JPH02114678A - Superconductive element - Google Patents

Superconductive element

Info

Publication number
JPH02114678A
JPH02114678A JP63268484A JP26848488A JPH02114678A JP H02114678 A JPH02114678 A JP H02114678A JP 63268484 A JP63268484 A JP 63268484A JP 26848488 A JP26848488 A JP 26848488A JP H02114678 A JPH02114678 A JP H02114678A
Authority
JP
Japan
Prior art keywords
metal oxide
thin film
superconducting
bridge
bank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63268484A
Other languages
Japanese (ja)
Other versions
JP2517081B2 (en
Inventor
Hidetaka Tono
秀隆 東野
Akira Enohara
晃 榎原
Koichi Mizuno
紘一 水野
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63268484A priority Critical patent/JP2517081B2/en
Publication of JPH02114678A publication Critical patent/JPH02114678A/en
Application granted granted Critical
Publication of JP2517081B2 publication Critical patent/JP2517081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable the formation of a Josephson junction precisely at a specified position by a method wherein a superconductive element of this design is constituted in such a structure that two bank sections are electrically connected with each other by a bridge of a thin film whose thickness is smaller than that of the bank and which is formed of a material which contain the same composition as a metal oxide superconductive thin film. CONSTITUTION:A superconductive element has a structure that two bank sections 4a and 4b formed of a metal oxide superconductive thin film 2 on a substrate 1 are connected with each other with a bridge 3 formed of a material which contains the same composition as the metal oxide thin film 2, where the thickness of the bridge 3 is smaller than that of the bank sections 4. And, the superconductive characteristics of the bridge 3 small in thickness can be observed from the outside through the bank sections 4a and 4b. Therefore, a Josephson junction is formed inside the bridge 3, so that the junction can be reproducibly formed at an optional position and consequently a superconductive element, which is provided with a Josephson junction possessed of a specified critical current value and formed at any position, can be easily manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超伝導体を用いた超伝導素子に関するもので、
特に酸化物超伝導体を用いた超伝導素子に関するもので
ある。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a superconducting element using a superconductor.
In particular, it relates to superconducting elements using oxide superconductors.

従来の技術 高温超伝導体として、ム16型2元系化合物として窒化
ニオブ(NbN )やゲルマニウムニオブ(NbsGe
)などが知られていた。またこれらの材料を用いたジョ
セフソン素子も数多く研究されてきた。これらの材料の
超伝導転移温度はたかだか24°にであった。一方、ペ
ロプスカイト系3元化合物は、さらに高い転移温度が期
待され、Ba−La−Cu−0系の高温超伝導体が提案
された( J、G、Bendorz  and K0人
0Muller  、 ラフイト シュリフト フェア
 フィジーク(Zetshrif’tftfr phy
sik B ) −Condensed Matter
 64189−193(1986))。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niobium (NbsGe) are used as mu-16 type binary compounds.
) were known. Many Josephson devices using these materials have also been studied. The superconducting transition temperature of these materials was at most 24°. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed (J. (Zetshrif'tftfr phy
sik B) -Condensed Matter
64189-193 (1986)).

さらに、Y −Ba −Cu −0系がより高温の超伝
導体であることが最近提案された( M、に、 Wu等
、フィジカル レビュー レターズ(Physical
Review Latters ) Vol、5B 、
 No 9.908−910(198ア)〕。
Furthermore, it has recently been proposed that the Y-Ba-Cu-0 system is a higher temperature superconductor (M., Wu et al., Physical Review Letters).
Review Letters) Vol, 5B,
No. 9.908-910 (198a)].

Y−Ba−Cu−0系の材料の超伝導機構の詳細は明ら
かではないが、転移温度が液体窒素温度以上に高くなる
可能性があり、高温超伝導体とじて従来の2元系化合物
よシ、より有望な特性が期待される。
The details of the superconducting mechanism of Y-Ba-Cu-0 materials are not clear, but the transition temperature may be higher than the liquid nitrogen temperature, making them a high-temperature superconductor compared to conventional binary compounds. However, more promising properties are expected.

また、極最近ではBi −Sr −Ca −Cu−0系
やTl −Ba −Ca −(ju−0系の1oO°K
を越える臨界温度を有する高温超伝導体も発見されてい
る。
In addition, very recently, Bi-Sr-Ca-Cu-0 system and Tl-Ba-Ca-(ju-0 system 1oO°K
High-temperature superconductors have also been discovered with critical temperatures exceeding .

発明が解決しようとする課題 しかしながら、上記の酸化物高温超伝導薄膜を用いて超
伝導素子を実用化する場合に、コヒーレンス長が数ナノ
メートルと極めて短い点が、膜の不均一性、結晶粒界等
を反影して極めて作製困難な主たる原因となっていた。
Problems to be Solved by the Invention However, when a superconducting device is put into practical use using the above-mentioned oxide high-temperature superconducting thin film, the fact that the coherence length is extremely short, a few nanometers, causes problems such as film non-uniformity and crystal grains. This is the main reason why it is extremely difficult to manufacture.

これは、弱結合のジョセフソン素子を作製する場合に、
弱結合部のブリッジ長をコヒーレンス長程度の寸法にす
る必要があり、実際にはこの様なナノブリッジ構造は酸
化物では作製困難であり実現されていない。また、結晶
粒界接合を用いたストリップ状のジョセフソン素子は提
案されているが、素子寸法が大きく、精度良く所定の位
置にジョセフソ/接合を作製することは困難とされてい
る。
This means that when creating a weakly coupled Josephson device,
It is necessary to make the bridge length of the weak coupling part about the same as the coherence length, and in reality, such a nanobridge structure is difficult to fabricate using oxides and has not been realized. Further, a strip-shaped Josephson element using grain boundary junctions has been proposed, but the element dimensions are large and it is difficult to fabricate Josephson junctions at predetermined positions with high precision.

課題を解決するだめの手段 本発明の超伝導素子は、基板上に形成された金属酸化物
超伝導薄膜から成る2つのバンク部と、前記金属酸化物
超伝導薄膜と同一組成を含む材料から成る薄膜で、かつ
、前記バンク部の膜厚よりも薄いブリッジ部により前記
2つのバンク部が電気的に接続された構造を有すること
を特徴としている。
Means for Solving the Problems The superconducting element of the present invention comprises two bank portions made of a metal oxide superconducting thin film formed on a substrate, and a material containing the same composition as the metal oxide superconducting thin film. It is characterized by having a structure in which the two bank parts are electrically connected by a thin bridge part that is thinner than the film thickness of the bank part.

金属酸化物超伝導薄膜の材料が、銅元素を含む金属酸化
物超伝導体であること、あるいは、銅元素を含む金属酸
化物超伝導体が、A−B−Cu−0複合化合物である場
合も含まれる。
When the material of the metal oxide superconducting thin film is a metal oxide superconductor containing a copper element, or when the metal oxide superconductor containing a copper element is an A-B-Cu-0 composite compound. Also included.

ここにAはSc 、 Y 、 LaおよびLa系列元素
(原子番号57〜71、但し57.61.62を除く)
のうち少なくとも1種、Bは、Ba、SrなどのIIa
族元素のうちの少なくとも1種、かつ人、B元素とCu
元素の濃度は である。
Here, A is Sc, Y, La, and La series elements (atomic numbers 57 to 71, excluding 57.61.62)
At least one of them, B is IIa such as Ba and Sr.
At least one group element, human, B element and Cu
The concentration of the element is.

また、銅元素を含む金属酸化物超伝導体が、Biを含み
、かつ、PbまたはSr 、 Caなどのn。
Further, the metal oxide superconductor containing the copper element contains Bi, and also contains n such as Pb, Sr, Ca, etc.

族元素のうち少なくとも1種の元素を含む場合も含み、
また、銅元素を含む金属酸化物超伝導体が、TIを含み
、かつ、Pbまたは、Ba 、 CaなどのIIa族元
素のうち少なくとも1種の元素を含む場合も同様に含ま
れる。
Including cases where at least one element among group elements is included,
Furthermore, cases where the metal oxide superconductor containing the copper element contains TI and at least one element among Pb or Group IIa elements such as Ba and Ca are also included.

更には、金属酸化物超伝導薄膜の材料が、BaおよびB
iを含む複合酸化物超伝導体である場合も含まれる。
Furthermore, the material of the metal oxide superconducting thin film is Ba and B.
It also includes cases where it is a composite oxide superconductor containing i.

本発明の超伝導素子の製造方法として、基板上に形成さ
れた金属酸化物超伝導薄膜に、フォトリソグラ2イ技術
でブリッジ部に相当する上部を除く部分にエツチングマ
スクを形成した後、不活性ガスイオンを照射して前記ブ
リッジ部に相当する部分の前記金属酸化物超伝導薄膜を
エツチングしてブリッジ部を形成した後、前記エツチン
グマスクを除去して作製する方法を提供する。
As a method for manufacturing a superconducting element of the present invention, an etching mask is formed on a metal oxide superconducting thin film formed on a substrate using photolithography technology except for the upper part corresponding to the bridge part, and then an inert film is formed on the metal oxide superconducting thin film formed on a substrate. A method is provided in which a portion of the metal oxide superconducting thin film corresponding to the bridge portion is etched by irradiating gas ions to form a bridge portion, and then the etching mask is removed.

あるいは、基板上に形成された金属酸化物薄膜を、フォ
トリソグラフィ技術およびドライエツチング技術によシ
、ブリッジ部に相当する部分をエツチングして膜厚を薄
くした後、酸素雰囲気中にて熱処理を施して、前記金属
酸化物薄膜を金属酸化物超伝導薄膜とすることにより作
製する方法を用いる。
Alternatively, a metal oxide thin film formed on a substrate is etched in the portion corresponding to the bridge portion using photolithography technology and dry etching technology to reduce the film thickness, and then heat treated in an oxygen atmosphere. Then, a method is used in which the metal oxide thin film is made into a metal oxide superconducting thin film.

作用 本発明の実施において、2つの金属酸化物超伝導薄膜か
ら成る超伝導電極となるバンク部に接続された、それら
より膜厚の薄いブリッジ部が、膜厚の薄い分、電流密度
が大きくなり、弱結合部となるか、まだは、所定の場所
に精度よく形成することのできるブリッジ部に含まれる
結晶粒界がジョセフソン接合と成り、外部の系から観測
されるものとな9、任意の位置に、精度良く、再現性良
くジョセフソン接合を作りこむことが可能となる。
Operation In carrying out the present invention, the bridge portion, which is thinner than the bank portion and is connected to the bank portion that becomes the superconducting electrode consisting of two metal oxide superconducting thin films, has a larger current density due to the thinner film thickness. , the grain boundaries contained in the bridge portion, which can be formed precisely at a predetermined location, become a Josephson junction, which can be observed from an external system9. It becomes possible to create a Josephson junction with high precision and good reproducibility at the position of .

またブリッジ部の膜厚を制御することにより素子の臨界
電流値を調整できるという作用がある。
Furthermore, by controlling the film thickness of the bridge portion, the critical current value of the element can be adjusted.

金属酸化物超伝導薄膜の材料としては銅を含む金属酸化
物超伝導体で、A−Cu−0複合化合物または、Biを
含み、かつ、PbまたはIIa族元素のうち少なくとも
1種の元素を含む材料または、T4を含み、かつ、Pb
またはIIa族元素を含む材料のものでも同様な作用が
みられる。また、金属酸化物超伝導薄膜の材料として、
BaおよびBiを含む複合酸化物超伝導体においても同
様な作用が得られる。
The material for the metal oxide superconducting thin film is a metal oxide superconductor containing copper, containing an A-Cu-0 composite compound or Bi, and containing at least one element among Pb or Group IIa elements. material or contains T4 and Pb
A similar effect can also be seen with materials containing Group IIa elements. In addition, as a material for metal oxide superconducting thin films,
A similar effect can be obtained with a complex oxide superconductor containing Ba and Bi.

次に本発明の超伝導素子の製造方法の実施において、金
属酸化物超伝導薄膜をエツチングマスクを用い人r等の
不活性ガスイオンの照射によりブリッジに相当する部分
だけ膜厚を薄くしてブリッジ部を形成する方法は、任意
の位置に精度良くブリッジが形成できるのみならず、ブ
リッジ部の寸法を短くすることを可能とするものである
。また、従来は、イオンの照射によって金属超伝導薄膜
にダメージを与えて超伝導特性を損なうものと考えられ
ていたが、発明者等が詳細に検討した結果、不活性ガス
の場合にはダメージを受ける層は表層のほんの一部にし
かすぎないことが判り、ムr等の不活性ガスイオン照射
によるブリッジ部の形成は、弱結合接合形成に極めて有
効な手段であることを発見した。また、ブリッジ部に含
まれる結晶粒界が不活性ガスイオンの照射により選択的
にエツチングされ、粒界接合特性が顕著に観測される場
合もあった。
Next, in carrying out the method for manufacturing a superconducting element of the present invention, the metal oxide superconducting thin film is irradiated with inert gas ions such as a person using an etching mask to reduce the thickness of the metal oxide superconducting thin film only in the portion corresponding to the bridge. The method for forming the bridge portion not only allows the bridge to be formed at any position with high precision, but also allows the dimensions of the bridge portion to be shortened. In addition, it was previously thought that ion irradiation would damage the metal superconducting thin film and impair its superconducting properties, but as a result of detailed study by the inventors, they found that ion irradiation does not cause damage in the case of inert gas. It was found that the receiving layer was only a small part of the surface layer, and it was discovered that forming a bridge portion by ion irradiation with an inert gas such as Mur is an extremely effective means for forming weakly bonded junctions. In addition, grain boundaries included in the bridge portion were selectively etched by irradiation with inert gas ions, and grain boundary bonding characteristics were observed in some cases.

更には、第2の製造方法の実施において、金属酸化物薄
膜をフォトリソグラフィ技術とドライエツチング技術と
によりエツチングをしてブリッジ部を形成する方法は、
水に弱い金属酸化物を損傷から防ぐためである。またそ
の後、酸素中で熱処理することにより、金属酸化物薄膜
が超伝導を示す結晶構造へと変化し、加工時のダメージ
の除去の作用が認められる。また、より高温での酸素中
での熱処理では、金属酸化物超伝導薄膜の結晶粒の成長
がみられ、薄くなったブリッジ部に、選択的に結晶粒界
を形成させる作用が認められた。従って本発明の製造方
法では、ダメージの少ない結晶粒界接合をフォトプロセ
スと、ドライエツチング技術とにより任意の位置に精度
良く形成できる働きをするのである。
Furthermore, in carrying out the second manufacturing method, the method of etching the metal oxide thin film using photolithography technology and dry etching technology to form the bridge portion is as follows:
This is to prevent water-sensitive metal oxides from being damaged. Further, by subsequently heat-treating in oxygen, the metal oxide thin film changes to a crystal structure exhibiting superconductivity, and the effect of removing damage during processing is observed. Furthermore, in heat treatment in oxygen at a higher temperature, growth of crystal grains in the metal oxide superconducting thin film was observed, and an effect of selectively forming grain boundaries in the thinned bridge portions was observed. Therefore, in the manufacturing method of the present invention, grain boundary junctions with little damage can be formed precisely at arbitrary positions by photoprocessing and dry etching technology.

実施例 第1図および第2図は本発明の超伝導素子の−実施例を
示す斜視図および断面図である。
Embodiment FIGS. 1 and 2 are a perspective view and a sectional view showing an embodiment of the superconducting element of the present invention.

本発明の超伝導素子は、基板1上に金属酸化物超伝導薄
膜2より成る2つのバンク部4a 、4bが金属酸化物
薄膜2と同一組成を含む材料から成るブリッジ部3によ
り接続された構造を有している。ブリッジ部3の膜厚は
バンク部4の膜厚よりも薄くなっている。本発明の超伝
導素子は膜厚の薄くなったブリッジ部3の超伝導特性が
2つのバンク部41L、4bを通して外部から観測され
ることを目的とした装置である。従ってジョセフソン接
合がブリッジ部3の内側に形成されるので、任意の場所
に接合を再現性良く形成することを可能とする。
The superconducting element of the present invention has a structure in which two bank parts 4a and 4b made of a metal oxide superconducting thin film 2 on a substrate 1 are connected by a bridge part 3 made of a material containing the same composition as the metal oxide thin film 2. have. The film thickness of the bridge portion 3 is thinner than that of the bank portion 4. The superconducting element of the present invention is a device whose purpose is to observe the superconducting characteristics of the thinned bridge portion 3 from the outside through the two bank portions 41L and 4b. Therefore, since the Josephson junction is formed inside the bridge portion 3, it is possible to form the junction at any desired location with good reproducibility.

次に具体的な実施例を、本発明の超伝導素子の製造方法
とともに述べる。
Next, specific examples will be described together with a method for manufacturing a superconducting element of the present invention.

第3図は本第2の発明の超伝導素子の第1の製造方法の
一実施例を示すプロセス図を示す。まず、MgO(1o
o )面基板1上に金属酸化物超伝導薄膜2として、G
dBa2Cu50y薄膜を堆積した(第3(a)図)。
FIG. 3 shows a process diagram showing an embodiment of the first manufacturing method of a superconducting element according to the second invention. First, MgO (1o
o ) as a metal oxide superconducting thin film 2 on a plane substrate 1,
A dBa2Cu50y thin film was deposited (Figure 3(a)).

堆積は、ターゲットにGdBIL2Cu4,50yを用
い、RFプレーナ・マグネトロン・スパッタ法によシ、
アルゴンと酸素の混合ガス雰囲気中で行った。基板温度
はe o O’Cであり、膜厚は0.6μmであった。
Deposition was performed by RF planar magnetron sputtering using GdBIL2Cu4,50y as a target.
The test was carried out in a mixed gas atmosphere of argon and oxygen. The substrate temperature was e o O'C, and the film thickness was 0.6 μm.

次に、フォトリソグラフィ技術とアルゴンイオンミリン
グにより素子の横方向のパターン加工を行った後、金属
酸化物超伝導薄膜2上に、フォトリソグラフィ技術によ
シ長さ1μmのブリッジ相当部分6のみを除いてエツチ
ングマスク6を形成した(第3(b)図)。エツチング
マスク5の材料としてはネガレジストを用い0.8μm
厚とした。これをムrイオン照射によりエツチングを行
ない、ブリッジ部3を形成する(第3(C)図)。紅イ
オン照射は、カウフマン型イオン源を用い、ガス圧I 
X10  Torr 、加速電圧600〜1Kvで行っ
た。エツチング速度は、GBCO薄膜で約25nm/W
inネガレジストで約aonm/minであった。ブリ
ッジ部3のエツチング膜厚は03μmとした。その後、
エツチングマスク5の残りを、酸素プラズマによるアッ
シングにより除去し、バンク部4の露出を行ない超伝導
素子を作製した(第3(d)図)。酸素圧はI TOr
rとした。
Next, after patterning the device in the lateral direction using photolithography and argon ion milling, the metal oxide superconducting thin film 2 is patterned using photolithography, excluding only the bridge-equivalent portion 6 with a length of 1 μm. An etching mask 6 was formed (FIG. 3(b)). The etching mask 5 is made of negative resist with a thickness of 0.8 μm.
Made thick. This is etched by ion irradiation to form the bridge portion 3 (FIG. 3(C)). Red ion irradiation uses a Kaufmann type ion source and gas pressure I
The test was carried out at X10 Torr and an acceleration voltage of 600 to 1 Kv. Etching speed is approximately 25 nm/W for GBCO thin film.
In negative resist, it was about aonm/min. The etching film thickness of the bridge portion 3 was set to 0.3 μm. after that,
The remaining part of the etching mask 5 was removed by ashing using oxygen plasma, and the bank portion 4 was exposed to produce a superconducting element (FIG. 3(d)). Oxygen pressure is I Tor
It was set as r.

第6図には試作した超伝導素子電流電圧特性を示す。同
図に示す様な弱結合特性が確認された。
Figure 6 shows the current-voltage characteristics of the prototype superconducting element. Weak coupling characteristics as shown in the figure were confirmed.

また、ブリッジ部3(第2図)の膜厚が薄くなるにつれ
、素子の臨界電流値は低くなり、膜厚により臨界電流制
御が可能なことを確認した。第6図には、ブリッジ部3
の膜厚o、16μmの超伝導素子に、f = 4.8 
GHzのマイクロ波を照射した時の電流電圧特性を示す
。同図に示す様に、  ΔV=f−h/e  (hはブ
ランクの定数6.63X10   J、s。
Furthermore, as the film thickness of the bridge portion 3 (FIG. 2) becomes thinner, the critical current value of the device decreases, confirming that the critical current can be controlled by controlling the film thickness. In FIG. 6, the bridge section 3
For a superconducting element with a film thickness o of 16 μm, f = 4.8
The current-voltage characteristics when irradiated with GHz microwave are shown. As shown in the figure, ΔV=f−h/e (h is a blank constant of 6.63×10 J, s.

0は′直荷素量1.60X10   G)  で与えら
れる約20μV間隔の電圧ステップ(シャピロステップ
)が観測され、ジョセフソン接合が形成されていること
を確認した。
Voltage steps (Shapiro steps) at intervals of about 20 μV given by a direct charge of 1.60×10 G) were observed, and it was confirmed that a Josephson junction was formed.

次に本第3の発明の超伝導素子の第2の製造方法の一実
施例を第4図のプロセス図を用いて説明する。基板1と
してmgo(1oo)面を用い、その上にBi −Sr
 −(a −Cu −0(7)金属酸化物薄膜12をR
Fマグネトロンスパッタ法で約o、 eμm堆積させた
(第4(IL)図)。アルゴンと酸素混合雰囲気中で基
板温度200°Cで堆積した金属酸化物薄膜12の組成
はBi :Sr:Ca:Cu= 1 : 1 : 1 
: 2であった。この薄膜12は表面が平坦であったが
、4.2Kまで冷却しても超伝導性は示さなかった。
Next, an embodiment of the second method for manufacturing a superconducting element according to the third invention will be described using the process diagram shown in FIG. An mgo (1oo) plane is used as the substrate 1, and Bi-Sr is deposited on it.
-(a -Cu -0(7) Metal oxide thin film 12 is R
The film was deposited to a thickness of approximately 0.0 μm by F magnetron sputtering (FIG. 4 (IL)). The composition of the metal oxide thin film 12 deposited at a substrate temperature of 200°C in an argon and oxygen mixed atmosphere is Bi:Sr:Ca:Cu=1:1:1.
: It was 2. This thin film 12 had a flat surface, but did not exhibit superconductivity even when cooled to 4.2K.

次に、フォトプロセスとスパッタエツチングにより素子
の横方向パターンを(バンク部等の形状)形成した後、
フォトプロセスとOF4反応性イオンエツチングによl
) 5i02エツチングマスク15を金属酸化物12表
面上に形成した(第4(b)図)。エツチングマスク1
6は厚み0.5μmで、ブリッジ相当部分6は幅2μm
にわたって除去された構造とした。次にこれをアルゴン
イオン17を照射してエツチングを行いブリッジ部3の
膜厚を0.3μmとした(第4(C)図)。次に、CF
4反応性エツチングによりエツチングマスク16を除去
した(第4(d)図)。最後にこれを酸素雰囲気中で、
890°Cで20分、870′Cで6時間熱処理を行な
い金属酸化物超伝導薄膜2を形成して超伝導素子を作製
した(第4(e)図)。作製した試料はSICM観察に
よると結晶粒が数十μmの岩板状であり、結晶粒界13
がブリッジ部3中に1〜2個再現性良く含まれているこ
とを確認した。この現象のメカニズムは詳細には不明で
あるが、おそらく、バンク部4とブリッジ部3の金属酸
化物薄膜12の膜厚の差による段差が結晶成長に影響を
与えて結晶粒界13がブリッジ部3に出来るのではない
かと考えられる。作製した超伝導素子は、第6図、第6
図に示すのと同様な特性を示し、良好なジョセフソン接
合が出来ていることを確認した。この接合は、結晶粒界
13によるものと考えられた。
Next, after forming the lateral pattern of the element (shape of the bank part, etc.) by photoprocessing and sputter etching,
By photo process and OF4 reactive ion etching
) A 5i02 etching mask 15 was formed on the surface of the metal oxide 12 (FIG. 4(b)). Etching mask 1
6 has a thickness of 0.5 μm, and the bridge equivalent portion 6 has a width of 2 μm.
The structure was completely removed. Next, this was etched by irradiating it with argon ions 17 to make the film thickness of the bridge portion 3 0.3 μm (FIG. 4(C)). Next, C.F.
The etching mask 16 was removed by 4-reactive etching (FIG. 4(d)). Finally, in an oxygen atmosphere,
A heat treatment was performed at 890°C for 20 minutes and at 870'C for 6 hours to form a metal oxide superconducting thin film 2, thereby producing a superconducting element (FIG. 4(e)). According to SICM observation, the prepared sample has a rock plate shape with crystal grains of several tens of micrometers, with grain boundaries of 13
It was confirmed that 1 to 2 pieces were included in the bridge portion 3 with good reproducibility. Although the mechanism of this phenomenon is not known in detail, it is probably due to the difference in film thickness between the metal oxide thin film 12 in the bank part 4 and the bridge part 3 that the level difference affects the crystal growth, causing the grain boundaries 13 to form in the bridge part. It is thought that it may be possible to do it in 3. The fabricated superconducting element is shown in Figs.
It showed the same characteristics as shown in the figure, confirming that a good Josephson junction was formed. This bonding was thought to be due to grain boundaries 13.

なお、上記実施例の説明では、基板1にMg0(100
)面を用いたが、これに限定するものではない。また、
金属酸化物超伝導薄膜2として、Gd −Ba−Cu−
0薄膜とBi −Sr −Ca −Cu−0薄膜を例に
あげたが、何もこれに限定するものではない。例えば、
銅元素を含む金属酸化物超伝導体で、ム−B −Cu−
0複合化合物(ここにムはSc 、 Y 、 Laおよ
びLtL系列元素(原子番号57〜71 、但し57,
61 .62を除く)のうち少なくとも1種で、BはB
a 、 Sr等の■、族元素のうちの少なくとも1種で
かつ、A、B元素とCuや、Bi−Pb −5r−Ca
−Cu−0超伝導体等の超伝導体や、Tl−Ba −C
u−0,Tl−Ba−Ca−Cu−0゜Tl−Pb −
Ba −Ja−Cu−0等のTIを含みかつ、Pbまた
はBa 、 Caなどの■、族元素のうち少なくとも1
種の元素を含む超伝導体でも同様な効果が得られた。更
には、Ba−Pb−Bi−0 、 Ba−に−Bi −
0。
In addition, in the description of the above embodiment, Mg0 (100
) surface was used, but the invention is not limited to this. Also,
As the metal oxide superconducting thin film 2, Gd-Ba-Cu-
0 thin film and Bi-Sr-Ca-Cu-0 thin film are given as examples, but the present invention is not limited thereto. for example,
A metal oxide superconductor containing copper element, Mu-B-Cu-
0 complex compound (herein, Sc, Y, La and LtL series elements (atomic number 57-71, however, 57,
61. 62), and B is B
At least one of group elements such as a, Sr, etc., and A and B elements and Cu, Bi-Pb-5r-Ca
-Cu-0 superconductor and other superconductors, Tl-Ba -C
u-0, Tl-Ba-Ca-Cu-0°Tl-Pb −
Contains TI such as Ba-Ja-Cu-0 and at least one of Pb or group ■ elements such as Ba and Ca.
A similar effect was obtained with superconductors containing seed elements. Furthermore, Ba-Pb-Bi-0, Ba--Bi-
0.

Ba −Rb −Bi −0等のBaおよびBiを含む
複合酸化物超伝導体でも同様な効果が得られることを発
明者らは確認している。
The inventors have confirmed that similar effects can be obtained with complex oxide superconductors containing Ba and Bi, such as Ba-Rb-Bi-0.

また、本発明の超伝導素子の製造方法の実施例の説明に
おいて、イオン照射に用いる不活性ガスイオン7のイオ
ンとしてアルゴンを用いだが、これに限定するものでは
なく不活性ガスであれば何であっても良い。またエツチ
ングマスク5としてネガレジストを用いたが、これに限
定するものではなく、不活性ガスイオン照射によるエツ
チングの際のマスク効果があれば何であっても良い。
Furthermore, in the description of the embodiment of the method for manufacturing a superconducting element of the present invention, argon is used as the inert gas ion 7 used for ion irradiation, but the invention is not limited to this, and any inert gas may be used. It's okay. Further, although a negative resist is used as the etching mask 5, the present invention is not limited to this, and any material may be used as long as it has a masking effect during etching by inert gas ion irradiation.

また、本発明である超伝導素子の第2の製造方法の実施
例の説明において、ブリッジ相当部分6のエツチングに
アルゴンイオン17を照射して行ったが、これに限定す
るものではなく、塩素をもちいた反応性イオンエツチン
グ等、ドライエツチングであれば同様な効果が得られる
ことを発明者等は確認している。またエツチングマスク
16に5i02を用いたが、ドライエツチング用マスク
として使用できるものであれば何であっても良い。従っ
て、エツチングマスク15の除去の方法も何であっても
良いのは言うまでもない。
Furthermore, in the description of the embodiment of the second manufacturing method of a superconducting element according to the present invention, etching of the bridge-corresponding portion 6 was carried out by irradiating argon ions 17, but this is not limiting. The inventors have confirmed that similar effects can be obtained using dry etching such as reactive ion etching. Although 5i02 was used for the etching mask 16, any material may be used as long as it can be used as a dry etching mask. Therefore, it goes without saying that any method may be used to remove the etching mask 15.

また金属酸化物薄膜12は超伝導を示さない例を述べた
が、別に超伝導を示しても良いのは明らかである。
Further, although an example has been described in which the metal oxide thin film 12 does not exhibit superconductivity, it is clear that it may exhibit superconductivity.

なお、本発明の超伝導素子の両製造方法の実施例の説明
において、ブリッジ部3をエツチング形成する以前に、
バンク部4等の素子の横方向パターン加工を行う様に記
述したが、これに限定する訳ではなく、この順序が逆に
なっても同様な効果が得られるのは自明での事である。
In addition, in the description of the embodiments of both methods of manufacturing a superconducting element of the present invention, before forming the bridge portion 3 by etching,
Although it has been described that the elements such as the bank portion 4 are patterned in the horizontal direction, the present invention is not limited to this, and it is obvious that the same effect can be obtained even if the order is reversed.

発明の効果 本発明の超伝導素子の実施に於いて、従来困難とされて
いた任意の位置に、所定の臨界電流値を有するジョセフ
ソン接合を有する超伝導素子を容易に作製することが可
能となり、その実用的価値は大きい。
Effects of the Invention In carrying out the superconducting device of the present invention, it has become possible to easily fabricate a superconducting device having a Josephson junction with a predetermined critical current value at any position, which was previously considered difficult. , its practical value is great.

本発明の超伝導素子の製造方法の実施に於いて、不活性
ガスイオン照射によるエツチングを用いるために、ミク
ロン−サブミクロンの短い接合形成が容易に作製可能で
あり、また、追加エツチングすることが可能であるため
に臨界電流値を下方に調整することが可能となり、工業
的価値は犬なるものがある。
In carrying out the method for manufacturing a superconducting element of the present invention, since etching by inert gas ion irradiation is used, short micron-submicron junctions can be easily formed, and additional etching is not required. Since this is possible, it becomes possible to adjust the critical current value downward, which has great industrial value.

また本発明の他の超伝導素子の製造方法の実施に於いて
、金属酸化物薄膜を加工後に熱処理を施して超伝導薄膜
化することにより、加工ダメージの改復または防止が出
来、従来、微細加工の困難とされていた平坦な表面の得
にくい金属酸化物薄膜にも、所定の場所に選択的に微細
なジョセフソン接合を形成することが可能となり、その
工業的価値は極めて大きい。
In addition, in carrying out the method for manufacturing other superconducting elements of the present invention, processing damage can be improved or prevented by heat-treating the metal oxide thin film after processing to make it a superconducting thin film. It is now possible to selectively form fine Josephson junctions in predetermined locations even on metal oxide thin films that have been considered difficult to process, and where it is difficult to obtain a flat surface, and this has enormous industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の超伝導素子の一実施例を
示す斜視図および断面図、第3図は本発明である超伝導
素子の第1の製造方法の一例を示すプロセス工程断面図
、第4図は本発明である超伝導素子の第2の製造方法の
一例を示すプロセス工程断面図である。 1・・・・・・基板、2・・・・・・金属酸化物超伝導
薄膜、3・・・・・・ブリッジ部、4・・・・・・バン
ク部、5,15・・・・・・エツチングマスク、7・・
・・・・不活性ガスイオン、12・・・・・金属酸化物
薄膜。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名r−
*Ft 2− 食為醗化at趨伝JL屏曖 3−・−ブ  リ  ッ ジ 俤 図 1−一一基 収 2−−一超畝化物邂社尊薄膜 4b−−−パン2部 5−m−エッチングマスク /6 第 図 減 第 図 手続補正書巻式) 1事件の表示 昭和63年特許願第268484号 発明の名称 超伝導素子 補正をする者 事件との関係      特  許   出   願 
 大佐 所  大阪府門真市大字門真1006番地名 
称 (582)松下電器産業株式会比代表者    谷
  井  昭  雄
1 and 2 are perspective views and cross-sectional views showing one embodiment of the superconducting element of the present invention, and FIG. 3 is a cross-sectional view of process steps showing an example of the first manufacturing method of the superconducting element of the present invention. 4 are process step cross-sectional views showing an example of the second manufacturing method of a superconducting element according to the present invention. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Metal oxide superconducting thin film, 3...Bridge part, 4...Bank part, 5, 15...・・Etching mask, 7・・
...Inert gas ion, 12...Metal oxide thin film. Name of agent: Patent attorney Shigetaka Awano and 1 other person
*Ft 2-Eatable Distillation AT Trend JL Pingfu 3--Bridge 忤Fig. m-etching mask/6 Figure reduction diagram Procedure amendment form) 1 Display of case 1986 Patent application No. 268484 Name of the invention Person who makes corrections to superconducting elements Relationship to the case Patent application
Colonel Tokoro 1006 Kadoma, Kadoma City, Osaka Prefecture
(582) Akio Tanii, Representative of Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)基板上に形成された金属酸化物超伝導薄膜から成
る2つのバンク部と、前記金属酸化物超伝導薄膜と同一
組成を含む材料から成る薄膜で、かつ、前記バンク部の
膜厚よりも薄いブリッジ部により前記2つのバンク部が
電気的に接続された構造を有することを特徴とする超伝
導素子。 (2)金属酸化物超伝導薄膜の材料が、銅元素を含む金
属酸化物超伝導体であることを特徴とする特許請求の範
囲第1項記載の超伝導素子。 (3)銅元素を含む金属酸化物超伝導体として、A−B
−Cu−O複合化合物を用いたことを特徴とする特許請
求の範囲第2項記載の超伝導素子。 ここにAはSc、Y、LaおよびLa系列元素(原子番
号57〜71、但し57、61、62を除く)のうち少
なくとも1種、Bは、Ba、SrなどのIIa族元素のう
ちの少なくとも1種、かつA、B元素とCu元素の濃度
は 0.5≦(A+B)/Cu≦2.5。 (4)銅元素を含む金属酸化物超伝導体が、Biを含み
、かつ、PbまたはSr、CaなどのIIa族元素のうち
少なくとも1種の元素を含むことを特徴とする特許請求
の範囲第2項記載の超伝導素子。 (5)銅元素を含む金属酸化物超伝導体が、Tlを含み
、かつ、Pbまたは、Ba、CaなどのIIa族元素のう
ち少なくとも1種の元素を含むことを特徴とする特許請
求の範囲第2項記載の超伝導素子。 (6)金属酸化物超伝導薄膜の材料が、BaおよびBi
を含む複合酸化物超伝導体であることを特徴とする特許
請求の範囲第1項記載の超伝導素子。 (7)基板上に形成された金属酸化物超伝導薄膜に、フ
ォトリソグラフィ技術でブリッジ部に相当する上部を除
く部分にエッチングマスクを形成した後、不活性ガスイ
オンを照射して前記ブリッジ部に相当する部分の前記金
属酸化物超伝導薄膜をエッチングしてブリッジ部を形成
した後、前記エッチングマスクを除去して作製すること
を特徴とする特許請求の範囲第1項記載の超伝導素子の
製造方法。 (8)基板上に形成された金属酸化物薄膜を、フォトリ
ソグラフィ技術およびドライエッチング技術により、ブ
リッジ部に相当する部分をエッチングして膜厚を薄くし
た後、酸素雰囲気中にて熱処理を施して、前記金属酸化
物薄膜を金属酸化物超伝導薄膜とすることにより作製す
ることを特徴とする特許請求の範囲第1項記載の超伝導
素子の製造方法。
[Scope of Claims] (1) Two bank portions made of a metal oxide superconducting thin film formed on a substrate, and a thin film made of a material containing the same composition as the metal oxide superconducting thin film, and the A superconducting element having a structure in which the two bank parts are electrically connected by a bridge part that is thinner than the film thickness of the bank part. (2) The superconducting element according to claim 1, wherein the material of the metal oxide superconducting thin film is a metal oxide superconductor containing an element of copper. (3) As a metal oxide superconductor containing copper element, A-B
The superconducting element according to claim 2, characterized in that a -Cu-O composite compound is used. Here, A is at least one of Sc, Y, La, and La series elements (atomic numbers 57 to 71, but excluding 57, 61, and 62), and B is at least one of IIa group elements such as Ba and Sr. 1 type, and the concentration of elements A, B and Cu element is 0.5≦(A+B)/Cu≦2.5. (4) The metal oxide superconductor containing the copper element contains Bi and at least one element selected from group IIa elements such as Pb, Sr, and Ca. The superconducting element according to item 2. (5) Claims characterized in that the metal oxide superconductor containing the copper element contains Tl and at least one element selected from Pb and group IIa elements such as Ba and Ca. The superconducting element according to item 2. (6) The material of the metal oxide superconducting thin film is Ba and Bi.
The superconducting element according to claim 1, which is a composite oxide superconductor containing: (7) After forming an etching mask on the metal oxide superconducting thin film formed on the substrate except for the upper part corresponding to the bridge part using photolithography technology, inert gas ions are irradiated to the bridge part. Manufacturing a superconducting element according to claim 1, wherein the superconducting element is manufactured by etching the metal oxide superconducting thin film in a corresponding portion to form a bridge portion, and then removing the etching mask. Method. (8) The metal oxide thin film formed on the substrate is thinned by etching the portion corresponding to the bridge portion using photolithography technology and dry etching technology, and then heat-treated in an oxygen atmosphere. 2. The method of manufacturing a superconducting element according to claim 1, wherein the metal oxide thin film is a metal oxide superconducting thin film.
JP63268484A 1988-10-25 1988-10-25 Superconducting device and manufacturing method thereof Expired - Lifetime JP2517081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268484A JP2517081B2 (en) 1988-10-25 1988-10-25 Superconducting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268484A JP2517081B2 (en) 1988-10-25 1988-10-25 Superconducting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7307242A Division JP2969068B2 (en) 1995-11-27 1995-11-27 Superconducting element manufacturing method

Publications (2)

Publication Number Publication Date
JPH02114678A true JPH02114678A (en) 1990-04-26
JP2517081B2 JP2517081B2 (en) 1996-07-24

Family

ID=17459136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268484A Expired - Lifetime JP2517081B2 (en) 1988-10-25 1988-10-25 Superconducting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2517081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK151796B (en) * 1980-04-30 1988-01-04 Sumitomo Chemical Co PROCEDURE FOR THE PREPARATION OF CYCLOPENTENOLONS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279682A (en) * 1985-10-03 1987-04-13 Toyo Soda Mfg Co Ltd Josephson bridge device provided with micro-short

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279682A (en) * 1985-10-03 1987-04-13 Toyo Soda Mfg Co Ltd Josephson bridge device provided with micro-short

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK151796B (en) * 1980-04-30 1988-01-04 Sumitomo Chemical Co PROCEDURE FOR THE PREPARATION OF CYCLOPENTENOLONS

Also Published As

Publication number Publication date
JP2517081B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JP2907832B2 (en) Superconducting device and manufacturing method thereof
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
EP0468868A2 (en) Superconducting device having a layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same
JPH02114678A (en) Superconductive element
EP0422641B1 (en) Superconductor device
EP0491496B1 (en) Article comprising a superconductor/insulator layer structure, and method of making the article
JP2969068B2 (en) Superconducting element manufacturing method
JP3425422B2 (en) Superconducting element manufacturing method
JPS63306676A (en) Josephson element
JP3147999B2 (en) Josephson junction device and method of manufacturing the same
JP2976427B2 (en) Method of manufacturing Josephson device
JP2909455B1 (en) Superconducting element
JPH02298085A (en) Manufacture of josephson device
JP2899287B2 (en) Josephson element
JP3379533B2 (en) Method for manufacturing superconducting device
JP2831918B2 (en) Superconducting element manufacturing method
JP3570418B2 (en) Superconducting device
JPH01208878A (en) Superconducting device, superconducting wiring and manufacture thereof
JP2776004B2 (en) Method of manufacturing Josephson device
JPH01211985A (en) Manufacture of josephson element
JPH02184087A (en) Superconducting weakly-coupled element
JPH06132577A (en) Formation of oxide suprconducting josephson element
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JPH02197179A (en) Josephson junction element and manufacture thereof
JPH0195576A (en) Manufacture of thin-film superconducting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13