JPH039579A - Oxide superconductive pattern - Google Patents

Oxide superconductive pattern

Info

Publication number
JPH039579A
JPH039579A JP1144853A JP14485389A JPH039579A JP H039579 A JPH039579 A JP H039579A JP 1144853 A JP1144853 A JP 1144853A JP 14485389 A JP14485389 A JP 14485389A JP H039579 A JPH039579 A JP H039579A
Authority
JP
Japan
Prior art keywords
pattern
critical temperature
phase
superconducting
temperature phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1144853A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1144853A priority Critical patent/JPH039579A/en
Publication of JPH039579A publication Critical patent/JPH039579A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase the degree of integration and improve the mass productivity of the title pattern by injecting Pb in a prescribed pattern into a Bi-Sr-Ca-Cu- O substance in a low-critical temperature or non-superconducting phase and constituting the pattern in a high-critical temperature phase obtained by the Pb injection and the low-critical temperature phase at the surrounding section. CONSTITUTION:For patterning an electronic device using a superconducting material of a Bi oxide, Pb is injected in the direction shown by the arrow 6 into a Bi-Sr-Ca-Cu-O substance in a previously prepared low critical temperature phase 2 or non-superconducting phase so as to constitute the pattern in a high-critical temperature phase 25 obtained by the Pb injection and the low- critical temperature phase 2 or non-superconducting phase at the surrounding section. Therefore, an electric device can be made to a monolithic device and its degree of integration and mass productivity can be improved, since an oxide superconducting pattern of can be prepared easily.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は超伝導ベーストランジスタ、超伝導電界効果型
トランジスタ等超伝導材料を用いた電子デバイスのモノ
リシック化の為のパターニングに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to patterning for monolithicization of electronic devices using superconducting materials such as superconducting base transistors and superconducting field effect transistors.

[従来の技術] 臨界温度が高く液体窒素冷却による幅広い応用が期待さ
れるBi系酸化物超伝導材料を超伝導ベーストランジス
タや超伝導電界効果トランジスタ等電子デバイスに用い
るには高集積化、量産性の面からモノリシック化が必要
不可欠である。しかしモノリシック化はまだ適正手段が
選定されておらず成されていない。
[Prior art] Bi-based oxide superconducting materials, which have a high critical temperature and are expected to have a wide range of applications when cooled with liquid nitrogen, require high integration and mass production in order to be used in electronic devices such as superconducting base transistors and superconducting field effect transistors. From this point of view, monolithicization is essential. However, monolithicization has not yet been achieved as appropriate means have not been selected.

[発明が解決しようとする課題] いまだモノリシック化が図れていないのは酸化物超伝導
体は加工中に特性が変化し易いため微細パターン化した
後安定した超伝導特性を得ることが困難であるためでる
0本発明はこの困難な点を解決するものであり高集積化
が可能でt産性に優れた電子デバイスを容易に得んとす
るものである。
[Problems to be solved by the invention] The reason why monolithicization has not yet been achieved is that the properties of oxide superconductors change easily during processing, making it difficult to obtain stable superconducting properties after fine patterning. The present invention is intended to solve this difficult point and to easily obtain an electronic device that can be highly integrated and has excellent productivity.

[課題を解決するための手段] 上記の問題を解決するため本発明の酸化物超伝導パター
ンは1)Bi系酸化物超伝導材料を用いた電子デバイス
の為のパターニングに於て予め作製した低臨界温度相ま
たは非超伝導体相の゛Bi−8r−Ca−Cu−0物質
上に所定のパターンでPbを注入し、Pb注入により得
られる高臨界温度相とその周部の低臨界温度相または非
超伝導相によりパターンを構成したこと2)Pb注入中
または注入後熱処理を行い形成すること3)Pb注入中
または注入後の熱処理を酸化窒素雰囲気中で行い形成す
ること4)Pb注入中または注入後の熱処理に於て光を
照射して形成することを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the oxide superconducting pattern of the present invention is: Pb is implanted in a predetermined pattern onto the Bi-8r-Ca-Cu-0 material in the critical temperature phase or non-superconductor phase, and the high critical temperature phase obtained by Pb injection and the low critical temperature phase around it Or, the pattern is composed of a non-superconducting phase. 2) It is formed by heat treatment during or after Pb implantation. 3) It is formed by heat treatment during or after Pb implantation in a nitrogen oxide atmosphere. 4) During Pb implantation. Alternatively, it is characterized in that it is formed by irradiating light during heat treatment after implantation.

[実施例コ 以下実施例に従い本発明を説明する。[Example code] The present invention will be explained below with reference to Examples.

先ず最初に第1図に示すように単結晶MgO基板(10
0)1上に反応蒸着法よりBi−Sr−Ca−Cu−○
膜2を380nm形成する。
First, as shown in Figure 1, a single crystal MgO substrate (10
0) Bi-Sr-Ca-Cu-○ by reactive vapor deposition method on 1
A film 2 is formed to a thickness of 380 nm.

成膜は蒸発原料にB i −P b合金、Sr、Ca。For film formation, the evaporation raw materials are Bi-Pb alloy, Sr, and Ca.

Cuの金属を用い、蒸発はBi−Pb合金は電子ビーム
により他の金属はKnudsenセルにより行なった。
Cu metal was used, and evaporation of Bi-Pb alloy was performed by electron beam and other metals were performed by Knudsen cell.

条件は初期真空度2*1(1’Torr、成膜中真空度
3〜9*10−’Torr、基板温度600〜680℃
、成膜速度20〜35nm/ m i nであり、酸素
の供給はマイクロ波で活性化した酸素プラズマを基板部
に成膜中に照射して行う、得られたBi−Sr−Ca−
Cu−0膜2はX線回折、トンネル顕微鏡(STM: 
ステージ温度を変えトンネル電流を調べる)、RHEE
D分析によると一部半導体相を含むエピタキシャル成長
した低臨界温度相(臨界温度73K)であった。
The conditions were: initial vacuum level 2*1 (1'Torr), vacuum level during film formation 3-9*10-'Torr, and substrate temperature 600-680°C.
, the film formation rate was 20 to 35 nm/min, and oxygen was supplied by irradiating the substrate with oxygen plasma activated by microwaves during film formation.
The Cu-0 film 2 was analyzed by X-ray diffraction and tunneling microscopy (STM:
(change the stage temperature and examine the tunnel current), RHEE
According to D analysis, it was an epitaxially grown low critical temperature phase (critical temperature 73K) containing a portion of a semiconductor phase.

次にBi−Sr−Ca−Cu−0膜2(以後低臨界温度
相とも呼ぶ)上にRFマグネトロンスパッタによりMg
0層3を250nm、Au層4を抵抗加熱蒸着により1
50nm形成する。その後フォトリソグラフィ(5はレ
ジストを示す)、ドライエツチングにより図2に示すよ
うにMg0層3とAu層4によりマスクを形成する。こ
こでマスクにMgOだけでなくAuを複合させたのはイ
オン注入時に於けるパターンの安定化のためである。
Next, Mg was deposited on the Bi-Sr-Ca-Cu-0 film 2 (hereinafter also referred to as low critical temperature phase) by RF magnetron sputtering.
0 layer 3 to 250 nm, Au layer 4 to 1 by resistance heating vapor deposition.
50 nm thick. Thereafter, a mask is formed using the Mg0 layer 3 and the Au layer 4 as shown in FIG. 2 by photolithography (5 indicates a resist) and dry etching. The reason why not only MgO but also Au is composited into the mask is to stabilize the pattern during ion implantation.

次にPbイオンをBi−Sr−Ca−Cu−0膜2中に
注入(矢印6は注入方向を示す)しパタニングした後、
水銀灯(特殊光源5tJV−110V、ll0W)によ
り紫外線を照射しながら温度300〜620℃酸化窒素
雰囲気中で15時間熱処理を行う。ここで紫外線を照射
するのは酸素を活性化するためである。照射により熱処
理温度を低くしたり短時間にすることが可能となり作製
条件のマージンが広がりパターン精密化(Pb拡散の制
御)のための条件の適正化を行い易くしている。また雰
囲気を酸化窒素で行うのは純酸素に比べ高臨界温度相を
得易いためである。
Next, after implanting Pb ions into the Bi-Sr-Ca-Cu-0 film 2 (arrow 6 indicates the direction of implantation) and patterning,
Heat treatment is performed for 15 hours at a temperature of 300 to 620° C. in a nitrogen oxide atmosphere while irradiating ultraviolet rays with a mercury lamp (special light source 5tJV-110V, 110W). The purpose of irradiating ultraviolet light here is to activate oxygen. Irradiation makes it possible to lower the heat treatment temperature or shorten the time, which widens the margin for manufacturing conditions, making it easier to optimize conditions for pattern refinement (control of Pb diffusion). The reason why the atmosphere is nitrogen oxide is that it is easier to obtain a high critical temperature phase than with pure oxygen.

次にマスクをエツチングにより除去したのちトンネル顕
微鏡とEPMAにより膜平面方向の超伝導特性とパター
ンを調べた。その結果Pbを注入した部分は臨界温度1
00に以上の高臨界温度相2Sでその周囲は液体窒素温
度77により低い低臨界温度相2であった。液体窒素冷
却に於ては低臨界温度相2は非超伝導相(半導体的)と
なり超伝導相と非超伝導相によりパターンが形成される
Next, after removing the mask by etching, the superconducting properties and pattern in the plane direction of the film were investigated using a tunneling microscope and EPMA. As a result, the critical temperature of the part where Pb was injected was 1.
A high critical temperature phase 2S having a temperature of 0.00 or higher was surrounded by a low critical temperature phase 2 having a lower liquid nitrogen temperature of 77. In liquid nitrogen cooling, the low critical temperature phase 2 becomes a non-superconducting phase (semiconductor-like), and a pattern is formed by the superconducting phase and the non-superconducting phase.

本発明ではイオン注入法によりEi−9r−Ca−Cu
−0膜中Pbを注入したがマスキング後Pb蒸気中で熱
処理を行い膜中にPbを拡散させて注入しても効果は同
じであり何等差し支えない。
In the present invention, Ei-9r-Ca-Cu is
Although Pb was injected into the -0 film, there is no problem even if Pb is diffused into the film by heat treatment in Pb vapor after masking and then injected, as the effect is the same.

[発明の効果] 以上述べたように本発明によれば容易に酸化物超伝導の
バッターを作製できるため電子デバイスのモノリシック
化が図れ高集積化、量産性の向上が可能となる。
[Effects of the Invention] As described above, according to the present invention, since an oxide superconducting batter can be easily produced, electronic devices can be made monolithic, and highly integrated and mass productivity can be improved.

本発明により得られた酸化物超伝導パターンはその後電
極等を形成し超伝導トランジスタ等電子デバイスに応用
することが出来る。
The oxide superconducting pattern obtained by the present invention can then be applied to electronic devices such as superconducting transistors by forming electrodes and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフォトリソグラフィまでの形成膜の断面図。 第2図はマスク形成後のイオン注入を示す断面図。 ・MgO基板 ・Bi−Sr−Ca−Cu−0膜 (低臨界温度相) ・高臨界温度相 ・MgO層 ・Au層 ・レジスト 第3図は高臨界温度層と低臨界温度層の状態を示す断面
図。 1 ・ 2 ・ 以上
FIG. 1 is a cross-sectional view of a film formed up to photolithography. FIG. 2 is a cross-sectional view showing ion implantation after mask formation.・MgO substrate ・Bi-Sr-Ca-Cu-0 film (low critical temperature phase) ・High critical temperature phase ・MgO layer ・Au layer ・Resist Figure 3 shows the states of the high critical temperature layer and the low critical temperature layer. Cross-sectional view. 1, 2, or more

Claims (1)

【特許請求の範囲】 1)Bi系酸化物超伝導材料を用いた電子デバイスの為
のパターニングに於て予め作製した低臨界温度相または
非超伝導体相のBi−Sr−Ca−Cu−O物質上に所
定のパターンでPbを注入し、Pb注入により得られる
高臨界温度相とその周部の低臨界温度相または非超伝導
相によりパターンを構成したことを特徴とする酸化物超
伝導パターン。 2)Pb注入中または注入後熱処理を行い形成すること
を特徴とする請求項1記載の酸化物超伝導パターン。 3)Pb注入中または注入後の熱処理を酸化窒素雰囲気
中で行い形成することを特徴とする請求項1記載の酸化
物超伝導パターン。 4)Pb注入中または注入後の熱処理に於て光を照射し
て形成することを特徴とする請求項1記載の酸化物超伝
導パターン。
[Claims] 1) Bi-Sr-Ca-Cu-O in a low critical temperature phase or non-superconductor phase prepared in advance in patterning for electronic devices using Bi-based oxide superconducting materials. An oxide superconducting pattern characterized in that Pb is implanted onto a substance in a predetermined pattern, and the pattern is composed of a high critical temperature phase obtained by Pb implantation and a low critical temperature phase or non-superconducting phase around the high critical temperature phase. . 2) The oxide superconducting pattern according to claim 1, wherein the pattern is formed by performing heat treatment during or after Pb implantation. 3) The oxide superconducting pattern according to claim 1, wherein the oxide superconducting pattern is formed by performing heat treatment during or after the Pb implantation in a nitrogen oxide atmosphere. 4) The oxide superconducting pattern according to claim 1, wherein the oxide superconducting pattern is formed by irradiating light during or during heat treatment after Pb implantation.
JP1144853A 1989-06-07 1989-06-07 Oxide superconductive pattern Pending JPH039579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1144853A JPH039579A (en) 1989-06-07 1989-06-07 Oxide superconductive pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144853A JPH039579A (en) 1989-06-07 1989-06-07 Oxide superconductive pattern

Publications (1)

Publication Number Publication Date
JPH039579A true JPH039579A (en) 1991-01-17

Family

ID=15371937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144853A Pending JPH039579A (en) 1989-06-07 1989-06-07 Oxide superconductive pattern

Country Status (1)

Country Link
JP (1) JPH039579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804835A (en) * 1991-11-13 1998-09-08 Seiko Epson Corporation Method of operating a high temperature superconductive device comprising superconductive source, drain, and channel regions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804835A (en) * 1991-11-13 1998-09-08 Seiko Epson Corporation Method of operating a high temperature superconductive device comprising superconductive source, drain, and channel regions

Similar Documents

Publication Publication Date Title
EP0325765B1 (en) Josephson device having a josephson junction structure suitable for an oxide superconductor
EP0478464B1 (en) Method for manufacturing a superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
US6188919B1 (en) Using ion implantation to create normal layers in superconducting-normal-superconducting Josephson junctions
EP0478466B1 (en) A superconducting device and a method for manufacturing the same
KR940002412B1 (en) Supercoductive multilayer circuit and manufacturing method thereof
US5219834A (en) Process for producing a superconducting transistor
JPH039579A (en) Oxide superconductive pattern
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
KR930001567B1 (en) Structure of superconductor wiring and process for its formation
JPH01132008A (en) Superconductor and its manufacture
JPH02298085A (en) Manufacture of josephson device
JP2641977B2 (en) Superconducting element fabrication method
JP2641974B2 (en) Superconducting element and fabrication method
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JPH01211985A (en) Manufacture of josephson element
JPS63306677A (en) Superconducting device and manufacture thereof
JP2641971B2 (en) Superconducting element and fabrication method
JPH02197179A (en) Josephson junction element and manufacture thereof
JPH04171872A (en) Josephson device and manufacture thereof
EP0338084A1 (en) Structure of superconductor wiring and process for its formation
JPH07288346A (en) Formation of thin film and josephson element
JPH0335571A (en) Tunnel element
JPH01246373A (en) Manufacture of thin-film superconductor
JPH01199489A (en) Manufacture of superconducting circuit
JPH02114678A (en) Superconductive element