらに
前記非超伝導薄膜を、前記Pb系超伝導薄膜の形成にお
ける酸素条件を制御するだけで形成できるので、素子を
つくるうえで安定な工程が実現できる。
When such a Pb-based layered oxide is used as a material for a superconducting layer and a non-superconducting layer of a superconducting junction in a superconducting element, the Pb-based superconducting thin film of the superconducting layer can be formed at a relatively low temperature. There is no need to pay special attention to the oxidation conditions that are a problem when thinning oxide superconducting materials other than Pb to achieve superconductivity, and the non-superconducting thin film is Since the Pb-based superconducting thin film can be formed simply by controlling the oxygen conditions, a stable process can be realized in manufacturing the device.

【0018】また非超伝導層も同じPbを含むため、蒸
気圧の高いPb元素に対しても熱的に安定で拡散が少な
く、ほぼ完全に近い均一な層構造を有する非超伝導層を
再現性よく形成でき、良好な電流電圧特性を示す超伝導
素子が形成できる。同時に、この超伝導素子の非超伝導
層が超伝導層と同系列の結晶構造であるため、非超伝導
層自体およびこれに対向する超伝導層材料の結晶性を向
上させる。特に超伝導層および非超伝導層となるPb系
層状酸化物を、基板表面に対してその結晶のc軸が垂直
に配向した薄膜を用いることにより、良好な結晶性を有
し、より良好な超伝導特性をもつ超伝導薄膜を実現でき
、これによりさらに安定な超伝導接合素子が実現可能と
なる。
[0018] Furthermore, since the non-superconducting layer also contains the same Pb, it is thermally stable and has little diffusion even with the Pb element, which has a high vapor pressure, and it is possible to reproduce a non-superconducting layer that has an almost perfectly uniform layer structure. It is possible to form a superconducting element with good properties and exhibit good current-voltage characteristics. At the same time, since the non-superconducting layer of this superconducting element has the same crystal structure as the superconducting layer, the crystallinity of the non-superconducting layer itself and the superconducting layer material facing it are improved. In particular, by using thin films of Pb-based layered oxides, which serve as superconducting and non-superconducting layers, in which the c-axis of the crystal is oriented perpendicular to the substrate surface, it has good crystallinity. A superconducting thin film with superconducting properties can be realized, which makes it possible to realize a more stable superconducting junction device.

【0019】本発明の超伝導素子の形態は平面型であり
、その製造方法としては上述したスパッタリング蒸着、
MBE、電子ビーム蒸着、イオンビームスパッタあるい
はレーザー蒸着等通常の手法で行える。本発明の超伝導
素子は前述したようにPb系酸化物薄膜を用い、即ち加
熱基体上に少なくとも鉛(Pb)と銅(Cu)とを主体
金属成分として含む薄膜を蒸着し、先ず基体上にはPb
系酸化物薄膜形成工程中あるいはPb系酸化物薄膜形成
工程を中断し、酸化性ガスの導入もしくは酸化性イオン
照射の何れかの処理で非超伝導化する。次に、この非超
伝導層上に非超伝導層と主体金属が同一のPb系酸化物
薄膜を堆積すると、このPb系酸化物薄膜は超伝導層と
なる。上述したように本発明の超伝導素子の超伝導層は
、構成金属元素自体が非超伝導層と同一であるため、従
来の平面型超伝導素子の欠点であった非超伝導層と超伝
導層との材料の違いによる格子不整合等に起因する超伝
導層の結晶性の劣化等の課題が解決できる。また、本発
明の超伝導素子は、非超伝導層及び超伝導層ともに鉛系
酸化物薄膜を用いるため、蒸気圧が高い鉛元素に対して
も熱的に安定で拡散が少なく、良好な電流電圧特性を有
する超伝導素子を提供できる。
The form of the superconducting element of the present invention is a planar type, and its manufacturing method includes the above-mentioned sputtering vapor deposition,
This can be done by conventional techniques such as MBE, electron beam evaporation, ion beam sputtering, or laser evaporation. As mentioned above, the superconducting element of the present invention uses a Pb-based oxide thin film, that is, a thin film containing at least lead (Pb) and copper (Cu) as main metal components is deposited on a heated substrate, and then the thin film is first deposited on the substrate. is Pb
During the Pb-based oxide thin film formation step or the Pb-based oxide thin film formation step is interrupted, and non-superconductivity is achieved by either introducing an oxidizing gas or irradiating oxidizing ions. Next, when a Pb-based oxide thin film whose main metal is the same as that of the non-superconducting layer is deposited on this non-superconducting layer, this Pb-based oxide thin film becomes a superconducting layer. As mentioned above, the superconducting layer of the superconducting element of the present invention has the same constituent metal elements as the non-superconducting layer. Problems such as deterioration of crystallinity of the superconducting layer due to lattice mismatch due to differences in materials between the superconducting layer and the superconducting layer can be solved. In addition, since the superconducting element of the present invention uses a lead-based oxide thin film for both the non-superconducting layer and the superconducting layer, it is thermally stable even with lead element having a high vapor pressure, has little diffusion, and has a good current flow. A superconducting element having voltage characteristics can be provided.

【0020】上述した非超伝導化工程で用いる酸化性ガ
スとしては、例えばオゾンガスあるいは酸化窒素系ガス
等が供されるが、オゾンガス、N2OガスあるいはNO
2ガスが酸化力が強いため好ましい。また、上述した非
超伝導化工程でも散る酸化性イオンとしては、例えば酸
素イオン、イオウイオン、塩素イオンあるいはフッ素イ
オン等が供されるが、単独イオンとして存在し易くまた
扱い易い点で酸素イオンが好ましい。
As the oxidizing gas used in the above-mentioned non-superconducting process, for example, ozone gas or nitrogen oxide gas is used, but ozone gas, N2O gas or NO
2 gases are preferred because they have strong oxidizing power. In addition, as the oxidizing ions scattered in the above-mentioned non-superconducting process, for example, oxygen ions, sulfur ions, chlorine ions, fluorine ions, etc. are provided, but oxygen ions are preferable because they exist easily as individual ions and are easy to handle. preferable.

【0021】また、本発明の超伝導素子を素子化する際
に、例えばエッチング等の処理プロセスから超伝導層を
保護するために、例えば超伝導層上に白金等の安定な保
護層を常法により設けてもよいこと勿論である。
Furthermore, when fabricating the superconducting element of the present invention, in order to protect the superconducting layer from treatment processes such as etching, a stable protective layer such as platinum is formed on the superconducting layer using a conventional method. Of course, it may also be provided by

【0022】本発明者らによる発明の内容をさらに深く
理解されるために、以下に本発明の超伝導素子の一例と
してジョセフソン素子を取り上げ、具体的な実施例を用
いて説明する。
In order to further understand the content of the invention made by the present inventors, a Josephson device will be taken up as an example of the superconducting device of the present invention and will be explained using specific examples.

【0023】実施例1 図1〜図5は本発明の一実施例を示すプロセス図である
Embodiment 1 FIGS. 1 to 5 are process diagrams showing an embodiment of the present invention.

【0024】Pb系酸化物超伝導体Pb−Sr−Y−C
a−Cu−O薄膜の作成には、高周波マグネトロンスパ
ッタ装置を用いて行なった。スパッタリングターゲット
は、Pb5Sr2Y1.25Ca0.7Cu3.3O5
の直径80mmの円盤とした。550℃に加熱したMg
O単結晶(100)面基体上に、100Wのスパッタリ
ング放電を行ない薄膜を作成した。約30分で2000
Å程度のPb2Sr2Y0.5Ca0.5Cu3Ox薄
膜が形成された。純アルゴンのみのスパッタガスを用い
た場合は、良好にc軸配向したPb系超伝導薄膜が得ら
れた。この膜の格子定数はc=15.75Åであり、P
b系超伝導焼結体で得られている値と一致した。また超
伝導転移温度は70Kであった。
Pb-based oxide superconductor Pb-Sr-Y-C
The a-Cu-O thin film was created using a high-frequency magnetron sputtering device. The sputtering target is Pb5Sr2Y1.25Ca0.7Cu3.3O5
It was made into a disk with a diameter of 80 mm. Mg heated to 550℃
A thin film was formed on an O single crystal (100) plane substrate by performing sputtering discharge at 100 W. 2000 in about 30 minutes
A Pb2Sr2Y0.5Ca0.5Cu3Ox thin film of about .ANG. was formed. When a sputtering gas containing only pure argon was used, a Pb-based superconducting thin film with good c-axis orientation was obtained. The lattice constant of this film is c=15.75 Å, and P
This value coincided with the value obtained for b-based superconducting sintered bodies. Moreover, the superconducting transition temperature was 70K.

【0025】素子の作成は、まず図1に示したように、
MgO基板を基体11に用い、アルゴンガスと0.2P
aの分圧(即ち0.1Pa以上の分圧)の酸素ガスを導
入して、非超伝導層12として厚さ200nm程度のP
b−Sr−Y−Ca−Cu−O薄膜を堆積させた。この
非超伝導層12は、鉛系超伝導酸化物と同じ構成元素の
材料であるが、超伝導材料に比較して酸素含有量が多く
、結晶性は若干弱くなっている。この非超伝導層12を
成膜後、ひき続き同一真空槽内の酸素ガスを排気し、図
2に示したように0.4Paの純アルゴンを導入して厚
さ50nm程度のPb−Sr−Y−Ca−Cu−O薄膜
を超伝導電極13として形成した。さらにこの後本実施
例では、後で述べるプロセスから超伝導層13を保護す
るため、基板温度を下げて同様にして白金層14を蒸着
した。  その後、図3に示したように電子ビームレジ
スト15を用いた電子ビームリソグラフィー、およびイ
オンミリングにより、超伝導層13及び白金層14をお
よそ0.1μm隔てて2つの部分に分離し、超伝導層1
3を超伝導電極としてパターニングした。このときのイ
オンミリングは、非超伝導層12の表面の超伝導層13
と白金層14とを分離するために行い、非超伝導層12
に対しては一部ミリングされるが電気的に分離しないよ
うに行なう。その後、電子ビームレジスト15を除去し
、ネガレジスト16を用いたフォトリソグラフィーおよ
びイオンミリングにより、非超伝導層12及び超伝導電
極13および白金層14をジョセフソン接合形状にパタ
ーニングし、図4に示したようにネガレジスト16を除
去せずに、電極間分離層17として250nmのCaF
2を真空蒸着により堆積後、トリクロロエタンによる超
音波洗浄、およびO2ガスプラズマ処理によるリフトオ
フ法で白金層14の表面を露出させた。
[0025] To create the element, first, as shown in FIG.
Using an MgO substrate as the base 11, argon gas and 0.2P
Oxygen gas at a partial pressure of a (that is, a partial pressure of 0.1 Pa or more) is introduced to form a P layer with a thickness of about 200 nm as the non-superconducting layer 12.
b-Sr-Y-Ca-Cu-O thin film was deposited. This non-superconducting layer 12 is made of a material with the same constituent elements as the lead-based superconducting oxide, but has a higher oxygen content and slightly weaker crystallinity than the superconducting material. After forming this non-superconducting layer 12, the oxygen gas in the same vacuum chamber was subsequently evacuated, and as shown in FIG. 2, pure argon of 0.4 Pa was introduced to form a Pb-Sr- A Y--Ca--Cu--O thin film was formed as the superconducting electrode 13. Furthermore, in this example, in order to protect the superconducting layer 13 from the process described later, the substrate temperature was lowered and a platinum layer 14 was deposited in the same manner. Thereafter, as shown in FIG. 3, the superconducting layer 13 and the platinum layer 14 are separated into two parts by approximately 0.1 μm apart by electron beam lithography using an electron beam resist 15 and ion milling, and the superconducting layer 1
3 was patterned as a superconducting electrode. At this time, the ion milling is performed on the superconducting layer 13 on the surface of the non-superconducting layer 12.
and the platinum layer 14, and the non-superconducting layer 12
A portion of the material is milled, but this is done in such a way that it is not electrically separated. Thereafter, the electron beam resist 15 was removed, and the non-superconducting layer 12, superconducting electrode 13 and platinum layer 14 were patterned into a Josephson junction shape by photolithography and ion milling using a negative resist 16, as shown in FIG. As described above, 250 nm of CaF was used as the interelectrode separation layer 17 without removing the negative resist 16.
2 was deposited by vacuum evaporation, the surface of the platinum layer 14 was exposed by ultrasonic cleaning using trichloroethane and a lift-off method using O2 gas plasma treatment.

【0026】最後に、メタルマスクを用い分離された白
金層14の2つの白金電極の一部にそれぞれ接触させ、
図5に示したようにコンタクト電極18として200n
mの白金を高周波マグネトロンスパッタリング法により
堆積させ超伝導素子を完成させた。
Finally, a metal mask is used to contact parts of the two platinum electrodes of the separated platinum layer 14, and
As shown in FIG. 5, the contact electrode 18 is 200nm.
A superconducting device was completed by depositing m of platinum by high-frequency magnetron sputtering.

【0027】この製造方法による超伝導素子は、70K
において良好な超伝導特性およびジョセフソン効果を示
した。図6は非超伝導層が数オーム・cmの導電率をも
つ場合に得られるSNSと呼ばれる超伝導接合の特性の
一例である。この素子において100μAの超伝導電流
が流れた。
[0027] A superconducting element manufactured by this manufacturing method can be manufactured at 70K.
showed good superconducting properties and Josephson effect. FIG. 6 shows an example of the characteristics of a superconducting junction called SNS obtained when the non-superconducting layer has a conductivity of several ohms.cm. A superconducting current of 100 μA flowed in this device.

【0028】実施例2 他の実施例としてPb−Sr−Y−Ca−Cu−O薄膜
作成をMBE装置を用いて行なった例を示す。原材料と
してPbO化合物、Sr金属、Y金属、Ca金属、Cu
金属を用い、5個の加熱るつぼにそれぞれ充填して各元
素を個別に蒸発させる。蒸着室を10−5Pa以下に排
気した後、550℃に加熱した基体に蒸着を行なった。 薄膜の化学組成がPb2Sr2Y0.5Ca0.5Cu
3Oxとなるように各元素の蒸着量の設定を行なった。 成膜中に蒸着室には酸素ガスを導入するが、基板付近の
真空度が10−3Pa以下の時にPb系超伝導体の結晶
構造の薄膜が得られた。実際には基板付近の真空度は1
0−4Paとかなり高真空であり、原子層制御などの精
密な構造制御が可能である。得られる薄膜は、c軸が垂
直に配向しMgO基体と結晶方位の揃ったエピタキシャ
ル薄膜であることが反射電子線回折で確認された。この
膜は85Kで急峻な超伝導転移を示した。
Example 2 Another example is shown in which a Pb-Sr-Y-Ca-Cu-O thin film was formed using an MBE apparatus. Raw materials include PbO compound, Sr metal, Y metal, Ca metal, Cu
Using metal, each element is individually evaporated by filling five heated crucibles. After the vapor deposition chamber was evacuated to 10 −5 Pa or less, vapor deposition was performed on a substrate heated to 550° C. The chemical composition of the thin film is Pb2Sr2Y0.5Ca0.5Cu
The amount of vapor deposition of each element was set so that the amount was 3Ox. Oxygen gas was introduced into the deposition chamber during film formation, and a thin film with the crystal structure of a Pb-based superconductor was obtained when the degree of vacuum near the substrate was 10 −3 Pa or less. In reality, the degree of vacuum near the substrate is 1
The vacuum is quite high (0-4 Pa), and precise structural control such as atomic layer control is possible. It was confirmed by backscattered electron diffraction that the obtained thin film was an epitaxial thin film in which the c-axis was oriented perpendicularly and the crystal orientation was aligned with the MgO substrate. This film showed a steep superconducting transition at 85K.

【0029】素子の基本形態自体は実施例1と同様であ
り、その作成方法は、まず、蒸着室を排気して酸素ガス
を導入し、各々の坩堝からの蒸発量を制御し、厚さ20
0nmのPb−Sr−Y−Ca−Cu−O薄膜を図1に
示したように、500℃に加熱したNdGaO3基体1
1の表面に形成した。この薄膜を成膜後、基板温度はそ
のままにして、同一真空槽内に導入した酸素ガスを0.
1Pa以下に排気し、引き続いて100nm程度の超伝
導層Pb−Sr−Y−Ca−Cu−Oを蒸着した。 その後、実施例1の場合と同様にしてフォトリソグラフ
ィーおよびイオンミリング等により図5に示すような超
伝導素子を完成させた。
The basic form of the element itself is the same as in Example 1, and the method for manufacturing it is as follows: First, the vapor deposition chamber is evacuated, oxygen gas is introduced, and the amount of evaporation from each crucible is controlled.
As shown in Fig. 1, a 0 nm Pb-Sr-Y-Ca-Cu-O thin film was heated to 500°C on a NdGaO3 substrate 1.
It was formed on the surface of 1. After forming this thin film, the substrate temperature remained the same and the oxygen gas introduced into the same vacuum chamber was adjusted to 0.
The atmosphere was evacuated to 1 Pa or less, and then a superconducting layer of about 100 nm, Pb-Sr-Y-Ca-Cu-O, was deposited. Thereafter, a superconducting element as shown in FIG. 5 was completed by photolithography, ion milling, etc. in the same manner as in Example 1.

【0030】実施例3 MBE蒸着法を用いて行なったもう一つの実施例を示す
。まず、蒸着室を排気して、各々の坩堝からの蒸発量を
制御する事により厚さ200nmの超伝導Pb−Sr−
Y−Ca−Cu−O薄膜を、図1に示したように500
℃に加熱したNdGaO3基体11の表面に形成した。 この薄膜を成膜後、基板温度はそのままにして引き続き
同一真空槽内に10Paのオゾンガスを導入し、超伝導
薄膜を酸化することにより、均一な非超伝導層12とし
て形成した。酸素ガスの代わりにオゾン、N2Oまたは
NO2等のガスも効果的であった。 その後同一真空槽内に導入した酸素ガスを0.1Pa以
下に排気し、まったく同じ条件のもとで引き続いて10
0nm程度の超伝導層Pb−Sr−Y−Ca−Cu−O
を蒸着した。その後、実施例1の場合と同様にしてフォ
トリソグラフィーおよびイオンミリング等により図5に
示したような超伝導素子を完成させた。
Example 3 Another example using the MBE vapor deposition method will be described. First, by evacuating the vapor deposition chamber and controlling the amount of evaporation from each crucible, a 200 nm thick superconducting Pb-Sr-
The Y-Ca-Cu-O thin film was deposited at 500 nm as shown in Figure 1.
It was formed on the surface of the NdGaO3 substrate 11 heated to .degree. After forming this thin film, ozone gas at 10 Pa was introduced into the same vacuum chamber while the substrate temperature remained unchanged to oxidize the superconducting thin film, thereby forming a uniform non-superconducting layer 12. Gases such as ozone, N2O or NO2 instead of oxygen gas were also effective. After that, the oxygen gas introduced into the same vacuum chamber was evacuated to 0.1 Pa or less, and the oxygen gas was continuously
Superconducting layer Pb-Sr-Y-Ca-Cu-O of about 0 nm
was deposited. Thereafter, a superconducting element as shown in FIG. 5 was completed by photolithography, ion milling, etc. in the same manner as in Example 1.

【0031】この非超伝導層12は、その表面に形成し
た超伝導電極と同じ構成元素の材料であるが、この超伝
導電極に比較して酸素含有量が多く、結晶性は若干弱く
なっている。
This non-superconducting layer 12 is made of the same constituent elements as the superconducting electrode formed on its surface, but has a higher oxygen content and slightly weaker crystallinity than the superconducting electrode. There is.

【0032】このMBE法による超伝導接合の形成に於
ける非超伝導層の形成に関して、基体上に超伝導層を蒸
着した後、酸素イオンをこの表面に照射する方法も効果
が大きかった。この場合には例えばカウフマン型のイオ
ン源により発生させた酸素イオンを、数百V以下の電圧
で加速し、第1の超伝導電極の表面に照射すればよい。 ECRイオン源など各種のイオン源が利用できる。
Regarding the formation of a non-superconducting layer in the formation of a superconducting junction by this MBE method, a method of depositing a superconducting layer on a substrate and then irradiating the surface with oxygen ions was also highly effective. In this case, oxygen ions generated by, for example, a Kauffman type ion source may be accelerated at a voltage of several hundred volts or less and irradiated onto the surface of the first superconducting electrode. Various ion sources can be used, such as an ECR ion source.

【0033】なお、上記実施例では何れもジョセフソン
素子を例にとり述べたが、本発明の超伝導素子はジョセ
フソン素子の限定されるものではなく、超伝導接合を利
用した超伝導素子であれば何れでも同じ原理であること
勿論である。
[0033]Although the above embodiments have all been described using Josephson elements as an example, the superconducting element of the present invention is not limited to Josephson elements, and may be any superconducting element using superconducting junction. Of course, the principle is the same in both cases.

【0034】[0034]

【発明の効果】以上説明したように、本発明の超伝導素
子は非超伝導層と超伝導層を積層した構造であり、それ
らのどちらもPb系層状酸化物で構成されているので、
材料組成・結晶構造が同一であるため化学的に安定であ
り、超伝導層の超伝導性の劣化が少なく、優れた超伝導
素子を製造できる効果がある。
[Effects of the Invention] As explained above, the superconducting element of the present invention has a structure in which a non-superconducting layer and a superconducting layer are laminated, both of which are composed of a Pb-based layered oxide.
Since the material composition and crystal structure are the same, they are chemically stable, and there is little deterioration in the superconductivity of the superconducting layer, making it possible to manufacture excellent superconducting elements.

【0035】さらにその製造方法は、薄膜形成時に酸素
雰囲気を必要としない酸化物超伝導材料であるPb−S
r−Y−Ca−Cu−Oを選択したことにより、高真空
蒸着法のような精密な薄膜形成法を利用することができ
、非常に均一な非超伝導層を形成することが可能となっ
た。そして、超伝導電極を酸化するだけで、制御性よく
均一な非超伝導層を形成することが可能となり、非常に
簡便で制御性に富んでいるので、素子作成の均一性、安
定性に優れ、信頼性の高い接合特性が得られる利点があ
る。
Furthermore, the manufacturing method uses Pb-S, which is an oxide superconducting material that does not require an oxygen atmosphere during thin film formation.
By selecting r-Y-Ca-Cu-O, it is possible to use precise thin film formation methods such as high vacuum evaporation, making it possible to form a highly uniform non-superconducting layer. Ta. Furthermore, by simply oxidizing the superconducting electrode, it is possible to form a uniform non-superconducting layer with good controllability, which is extremely simple and highly controllable, resulting in excellent uniformity and stability in device fabrication. , has the advantage of providing highly reliable bonding characteristics.

【0036】このことは現在超伝導応用のひとつとして
超伝導接合素子を構成要素とする超伝導量子干渉計が実
用化されているが、本発明の超伝導素子は超伝導接合素
子として動作しており、この素子を用いると高性能の超
伝導量子干渉計を構成できる効果がある。
[0036] This means that although a superconducting quantum interferometer that uses a superconducting junction element as a component is currently in practical use as one of the superconducting applications, the superconducting element of the present invention does not operate as a superconducting junction element. Therefore, using this element has the effect of making it possible to construct a high-performance superconducting quantum interferometer.

【0037】さらに本発明の超伝導素子は、低消費電力
のスイッチング素子や、非線形性、あるいは超伝導体に
特有の量子効果を利用した高感度の高周波のミキサーと
しても利用できる。
Furthermore, the superconducting element of the present invention can be used as a switching element with low power consumption, or as a high-sensitivity high-frequency mixer that utilizes nonlinearity or quantum effects specific to superconductors.

【0038】これらの点だけでも本発明の超伝導素子は
、計算機応用、電子機器応用などにたいする実用的効果
が大であることは明らかである。
From these points alone, it is clear that the superconducting element of the present invention has great practical effects in computer applications, electronic equipment applications, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の超伝導素子の製造方法のプ
ロセス図
FIG. 1: Process diagram of a method for manufacturing a superconducting element according to an embodiment of the present invention

【図2】本発明の一実施例の超伝導素子の製造方法のプ
ロセス図
[Fig. 2] Process diagram of a method for manufacturing a superconducting element according to an embodiment of the present invention

【図3】本発明の一実施例の超伝導素子の製造方法のプ
ロセス図
[Fig. 3] Process diagram of a method for manufacturing a superconducting element according to an embodiment of the present invention

【図4】本発明の一実施例の超伝導素子の製造方法のプ
ロセス図
[Fig. 4] Process diagram of a method for manufacturing a superconducting element according to an embodiment of the present invention

【図5】本発明の一実施例の超伝導素子の製造方法のプ
ロセス図
[Fig. 5] Process diagram of a method for manufacturing a superconducting element according to an embodiment of the present invention

【図6】本発明の一実施例で得た薄膜における電気的特
性の図
[Figure 6] Diagram of electrical characteristics of a thin film obtained in an example of the present invention

【符号の説明】[Explanation of symbols]

11  基体 12  非超伝導層 13  超伝導層 14  白金層 15  電子ビームレジスト 16  ネガレジスト 17  電極間分離層 18  コンタクト電極 11 Base 12 Non-superconducting layer 13 Superconducting layer 14 Platinum layer 15 Electron beam resist 16 Negative resist 17 Interelectrode separation layer 18 Contact electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  基体上に非超伝導層と、前記非超伝導
層の表面に接して形成した超伝導層とを形成し、前記超
伝導層を少なくとも2つの部分に分離して少なくとも2
つの超伝導電極とした平面型超伝導素子において、前記
非超伝導層と前記超伝導層の主体成分が少なくとも鉛、
銅および酸素を含む鉛系酸化物薄膜であり、前記非超伝
導層を構成する薄膜の酸素含有量が前記超伝導層を形成
する薄膜の酸素含有量に比較して多量であることを特徴
とする超伝導素子。
1. A non-superconducting layer and a superconducting layer formed in contact with a surface of the non-superconducting layer are formed on a substrate, and the superconducting layer is separated into at least two parts.
In a planar superconducting element having two superconducting electrodes, the main component of the non-superconducting layer and the superconducting layer is at least lead,
A lead-based oxide thin film containing copper and oxygen, characterized in that the oxygen content of the thin film forming the non-superconducting layer is greater than the oxygen content of the thin film forming the superconducting layer. superconducting element.
【請求項2】  加熱基体上に主体成分が少なくとも鉛
、銅および酸素を含む鉛系酸化物非超伝導薄膜を蒸着形
成する非超伝導層形成工程、前記非超伝導層形成工程後
前記鉛系酸化物非超伝導薄膜と少なくとも主体金属成分
が同一の鉛系酸化物超伝導層薄膜を蒸着形成する超伝導
層形成工程を含み、前記非超伝導層形成工程時の酸化雰
囲気が、前記超伝導層形成工程時の酸化雰囲気よりも強
いことを特徴とする超伝導素子の製造方法。
2. A non-superconducting layer forming step of vapor depositing a lead-based oxide non-superconducting thin film containing at least lead, copper and oxygen as main components on a heating substrate; It includes a superconducting layer forming step of vapor depositing a lead-based oxide superconducting layer thin film having at least the same main metal component as the non-superconducting oxide thin film, and the oxidizing atmosphere during the non-superconducting layer forming step is A method for producing a superconducting element characterized by being stronger than the oxidizing atmosphere during the layer formation process.
【請求項3】  非超伝導層形成工程が、酸化性ガスを
含む雰囲気中での鉛系酸化物の蒸着、鉛系超伝導層蒸着
後酸化性ガスの導入、酸化性イオン照射を含む鉛系酸化
物の蒸着又は鉛系超伝導層蒸着後酸化性イオン照射の何
れかを行うことを特徴とする、請求項2記載の超伝導素
子の製造方法。
3. A lead-based non-superconducting layer in which the non-superconducting layer forming step includes vapor deposition of a lead-based oxide in an atmosphere containing an oxidizing gas, introduction of an oxidizing gas after vapor-depositing the lead-based superconducting layer, and irradiation with oxidizing ions. 3. The method of manufacturing a superconducting element according to claim 2, wherein either oxide deposition or oxidizing ion irradiation is performed after the lead-based superconducting layer is deposited.
【請求項4】  酸化性ガスが、オゾン、N2O又はN
O2の何れかであることを特徴とする請求項3記載の超
伝導素子の製造方法。
Claim 4: The oxidizing gas is ozone, N2O or N
4. The method for manufacturing a superconducting element according to claim 3, wherein the material is O2.
【請求項5】  酸化性イオンが、ECRプラズマ源に
より発生させることを特徴とする請求項3記載の超伝導
素子の製造方法。
5. The method of manufacturing a superconducting device according to claim 3, wherein the oxidizing ions are generated by an ECR plasma source.
【請求項6】  超伝導層形成工程が、非超伝導層形成
工程の酸化性ガス又は酸化性イオンの何れかを排気後蒸
着することを特徴とする、請求項2又は3何れかに記載
の超伝導素子の製造方法。
6. The method according to claim 2 or 3, wherein the superconducting layer forming step is performed by vapor deposition after exhausting either the oxidizing gas or the oxidizing ions in the non-superconducting layer forming step. Method for manufacturing superconducting elements.
【請求項7】  超伝導層形成工程の排気が、0.1P
a以下にすることを特徴とする、請求項6記載の超伝導
素子の製造方法。
[Claim 7] The exhaust gas in the superconducting layer forming step is 0.1P.
7. The method for manufacturing a superconducting element according to claim 6, wherein the superconducting element is made less than or equal to a.
JP3117279A 1991-05-22 1991-05-22 Superconducting element and its manufacture Pending JPH04345075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3117279A JPH04345075A (en) 1991-05-22 1991-05-22 Superconducting element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3117279A JPH04345075A (en) 1991-05-22 1991-05-22 Superconducting element and its manufacture

Publications (1)

Publication Number Publication Date
JPH04345075A true JPH04345075A (en) 1992-12-01

Family

ID=14707816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3117279A Pending JPH04345075A (en) 1991-05-22 1991-05-22 Superconducting element and its manufacture

Country Status (1)

Country Link
JP (1) JPH04345075A (en)

Similar Documents

Publication Publication Date Title
JPH01161881A (en) Josephson element and its manufacture
EP0342039B1 (en) Josephson device and method of making same
JPS63224116A (en) Manufacture of thin film superconductor
JPH04345075A (en) Superconducting element and its manufacture
JPH04340775A (en) Superconducting element and its manufacture
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH04285012A (en) Formation of oxide superconductor thin film
JP2003282981A (en) Josephson junction element and its manufacturing method
JPH05226709A (en) Superconductive element and its manufacture
JPH02298085A (en) Manufacture of josephson device
JP2533233B2 (en) Manufacturing method of oxide superconducting thin film
JPH05170448A (en) Production of thin ceramic film
JPH06104498A (en) Superconducting element and manufacture thereof
JP2976427B2 (en) Method of manufacturing Josephson device
JPS6167282A (en) Resistance element for superconductor integrated circuit and manufacture thereof
JPH0196015A (en) Formation of superconducting thin film
JPH05194095A (en) Production of thin-film electric conductor
JP2969068B2 (en) Superconducting element manufacturing method
JPH04171872A (en) Josephson device and manufacture thereof
JP2006216831A (en) Josephson junction and manufacturing method thereof
JPS6332974A (en) Superconducting semiconductor junction element and its manufacture
JPH0523073B2 (en)
JPH0492816A (en) Production of thin-film superconductor
JPH039579A (en) Oxide superconductive pattern
JPH01286914A (en) Production of superconductor of thin film