JPH07288346A - Formation of thin film and josephson element - Google Patents

Formation of thin film and josephson element

Info

Publication number
JPH07288346A
JPH07288346A JP6102338A JP10233894A JPH07288346A JP H07288346 A JPH07288346 A JP H07288346A JP 6102338 A JP6102338 A JP 6102338A JP 10233894 A JP10233894 A JP 10233894A JP H07288346 A JPH07288346 A JP H07288346A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
superconducting thin
substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6102338A
Other languages
Japanese (ja)
Inventor
Satoshi Kaneko
智 金子
Seishiro Oya
誠志郎 大屋
Masaru Kobayashi
賢 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA PREF GOV
Kanagawa Prefecture
Original Assignee
KANAGAWA PREF GOV
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA PREF GOV, Kanagawa Prefecture filed Critical KANAGAWA PREF GOV
Priority to JP6102338A priority Critical patent/JPH07288346A/en
Publication of JPH07288346A publication Critical patent/JPH07288346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a method for formation of thin films wherein a superconductive thin film and a non-superconductive thin film are formed on the flat surface of a substrate to manufacture a superconducting element using a simple process. CONSTITUTION:Thin film material is applied to a substrate 8 that, when it has crystallinity, delivers superconductive characteristics, and thin films are thereby grown. Previously and locally injected with inert gas, the substrate 8 has a region 3 where the inert gas has been injected and a region 4 where no inner gas has been injected. A superconductive thin film 12 of a thin film material having superconductive characteristics, is grown on the non-injection region 4. At the same time a non-superconductive film 11 of a thin film material having no superconductive characteristics, is formed on the injection region 3. This makes it possible to form a non-superconductive thin film without forming any step or trench on the surface of a substrate, and thus to manufacture a superconducting element, such as a Josephson element, with the surface of a substrate kept flat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超伝導薄膜の成膜方法と
超伝導薄膜を用いたジョセフソン素子にかかり、特に、
基板上に超伝導薄膜と非超伝導薄膜を同時に成膜する薄
膜製造方法、及び、その薄膜製造方法により得られた非
超伝導薄膜をバリアとして用いたジョセフソン素子に関
する。
FIELD OF THE INVENTION The present invention relates to a method for forming a superconducting thin film and a Josephson device using the superconducting thin film.
The present invention relates to a thin film manufacturing method for simultaneously forming a superconducting thin film and a non-superconducting thin film on a substrate, and a Josephson device using the non-superconducting thin film obtained by the thin film manufacturing method as a barrier.

【0002】[0002]

【従来の技術】従来より、例えばジョセフソン素子等
の、超伝導薄膜と非超伝導薄膜とで接合をつくる超伝導
素子が作製されており、超伝導特性を利用した磁気検出
装置が実用化され、また、超伝導コンピュータの作製が
試みられている。このように、超伝導素子は広汎な用途
に使用されることが期待されているが、それに使用され
る非超伝導薄膜と超伝導薄膜は、従来技術では、別々の
工程で作製されたものが使用され、その組成は互いに異
なっていたり、配向が異なっている等、種々のものが用
いられていた。
2. Description of the Related Art Conventionally, a superconducting device such as a Josephson device, which makes a junction between a superconducting thin film and a non-superconducting thin film, has been manufactured, and a magnetic detection device utilizing superconducting characteristics has been put into practical use. Also, the production of superconducting computers has been attempted. As described above, it is expected that the superconducting device will be used in a wide range of applications, but the non-superconducting thin film and the superconducting thin film used for the superconducting device are conventionally manufactured by separate steps. Various compositions have been used, such as different compositions and different orientations.

【0003】しかしながら、後の加工の容易性や素子の
信頼性向上の要求から、最近では、超伝導薄膜と非超伝
導薄膜とを、同じ材料を使用して、同じ成膜条件下で、
同時に両薄膜を成長させて超伝導素子を得ようとする試
みが見られるようになってきた。
However, recently, due to demands for ease of processing and improvement in device reliability, the same materials are used for the superconducting thin film and the non-superconducting thin film under the same film forming conditions.
At the same time, attempts have been made to grow both thin films to obtain superconducting devices.

【0004】このような2種類の薄膜を同時に成長させ
るための従来技術としては、予め基板表面上の一部を加
工しておき、その加工部分以外の基板表面上に超伝導薄
膜を成長させ、同時に加工された部分の基板表面上に非
超伝導薄膜を成長させるものがある。この従来技術の例
を図面を用いて説明する。
As a conventional technique for growing two kinds of thin films at the same time, a part of the substrate surface is processed in advance, and a superconducting thin film is grown on the substrate surface other than the processed part. There is a method in which a non-superconducting thin film is grown on the substrate surface of the processed portion at the same time. An example of this conventional technique will be described with reference to the drawings.

【0005】図9(a)は、ステップ・エッジ法と呼ばれ
る薄膜製造方法によって成膜された薄膜である。該ステ
ップ・エッジ法では、基板101の表面上にスパッタリ
ング法で段差面102を設け、この段差面102と平坦
面1031、1032上に配向の異なる超伝導薄膜を成長
させ、それらの粒界(Grain Boundary)が非超伝導特性を
示すように構成されている。
FIG. 9A shows a thin film formed by a thin film manufacturing method called a step edge method. In the step-edge method, a step surface 102 is provided on the surface of a substrate 101 by a sputtering method, and superconducting thin films having different orientations are grown on the step surface 102 and flat surfaces 103 1 and 103 2 , and grain boundaries thereof are grown. (Grain Boundary) is configured to exhibit non-superconducting properties.

【0006】図9(b)は、収束イオンビーム法(FIB)
と呼ばれる薄膜製造方法により作製された超伝導薄膜と
非超伝導薄膜であり、基板111の表面に微細なトレン
チ構造部112を作製し、平坦面1131、1132上に
超伝導薄膜を成長させながら、前記トレンチ構造部11
2上には非超伝導薄膜を成膜させている。
FIG. 9B shows a focused ion beam method (FIB).
Which are a superconducting thin film and a non-superconducting thin film, which are produced by a thin film manufacturing method called a thin film manufacturing method. A fine trench structure portion 112 is formed on the surface of a substrate 111, and the superconducting thin film is grown on flat surfaces 113 1 and 113 2. Meanwhile, the trench structure portion 11
A non-superconducting thin film is formed on the film 2.

【0007】しかしながら、これら従来技術の薄膜製造
方法は、いずれも基板表面上に3次元的な段差を作製す
るため、他の回路との複合化、集積化の際には素子間配
線等の障害となってしまう。また、三次元的な加工を施
すため素子の微小化には不向きである。更に、製造過程
で複雑なプロセスを経なければならないため、量産性に
劣るという欠点があった。
However, in each of these conventional thin film manufacturing methods, a three-dimensional step is formed on the surface of the substrate, and therefore, when integrated with other circuits or integrated, an obstacle such as inter-element wiring is generated. Will be. Further, since it is subjected to three-dimensional processing, it is not suitable for miniaturization of the element. Further, since the manufacturing process has to be complicated, there is a drawback that mass productivity is poor.

【0008】一方、例えば、収束イオンビーム法(FI
B)等、基板表面に三次元的な加工を施さず、成膜工程
も一度で済ます技術も開発されている。このFIB法
は、一旦基板表面上に超伝導薄膜を全面成長させ、次い
で、その超伝導薄膜の所望部分にガリウム(Ga)、ゲル
マニウム(Ge)等の反応性の高いイオンを選択的に注入
し、該注入部分の伝導特性を非超伝導性に改変させ、非
超伝導薄膜を製造する技術であり、これにより作製した
超伝導薄膜と非超伝導薄膜とで超伝導素子を製造するこ
とが可能である。
On the other hand, for example, the focused ion beam method (FI
Techniques such as B) have also been developed that do not require three-dimensional processing on the substrate surface and require only one film formation process. In this FIB method, a superconducting thin film is once entirely grown on a substrate surface, and then highly reactive ions such as gallium (Ga) and germanium (Ge) are selectively implanted into a desired portion of the superconducting thin film. , Is a technology for manufacturing a non-superconducting thin film by modifying the conduction characteristics of the injection portion to a non-superconducting property. With this, it is possible to manufacture a superconducting element with the superconducting thin film and the non-superconducting thin film. Is.

【0009】しかしながらこのFIB法は、いわば、超
伝導薄膜に後処理を施して常伝導性、または絶縁性を発
現させるのであり、収束イオンビームにより所望部分に
イオン注入を行うのは時間がかかってしまう。そのた
め、非超伝導薄膜製造の作業性が悪く、また、この方法
により得た素子の耐久性、信頼性も劣っていた。
However, in this FIB method, so to speak, a superconducting thin film is post-treated to develop normal conductivity or insulating property, and it takes time to implant ions into a desired portion by a focused ion beam. I will end up. Therefore, the workability of manufacturing the non-superconducting thin film was poor, and the durability and reliability of the device obtained by this method were poor.

【0010】また、Gaイオン等の活性イオンを注入す
るので、作製する薄膜の種類によっては薄膜との間で化
学反応を生じてしまうため、使用できる薄膜の種類が限
られてしまう。
Further, since active ions such as Ga ions are implanted, a chemical reaction occurs with the thin film depending on the type of the thin film to be produced, so that the type of thin film that can be used is limited.

【0011】更に、Gaイオンは拡散しやすいので、成
膜工程において、基板温度を高温にしなければならない
薄膜を堆積させる場合、基板表面で拡散してしまう不都
合がある。特に、Gaイオンをごく狭い範囲に注入し、
幅の狭い非超伝導薄膜を作製しなければジョセフソン素
子を得ることができないので、拡散しやすいイオンを注
入するFIB法は不向きである。
Further, since Ga ions are easily diffused, there is a disadvantage that when a thin film for which the substrate temperature must be raised is deposited in the film forming step, it diffuses on the substrate surface. In particular, Ga ions are implanted in a very narrow range,
Since a Josephson device cannot be obtained unless a narrow non-superconducting thin film is formed, the FIB method of implanting ions that easily diffuse is not suitable.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記従来技
術の不都合を解消するために創作されたものであり、そ
の目的は、基板表面上の平坦性を保ったまま簡易なプロ
セスによって超伝導薄膜と非超伝導薄膜とを成膜できる
薄膜製造方法、及びその薄膜製造方法により成膜された
超伝導薄膜と非超伝導薄膜とを用いたジョセフソン素子
を提供することにある。
The present invention was created in order to solve the above-mentioned disadvantages of the prior art, and its purpose is to achieve superconductivity by a simple process while maintaining the flatness on the substrate surface. A thin film manufacturing method capable of forming a thin film and a non-superconducting thin film, and a Josephson device using the superconducting thin film and the non-superconducting thin film formed by the thin film manufacturing method.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の発明方法は、超伝導薄膜の材料を基板
上に導入する導入工程と、前記基板上に導入された前記
材料の薄膜を成長させる成長工程とを有する薄膜製造方
法において、予め前記基板上の所望の領域に不活性ガス
を打ち込んで注入領域を作製し、前記不活性ガスが打ち
込まれない非注入領域上に超伝導特性を示す前記材料の
超伝導薄膜を成長させ、前記注入領域上に超伝導特性を
示さない前記材料の非超伝導薄膜を成長させ、前記超伝
導薄膜と前記非超伝導薄膜とを同時に成膜することを特
徴とし、請求項2記載の発明方法は、請求項1記載の薄
膜製造方法であって、前記導入工程は、前記材料の一成
分又は二成分以上の物質から成るターゲットにレーザー
光を照射し、前記ターゲットと同じ組成のクラスターを
該ターゲットから叩きだすレーザー光照射工程を備え、
前記成長工程は、前記クラスターを前記基板上に堆積さ
せて前記超伝導薄膜と非超伝導薄膜との成膜を行う堆積
工程を有することを特徴とし、請求項3記載の発明装置
は、非超伝導薄膜をバリアとし、該バリアを挟んで互い
に分離された2つの超伝導薄膜を電極としたジョセフソ
ン素子であって、請求項1又は請求項2記載の薄膜製造
方法で成膜された非超伝導薄膜と超伝導薄膜とをそれぞ
れ前記バリアと前記電極としたことを特徴とする。
In order to solve the above-mentioned problems, the method of the present invention according to claim 1 comprises: a step of introducing a material of a superconducting thin film onto a substrate; and a step of introducing the material introduced onto the substrate. In a thin film manufacturing method having a growth step of growing a thin film, an injection region is formed by previously implanting an inert gas in a desired region on the substrate, and a superconducting region is formed on a non-implantation region in which the inert gas is not implanted. Growing a superconducting thin film of said material exhibiting characteristics, growing a non-superconducting thin film of said material not exhibiting superconducting properties on said implantation region, and simultaneously depositing said superconducting thin film and said non-superconducting thin film The invention method according to claim 2 is the method for producing a thin film according to claim 1, wherein in the introducing step, laser light is applied to a target made of one or more components of the material. Irradiate the above Clusters of the same composition as Getto includes a laser beam irradiation step dislodge from the target,
4. The invention apparatus according to claim 3, wherein the growing step includes a deposition step of depositing the clusters on the substrate to form the superconducting thin film and the non-superconducting thin film. A Josephson device having a conductive thin film as a barrier and two superconducting thin films separated from each other with the barrier interposed therebetween, wherein the non-super-layer is formed by the thin film manufacturing method according to claim 1 or 2. A conductive thin film and a superconducting thin film are used as the barrier and the electrode, respectively.

【0014】[0014]

【作用】基板表面上の所望の領域に、不活性ガスを打ち
込んだ注入領域を作製しすると、同時に不活性ガスが打
ち込まれない非注入領域も作製される。
When an injection region in which an inert gas is injected is formed in a desired region on the surface of a substrate, a non-injection region in which the inert gas is not injected is also formed at the same time.

【0015】このように、基板表面の、イオンが注入さ
れた部分(注入領域)と、注入されない部分(非注入領域)
とにX線回折解析法を施して両者の表面状態を観察する
と、図8で示すようなパターン61とパターン62とが
得られる。前記パターン61は非注入領域の表面状態を
示し、前記パターン62は注入領域の表面状態を示す。
As described above, the ion-implanted portion (implanted region) and the non-implanted portion (non-implanted region) of the substrate surface
When X-ray diffraction analysis is applied to and and the surface state of both is observed, patterns 61 and 62 as shown in FIG. 8 are obtained. The pattern 61 shows the surface condition of the non-implanted region, and the pattern 62 shows the surface condition of the implanted region.

【0016】両パターンを比較すると、前記パターン6
1のピークは鋭いので、前記基板表面のうち前記非注入
領域の部分は結晶性を維持していることが分かる。一
方、前記パターン62のピークはブロードとなっている
ので、前記基板表面の注入領域部分は結晶性が崩れてい
るのが分かる。
Comparing both patterns, the pattern 6
Since the peak of 1 is sharp, it can be seen that the portion of the non-implanted region of the substrate surface maintains crystallinity. On the other hand, since the peak of the pattern 62 is broad, it can be seen that the crystallinity is broken in the injection region portion of the substrate surface.

【0017】この様に表面状態の異なる、注入領域と非
注入領域に、同じ超伝導薄膜の材料を導入し、薄膜を成
長させる。
In this way, the same superconducting thin film material is introduced into the implanted region and the non-implanted region having different surface states to grow the thin film.

【0018】その際、前記非注入領域上に成長する薄膜
が超伝導特性を示し得る薄膜成長条件下で成長させた場
合、超伝導薄膜を前記非注入領域上から得られる一方、
前記注入領域上からは非超伝導膜を得ることができる。
At this time, when the thin film growing on the non-implanted region is grown under the thin film growth condition capable of exhibiting superconducting properties, the superconducting thin film can be obtained on the non-implanted region,
A non-superconducting film can be obtained on the implantation region.

【0019】薄膜を成長させる方法として、特に、レー
ザアブレーション法を用いることができ、超伝導薄膜の
材料の一成分又は二成分以上の物質から成るターゲット
にレーザー光を照射して前記ターゲットと同じ組成のク
ラスターを叩き出し、必要に応じて前記超伝導薄膜の材
料の一成分又は二成分以上の反応性ガスを導入してこれ
と反応させ、前記クラスターを基板表面に堆積させれ
ば、前記非注入領域上には超伝導薄膜が成膜でき、前記
注入領域上には非超伝導薄膜を成膜することができる。
As a method for growing a thin film, in particular, a laser ablation method can be used, and a target composed of one or more components of a superconducting thin film material is irradiated with laser light to have the same composition as the target. Of the superconducting thin film material is introduced into the surface of the superconducting thin film to react with it, and the clusters are deposited on the substrate surface. A superconducting thin film can be formed on the region, and a non-superconducting thin film can be formed on the implantation region.

【0020】このようにして成膜した前記非超伝導薄膜
と前記超伝導薄膜とをエッチングして所望の形状とすれ
ば超伝導素子を作製することができる。特に、前記非超
伝導薄膜をバリアとし、前記超伝導薄膜により前記バリ
アを挟んで互いに分離された2つの電極を設ければ、ジ
ョセフソン接合が得られるので、ジョセフソン素子を製
造することができる。
A superconducting device can be manufactured by etching the non-superconducting thin film and the superconducting thin film thus formed into desired shapes. In particular, when the non-superconducting thin film is used as a barrier and two electrodes separated from each other by the superconducting thin film sandwiching the barrier are provided, a Josephson junction can be obtained, so that a Josephson device can be manufactured. .

【0021】[0021]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will now be described with reference to the drawings.

【0022】図1(a)から(d)は、本発明方法の一実施
例の工程を示す図である。図1(a)を参照して、1は、
薄膜を成長させる原基板であり、酸化マグネシウム(M
gO)の単結晶を適当な厚み、大きさに成形されて成る
ものである。
FIGS. 1 (a) to 1 (d) are views showing steps of one embodiment of the method of the present invention. Referring to FIG. 1A, 1 is
Original substrate for growing thin film, magnesium oxide (M
(gO) single crystal is formed into an appropriate thickness and size.

【0023】該原基板1の表面に、図1(b)のように、
所望の部分を窓開けしたマスキング材料2を置き、イオ
ン注入法により、前記マスキング材料2の上から不活性
ガスであるアルゴン(Ar)を打ち込んだ。すると、前記
マスキング材料2の窓開け部分の前記基板1の表面には
前記アルゴンが注入されるので、注入領域3が形成され
る。一方、前記原基板1の表面のうち、前記窓開けがさ
れておらず前記マスキング材料2で覆われている部分に
は、このマスキング材料2でアルゴンの侵入が阻止さ
れ、非注入領域が作製される。従って、前記注入領域3
を作製する際に、同時にアルゴンが注入されない非注入
領域4を形成することができる。
On the surface of the original substrate 1, as shown in FIG. 1 (b),
A masking material 2 having a desired portion opened in a window was placed, and an inert gas, argon (Ar), was implanted from above the masking material 2 by an ion implantation method. Then, since the argon is injected into the surface of the substrate 1 at the window opening portion of the masking material 2, the injection region 3 is formed. On the other hand, in the portion of the surface of the original substrate 1 where the window is not opened and is covered with the masking material 2, the masking material 2 prevents the invasion of argon and creates a non-implanted region. It Therefore, the implantation region 3
The non-implanted region 4 into which argon is not implanted can be formed at the same time when the above is manufactured.

【0024】なお、この時のイオン注入法によるアルゴ
ンの打ち込みは、加速電圧100kV、イオンソース圧
力約3×10-5Torr、引き出し電流約2mA、打ち込み
角度7°、ビーム電流200μA、温度は室温の条件で
あり、打ち込み時間とビーム電流は、前記注入領域上の
アルゴンのドーズ量が1cm2当たり2×1017個(2×1
17/cm2)になるように調節した。
At this time, the implantation of argon by the ion implantation method was performed at an acceleration voltage of 100 kV, an ion source pressure of about 3 × 10 −5 Torr, an extraction current of about 2 mA, an implantation angle of 7 °, a beam current of 200 μA, and a temperature of room temperature. The conditions are such that the implantation time and the beam current are 2 × 10 17 (2 × 1) per 1 cm 2 of the dose amount of argon on the implantation region.
It was adjusted to be 0 17 / cm 2 .

【0025】イオン注入の後、前記マスキング材料2を
除去すれば、前記注入領域3と前記非注入領域4とが図
1(c)のように基板表面8上に露出する。
When the masking material 2 is removed after the ion implantation, the implanted region 3 and the non-implanted region 4 are exposed on the substrate surface 8 as shown in FIG. 1 (c).

【0026】次いで、前記基板8の表面に、図2に示す
ようなレーザアブレーション(LaserAblation)装置を用
い、エキシマレーザ蒸着法によって薄膜を成長させた。
Then, a thin film was grown on the surface of the substrate 8 by an excimer laser deposition method using a laser ablation apparatus as shown in FIG.

【0027】このエキシマレーザ蒸着法を図2により説
明する。図2を参照して、41はエキシマレーザ(Excim
er Laser)発生装置であり、KrFガスから波長248n
mのレーザ光44を発生させるものである。該レーザ光
44は時間幅23nsec乃至24nsecのパルスとして発射
され、集光レンズ43でターゲット42上に集光され
る。なお、前記レーザ光44のエネルギー密度は可変で
あり、2J/cm2に設定した。
This excimer laser vapor deposition method will be described with reference to FIG. Referring to FIG. 2, reference numeral 41 denotes an excimer laser (Excim
er Laser) generator, wavelength 248n from KrF gas
The laser light 44 of m is generated. The laser light 44 is emitted as a pulse having a time width of 23 nsec to 24 nsec, and is condensed on the target 42 by the condenser lens 43. The energy density of the laser beam 44 was variable and was set to 2 J / cm 2 .

【0028】前記ターゲット42は、超伝導薄膜の材料
であるBi2Sr2Ca1Cu2Oxの焼結体から構成され
ており、前記レーザ光44が該ターゲット42上に集光
されると前記ターゲットの組成と同じ組成のクラスター
が叩き出され、このクラスターから成るプルーム(Plum
e)45が発生する。
The target 42 is made of a sintered body of Bi 2 Sr 2 Ca 1 Cu 2 Ox which is a material of the superconducting thin film, and when the laser beam 44 is focused on the target 42, A cluster with the same composition as the target composition was ejected, and a plume composed of this cluster (Plum
e) 45 occurs.

【0029】前記基板8の表面のうち、前記注入領域3
と前記非注入領域4とが存する面を前記プルーム45に
対向するように配置すると共に、前記基板8が置かれた
雰囲気内にを酸素を導入し、該基板8をヒーター47で
650℃から700℃の範囲に加熱すると、前記注入領
域3と前記非注入領域4の上には前記プルーム45中の
クラスターが堆積し、薄膜が成長する。このレーザアブ
レーション法では単結晶基板の表面上に単結晶の薄膜が
成長する。また、前記ターゲット42を構成するBi2
Sr2Ca1Cu2Oxの単結晶薄膜は超伝導特性を示す
ので、前記非注入領域4上に成長した薄膜は超伝導特性
を示す。
On the surface of the substrate 8, the injection region 3
The surface where the non-implanted region 4 and the non-implanted region 4 face is arranged so as to face the plume 45, oxygen is introduced into the atmosphere in which the substrate 8 is placed, and the substrate 8 is heated by the heater 47 from 650 ° C. to 700 ° C. When heated to the range of ° C, clusters in the plume 45 are deposited on the implanted region 3 and the non-implanted region 4, and a thin film grows. In this laser ablation method, a single crystal thin film grows on the surface of a single crystal substrate. In addition, Bi 2 which constitutes the target 42
Since the single crystal thin film of Sr 2 Ca 1 Cu 2 Ox exhibits superconducting properties, the thin film grown on the non-implanted region 4 exhibits superconducting properties.

【0030】なお、レーザアブレーション法によれば、
基板が置かれた雰囲気を真空蒸着法のように高真空状態
にする必要がなく、酸素の他、各種の反応性ガスを加え
ることができるので、種々の組成から成る薄膜を成膜す
ることが可能である。
According to the laser ablation method,
Unlike the vacuum deposition method, the atmosphere in which the substrate is placed does not need to be in a high vacuum state, and various reactive gases other than oxygen can be added, so thin films of various compositions can be formed. It is possible.

【0031】本発明方法により作製した薄膜の断面図を
図1(d)に示す。前記非注入領域4上に超伝導特性を示
す超伝導薄膜12が成長し、アルゴンが1cm2当たり2
×1017個打ち込まれた前記注入領域3上には、超伝導
特性を示さない非超伝導薄膜11が成長した。
A cross-sectional view of the thin film produced by the method of the present invention is shown in FIG. The superconducting thin film 12 showing the superconducting properties on the non-injection region 4 is grown, argon 1 cm 2 per 2
A non-superconducting thin film 11 having no superconducting property was grown on the implanted region 3 having × 10 17 implanted regions.

【0032】一方、前記原基板1とは別の基板を用意
し、その表面に、低注入量域5としてアルゴンを1cm2
当たり5×1016個打ち込んだ基板9を作製した。この
基板9表面に、上述した成膜条件と同じ条件にて薄膜の
成長を行わせ、図1(e)に示すように、比較用薄膜13
を成長させた。
On the other hand, a substrate different from the original substrate 1 was prepared, and argon was added to the surface of the substrate 1 cm 2 as a low injection amount region 5.
A substrate 9 having 5 × 10 16 pieces implanted therein was produced. A thin film is grown on the surface of the substrate 9 under the same conditions as described above, and as shown in FIG.
Has grown up.

【0033】前記非超伝導薄膜11、前記超伝導薄膜1
2、前記比較用薄膜13の電気的特性、及び表面の分析
結果を以下に説明する。
The non-superconducting thin film 11 and the superconducting thin film 1
2. The electrical characteristics of the comparative thin film 13 and the results of surface analysis will be described below.

【0034】反射高速電子線回折(RHEED)による前
記非超伝導薄膜11のパターンを図4に、前記超伝導薄
膜12と前記比較用薄膜13のパターンをそれぞれ図5
(a)、(b)に示す。
FIG. 4 shows the pattern of the non-superconducting thin film 11 by reflection high-energy electron diffraction (RHEED), and FIG. 5 shows the patterns of the superconducting thin film 12 and the comparative thin film 13.
Shown in (a) and (b).

【0035】一般的にRHEEDパターンでは、薄膜が
単結晶から成る場合にはストリークが観察され、多結晶
から成る場合にはリングが観察されることが知られてい
る。
In the RHEED pattern, it is generally known that streaks are observed when the thin film is made of a single crystal, and rings are observed when the thin film is made of a polycrystal.

【0036】図4に示した前記非超伝導薄膜11のRH
EEDパターンはリングのみが観察されるので、該非超
伝導薄膜11が多結晶であることが分かる。
RH of the non-superconducting thin film 11 shown in FIG.
Since only the ring is observed in the EED pattern, it can be seen that the non-superconducting thin film 11 is polycrystalline.

【0037】一方、図5(a)、(b)の超伝導薄膜12と
比較用薄膜13のパターンでは、リングと共にストリー
クが観察されているので単結晶性を有していることが分
かる。
On the other hand, in the patterns of the superconducting thin film 12 and the comparative thin film 13 of FIGS. 5 (a) and 5 (b), streak is observed together with the ring, which indicates that the film has single crystallinity.

【0038】このように、MgO基板にアルゴンを打ち
込んで、次いでBi2Sr2Ca1Cu2Oxの薄膜を成長
させた場合、基板上のアルゴンの表面濃度の相違によ
り、薄膜が超伝導特性を示したり、超伝導特性を示さな
かったりすることが分かる。そして、そのアルゴン表面
密度の境目は、5×1016/cm2から2×1017/cm2
間に存在することがわかる。
As described above, when Ar is implanted into the MgO substrate and then a thin film of Bi 2 Sr 2 Ca 1 Cu 2 Ox is grown, the thin film has a superconducting property due to the difference in the surface concentration of argon on the substrate. It can be seen that it exhibits or does not exhibit superconducting properties. It can be seen that the boundary of the argon surface density exists between 5 × 10 16 / cm 2 and 2 × 10 17 / cm 2 .

【0039】図6に、X線回折によえう得られたパター
ンを示す。図6のグラフの縦軸はX線強度であり、対数
目盛になっている。横軸は角度(2θ)であり単位は
「度」である。パターン85、パターン86、パターン
87はそれぞれ、前記非超伝導薄膜11、前記超伝導薄
膜12、前記比較用薄膜13のパターンであり、回折角
と回折線(X線)の強度と関係を示す。
FIG. 6 shows the pattern obtained by X-ray diffraction. The vertical axis of the graph of FIG. 6 is the X-ray intensity, which is on a logarithmic scale. The horizontal axis is the angle (2θ), and the unit is “degree”. A pattern 85, a pattern 86, and a pattern 87 are patterns of the non-superconducting thin film 11, the superconducting thin film 12, and the comparative thin film 13, respectively, and show the relationship between the diffraction angle and the intensity of the diffraction line (X-ray).

【0040】それぞれ、6°、17°、23°、29
°、35°の位置に、Bi2Sr2Ca1Cu2Ox膜の
(002)、(006)、(008)、(0010)、(00
)に対応したピークが観察できる。
6 °, 17 °, 23 °, 29
Of the Bi 2 Sr 2 Ca 1 Cu 2 Ox film at the positions of
(002), (006), (008), (00 10 ), (00 1
The peak corresponding to 2 ) can be observed.

【0041】また、図3(a)、(b)に、これら薄膜の温
度と抵抗率の関係を示す。図3(a)のグラフの横軸は絶
対温度(K)であり、縦軸は抵抗率(Ω cm)である。曲線
81は前記非超伝導薄膜11の温度-抵抗率を示す。該
曲線81により、前記非超伝導薄膜11は、20K以下
の温度でも超伝導特性を示していないことが分かる。
3 (a) and 3 (b) show the relationship between the temperature and the resistivity of these thin films. The horizontal axis of the graph in FIG. 3A is the absolute temperature (K), and the vertical axis is the resistivity (Ω cm). A curve 81 represents the temperature-resistivity of the non-superconducting thin film 11. From the curve 81, it can be seen that the non-superconducting thin film 11 does not exhibit superconducting characteristics even at a temperature of 20 K or lower.

【0042】図3(b)のグラフの横軸は絶対温度(K)で
あり、縦軸は抵抗率(mΩ cm)である。
In the graph of FIG. 3B, the horizontal axis represents the absolute temperature (K) and the vertical axis represents the resistivity (mΩcm).

【0043】曲線82は前記超伝導薄膜12の温度と抵
抗率の関係を示し、曲線83は前記比較用薄膜13の温
度と抵抗率の関係を示す。該曲線82と曲線83とによ
り、前記超伝導薄膜12と前記比較用薄膜13とは、共
に超伝導特性を示していることが分かる。
A curve 82 shows the relationship between the temperature and the resistivity of the superconducting thin film 12, and a curve 83 shows the relationship between the temperature and the resistivity of the comparative thin film 13. It can be seen from the curves 82 and 83 that both the superconducting thin film 12 and the comparative thin film 13 exhibit superconducting characteristics.

【0044】以上のデータを表にまとめると以下のよう
になる。
The above data is summarized in the table below.

【0045】[0045]

【表1】 次に、上記実施例により製造された薄膜を用いて作製し
たジョセフソン素子を図7に示す。図7を参照して、5
1は単結晶の基板であり、該基板51の表面上の注入領
域52と、非注入領域531、532とが設けられてお
り、前記注入領域52上には非超伝導膜が成長し、前記
非注入領域531、532上には超伝導薄膜が成長してい
る。
[Table 1] Next, FIG. 7 shows a Josephson device manufactured using the thin film manufactured according to the above-mentioned embodiment. Referring to FIG. 7, 5
Reference numeral 1 denotes a single crystal substrate, which is provided with an implantation region 52 on the surface of the substrate 51 and non-implantation regions 53 1 and 53 2 and a non-superconducting film grows on the implantation region 52. A superconducting thin film is grown on the non-implanted regions 53 1 and 53 2 .

【0046】前記非超伝導薄膜と前記超伝導薄膜は、レ
ジストの塗布、露光・現像及びエッチングが施され、不
要部分が除去されて、非超伝導薄膜から成るバリア54
と、該バリア54の両側に位置する、超伝導薄膜から成
る電極551、552とが作製されている。
The non-superconducting thin film and the superconducting thin film are subjected to resist coating, exposure / development and etching to remove unnecessary portions, and a barrier 54 made of the non-superconducting thin film.
And electrodes 55 1 and 55 2 made of a superconducting thin film, which are located on both sides of the barrier 54.

【0047】その際、前記注入領域52の巾、即ち前記
バリア54の巾を1μm以下にしておけば、前記バリア
54と前記電極551、552とでジョセフソン接合が形
成されるので、ジョセフソン素子50をつくることがで
きる。
At this time, if the width of the injection region 52, that is, the width of the barrier 54 is set to 1 μm or less, a Josephson junction is formed between the barrier 54 and the electrodes 55 1 and 55 2 , so that the Josephson junction is formed. The Son element 50 can be made.

【0048】なお、このジョセフソン素子50は2端子
素子であるが、前記バリア54上にゲート電極を設け、
前記電極551、552の一方をソース電極、他方をドレ
イン電極として用いれば3端子素子の作製も可能であ
る。
Although the Josephson device 50 is a two-terminal device, a gate electrode is provided on the barrier 54,
A three-terminal element can be manufactured by using one of the electrodes 55 1 and 55 2 as a source electrode and the other as a drain electrode.

【0049】なお、本実施例では、Bi2Sr2Ca1
2Oxの焼結体をターゲットに用いたが、ターゲット
はこれに限られるものではなく、例えば酸化物超伝導体
材料のBi2Sr2Ca2Cu3Oxや、Y123x等、
各種の超伝導体材料を使用することができる。
In this embodiment, Bi 2 Sr 2 Ca 1 C is used.
Although a sintered body of u 2 Ox was used as the target, the target is not limited to this, and for example, Bi 2 Sr 2 Ca 2 Cu 3 Ox, which is an oxide superconductor material, or Y 1 B 2 C 3 O. x etc,
Various superconductor materials can be used.

【0050】また、打ち込む不活性ガスはアルゴンガス
に限らず、クリプトン(Kr)ガス、キセノン(Xe)ガス
や、一定の場合には窒素ガス(N2ガス)等、基板を構成
する物質と反応しない各種のガスを用いることができ
る。
Further, the inert gas to be injected is not limited to the argon gas, but may react with a substance constituting the substrate such as krypton (Kr) gas, xenon (Xe) gas, or nitrogen gas (N 2 gas) in a certain case. Various gases that do not can be used.

【0051】更に、薄膜を成長させる基板も、酸化マグ
ネシウム単結晶基板の他、チタン酸ストロンチウム(S
TO)、酸化ジルコンやYSZ等、超伝導薄膜が成長し
得る各種の基板を用いることが可能である。
Further, the substrate on which the thin film is grown is not only the magnesium oxide single crystal substrate but also strontium titanate (S).
It is possible to use various substrates on which a superconducting thin film can grow, such as TO), zircon oxide, and YSZ.

【0052】更に又、アルゴンイオンを打ち込んだ後、
基板上に同時に超伝導薄膜と非超伝導薄膜とを成長させ
るための方法は、レーザアブレーション法に限定される
ものではなく、真空蒸着方法、スパッタ方法、分子線エ
ピタキシー方法、有機金属化学気相成長法等、単結晶を
成長させて超伝導薄膜を成膜する方法に広く適用するこ
とが可能である。但し、現行は膜質の良好性から、レー
ザアブレーション法が最適とされている。
Furthermore, after implanting argon ions,
The method for growing the superconducting thin film and the non-superconducting thin film on the substrate at the same time is not limited to the laser ablation method, and the vacuum deposition method, the sputtering method, the molecular beam epitaxy method, the metal organic chemical vapor deposition method. The present invention can be widely applied to a method of growing a single crystal to form a superconducting thin film, such as a method. However, at present, the laser ablation method is considered optimal because of its good film quality.

【0053】[0053]

【発明の効果】本発明によれば、基板を3次元的に加工
することなく、超伝導薄膜と非超伝導薄膜とを成長させ
ることができるので、成膜後の基板表面を平坦に保つこ
とができる。
According to the present invention, since the superconducting thin film and the non-superconducting thin film can be grown without processing the substrate three-dimensionally, the substrate surface after film formation can be kept flat. You can

【0054】この超伝導素子間に基板表面上で配線を施
す際、段差による断線や信頼性の低下等を考慮しなくて
も済み、また、前記超伝導薄膜上や前記非超伝導薄膜上
に、簡単に金属薄膜等の薄膜を成膜することができる。
When wiring is provided between the superconducting elements on the surface of the substrate, it is not necessary to consider disconnection due to a step or deterioration of reliability. Further, the wiring is formed on the superconducting thin film or the non-superconducting thin film. It is possible to easily form a thin film such as a metal thin film.

【0055】更に、薄膜の成長後に後処理を施して非超
伝導薄膜を作製するものではないので、超伝導素子の信
頼性が向上する。
Furthermore, since the non-superconducting thin film is not manufactured by post-processing after the growth of the thin film, the reliability of the superconducting element is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法の一実施例の工程図FIG. 1 is a process chart of an embodiment of the method of the present invention.

【図2】 レーザアブレーション装置FIG. 2 Laser ablation device

【図3】 (a) 超伝導特性を示さない薄膜の温度と抵
抗率の関係を示すグラフ (b) 超伝導特性を示す薄膜の温度と抵抗率の関係を示
すグラフ
FIG. 3A is a graph showing the relationship between the temperature and the resistivity of a thin film that does not show superconducting properties. FIG. 3B is a graph showing the relationship between the temperature and the resistivity of a thin film that shows superconducting properties.

【図4】 非超伝導薄膜の結晶構造を示すRHEEDパ
ターンの電子線写真
FIG. 4 is an electron beam photograph of a RHEED pattern showing a crystal structure of a non-superconducting thin film.

【図5】 (a) 超伝導薄膜の結晶構造を示すRHEE
Dパターンの電子線写真 (b) 比較用薄膜の結晶構
造を示すRHEEDパターンの電子線写真
FIG. 5 (a) RHEE showing the crystal structure of a superconducting thin film.
Electron micrograph of D pattern (b) Electron micrograph of RHEED pattern showing crystal structure of comparative thin film

【図6】 薄膜のX線回折図FIG. 6 is an X-ray diffraction diagram of the thin film.

【図7】 本発明のジョセフソン素子の一例FIG. 7: Example of Josephson device of the present invention

【図8】 基板のX線回折図FIG. 8: X-ray diffraction diagram of the substrate

【図9】 (a) ステップ・エッジ法により成膜された
基板の断面図 (b) スパッタリング法により成膜された基板の断面図
9A is a sectional view of a substrate formed by a step edge method, and FIG. 9B is a sectional view of a substrate formed by a sputtering method.

【符号の説明】[Explanation of symbols]

3、52……注入領域 4、531、532……非注入
領域 8、51……基板 11……非超伝導薄膜 12……超伝導薄膜 1
3……比較用薄膜 42……プルーム(原料物質のクラスター) 44……
レーザー光 45……ターゲット 50……ジョセフソン素子 54……バリア 55
1、552……電極
3, 52 ... Injection region 4, 53 1 , 53 2 ... Non-injection region 8, 51 ... Substrate 11 ... Non-superconducting thin film 12 ... Superconducting thin film 1
3 …… Comparative thin film 42 …… Plume (cluster of raw material) 44 ……
Laser light 45 …… Target 50 …… Josephson element 54 …… Barrier 55
1 , 55 2 ...... Electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 39/24 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超伝導薄膜の材料を基板上に導入する導入
工程と、 前記基板上に導入された前記材料の薄膜を成長させる成
長工程とを有する薄膜製造方法において、 予め前記基板上の所望の領域に不活性ガスを打ち込んで
注入領域を作製し、 前記不活性ガスが打ち込まれない非注入領域上に超伝導
特性を示す前記材料の超伝導薄膜を成長させ、前記注入
領域上に超伝導特性を示さない前記材料の非超伝導薄膜
を成長させ、前記超伝導薄膜と前記非超伝導薄膜とを同
時に成膜することを特徴とする薄膜製造方法。
1. A thin film manufacturing method comprising: an introducing step of introducing a material of a superconducting thin film onto a substrate; and a growing step of growing a thin film of the material introduced onto the substrate. An injection region is formed by implanting an inert gas in the region of, and a superconducting thin film of the material having superconducting properties is grown on the non-injection region where the inert gas is not implanted, and the superconducting film is formed on the injection region. A method for producing a thin film, which comprises growing a non-superconducting thin film of the above-mentioned material which does not exhibit characteristics, and simultaneously forming the superconducting thin film and the non-superconducting thin film.
【請求項2】前記導入工程は、前記材料の一成分又は二
成分以上の物質から成るターゲットにレーザー光を照射
し、 前記ターゲットと同じ組成のクラスターを該ターゲット
から叩きだすレーザー光照射工程を備え、 前記成長工程は、前記クラスターを前記基板上に堆積さ
せて前記超伝導薄膜と非超伝導薄膜との成膜を行う堆積
工程を有することを特徴とする請求項1記載の薄膜製造
方法。
2. The introducing step comprises a laser light irradiation step of irradiating a target composed of one or more substances of the material with a laser beam, and projecting a cluster having the same composition as the target from the target. The thin film manufacturing method according to claim 1, wherein the growing step includes a deposition step of depositing the clusters on the substrate to form the superconducting thin film and the non-superconducting thin film.
【請求項3】非超伝導薄膜をバリアとし、該バリアを挟
んで互いに分離された2つの超伝導薄膜を電極としたジ
ョセフソン素子であって、 請求項1又は請求項2記載の薄膜製造方法で成膜された
非超伝導薄膜と超伝導薄膜とをそれぞれ前記バリアと前
記電極としたことを特徴とするジョセフソン素子。
3. A Josephson device comprising a non-superconducting thin film as a barrier and two superconducting thin films separated from each other with the barrier interposed therebetween as an electrode, wherein the thin film manufacturing method according to claim 1 or 2. A Josephson device, characterized in that the non-superconducting thin film and the superconducting thin film formed in step 1 are used as the barrier and the electrode, respectively.
JP6102338A 1994-04-15 1994-04-15 Formation of thin film and josephson element Pending JPH07288346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6102338A JPH07288346A (en) 1994-04-15 1994-04-15 Formation of thin film and josephson element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6102338A JPH07288346A (en) 1994-04-15 1994-04-15 Formation of thin film and josephson element

Publications (1)

Publication Number Publication Date
JPH07288346A true JPH07288346A (en) 1995-10-31

Family

ID=14324728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6102338A Pending JPH07288346A (en) 1994-04-15 1994-04-15 Formation of thin film and josephson element

Country Status (1)

Country Link
JP (1) JPH07288346A (en)

Similar Documents

Publication Publication Date Title
US5077266A (en) Method of forming weak-link josephson junction, and superconducting device employing the junction
EP0271232B1 (en) Method of making an article comprising a heteroepitaxial structure
Stritzker et al. Comparison of YBCO-films prepared by laser ablation and sputtering
EP0325765B1 (en) Josephson device having a josephson junction structure suitable for an oxide superconductor
US6188919B1 (en) Using ion implantation to create normal layers in superconducting-normal-superconducting Josephson junctions
US4757030A (en) Method of making group IV single crystal layers on group III-V substrates using solid phase epitaxial growth
US5356870A (en) Method for processing superconducting thin films
JPH07288346A (en) Formation of thin film and josephson element
US5227364A (en) Method of forming patterned oxide superconducting films and Josephson junction devices by using an aqueous alkaline solution
KR100372889B1 (en) Ramp edge josephson junction devices and methods for fabricating the same
Blank et al. The effect of ion milling on the morphology of ramp-type Josephson junctions
JPH08316535A (en) Josephson element and manufacture thereof
KR20040105244A (en) Process for producing oxide superconductive thin-film
US6147032A (en) Method for indirect Ion implantation of oxide superconductive films
JP2786130B2 (en) High temperature superconducting thin film structure
JPH039579A (en) Oxide superconductive pattern
KR930001567B1 (en) Structure of superconductor wiring and process for its formation
JP2662609B2 (en) Method for modifying high temperature superconducting oxide thin film
JPH01211985A (en) Manufacture of josephson element
JPH05102545A (en) Working method of superconducting thin film and manufacture of josephson junction element
JPH01169981A (en) Manufacture of superconducting thin-film
JPH05132303A (en) Production of superconducting film
EP0338084A1 (en) Structure of superconductor wiring and process for its formation
JPH02271687A (en) Manufacture of tunnel type josephson junction
JPH01211983A (en) Josephson element