JPS58157161A - Photo-driven type semiconductor device - Google Patents

Photo-driven type semiconductor device

Info

Publication number
JPS58157161A
JPS58157161A JP57039032A JP3903282A JPS58157161A JP S58157161 A JPS58157161 A JP S58157161A JP 57039032 A JP57039032 A JP 57039032A JP 3903282 A JP3903282 A JP 3903282A JP S58157161 A JPS58157161 A JP S58157161A
Authority
JP
Japan
Prior art keywords
photo
semiconductor device
thyristor
anode electrode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57039032A
Other languages
Japanese (ja)
Inventor
Hideo Matsuda
秀雄 松田
Hiroshi Sakurai
桜井 坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57039032A priority Critical patent/JPS58157161A/en
Publication of JPS58157161A publication Critical patent/JPS58157161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors
    • H01L31/1113Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors the device being a photothyristor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Thyristors (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable to obtain sufficiently the heat dissipating effect to a photo thyristor and thus offer a photo-driven type semiconductor device having high reliability, by providing heat sinks such as metallic fins on at least one of an anode electrode and a cathode electrode. CONSTITUTION:The device can lead a light 6 from a transverse direction into the light receiving part 15 of a photo thyristor 11 at a sufficient photo transmission efficiency. In this case, since it is necessary to sufficiently increase the radius of curvature of the curved part 16a of an internal light guide 16, the thickness of the entire semiconductor device increases. Thereby, mainly the thicknesses of the anode electrode 13a and the cathode electrode 13b increase, and accordingly the thermal resistance increases. Since heat sinks 41 are provided on the anode electrode 13a and the cathode electrode 13b, the heat generated at the junction part of the photo thyristor 11 is dissipated easily despite the increase of the thermal resistance, and therefore bad influences due to heat on the photo thyristor 11 can be largely prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 仁の発明は、光信号をトリガとして用いる光トリガサイ
リスタ等の先駆1/klI半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] Jin's invention relates to pioneering 1/klI semiconductor devices such as optically triggered thyristors that use optical signals as triggers.

〔発明の技術的背景〕[Technical background of the invention]

光信号をトリガとして用いる光トリガサイリスタ(以下
単に党サイリスクと称する)は、通常の電気トリガサイ
リスクと比較して多くの利点を有している。例えif、
f−)回路と主回路(サイリスタ装置本体)とO電気的
絶縁性が優れ、ダート−路から混入する外部雑音による
誤−動作が極めて少ない、さらに、装置全体の小型化お
よび低価格化が容易に実現でき、信頼性も高い。このよ
うな利点を生かして、光サイリスタは、高電圧の電力変
換装置等に多用されている。
Optical-triggered thyristors (hereinafter simply referred to as thyristors) that use optical signals as triggers have many advantages over ordinary electrically-triggered thyristors. For example, if
f-) Excellent electrical insulation between the circuit and the main circuit (thyristor device body), extremely little malfunction due to external noise coming in from the dirt road, and easy to downsize and lower the price of the entire device. It can be realized easily and is highly reliable. Taking advantage of these advantages, optical thyristors are often used in high-voltage power conversion devices and the like.

このような光サイリスタは、通常1111図に示すよう
なN’Ml工i、fil、Pm、ぺ−7uj、Nff1
ベース3およびP!1iIlニオ、り4からなる4層構
造の半導体素子である。この光サイリスタの受光部(N
ll工建二定1の一部)sK’Jt、6が照射されると
、ターンオンの状態になり順方向・マイアスされ九アノ
ード7とカソード8間に電流が流れることになる。
Such an optical thyristor usually has N'Ml engineering i, fil, Pm, P7uj, Nff1 as shown in Figure 1111.
Base 3 and P! It is a semiconductor element with a four-layer structure consisting of 1iIlNio and 4. The light receiving part of this optical thyristor (N
When sK'Jt, 6 is irradiated, it turns on and is biased in the forward direction, causing a current to flow between the anode 7 and cathode 8.

ところで、上記のような光サイリスタは、通常第2図に
示すような外囲器11に収納され、外部環境から保護さ
れている。すなわち、光サイリスタ本体(以下単に光サ
イリスタと称する)11は、6外囲器12のアノード電
極13mとカソード電極JJb閏に設けられ、通常アノ
ード電@ I J a K接続され良熱緩衝板14によ
シ保持される。光サイリスタ11のカソード側に設けら
れた受光部15には、光を導く丸めの内部ライトガイド
16の一端が例えばシリコンf五等の支持部材17で固
定される。内部2イ)ガイド16は、通常石英ガラス等
のオプティカルファイバであり、その日径紘例えば1−
程度である。そして、内部ライトガイド1#の他の一端
は、外囲器12の開口部18で例えば外i!1IiF1
2の周i!IK設けられるセラミ、夕等の絶縁体1#に
気密に固定される。具体的にけ、内部ライトガイド1σ
の一端を例えば金属筒21に低融点ガラス等で気密Kr
1A定し、こO金属筒21を外@912の開口部1aF
C気密El!定する。
Incidentally, the optical thyristor as described above is usually housed in an envelope 11 as shown in FIG. 2 and protected from the external environment. That is, the optical thyristor main body (hereinafter simply referred to as an optical thyristor) 11 is provided at the anode electrode 13m and the cathode electrode JJb of the six envelopes 12, and is normally connected to the anode electrode @ I J a K and connected to the thermal buffer plate 14. It is well maintained. One end of a round internal light guide 16 for guiding light is fixed to the light receiving section 15 provided on the cathode side of the optical thyristor 11 with a support member 17 made of silicon F5 or the like. Internal 2a) The guide 16 is usually an optical fiber such as quartz glass, and its diameter is, for example, 1-
That's about it. The other end of the internal light guide 1# is connected to the outside i! at the opening 18 of the envelope 12, for example. 1IiF1
2 laps i! It is airtightly fixed to an insulator 1# such as ceramic or aluminum provided in the IK. Specifically, internal light guide 1σ
For example, one end of the metal cylinder 21 is made of low melting point glass or the like to be airtight with Kr.
1A, and remove the metal tube 21 from the opening 1aF of 912.
C airtight El! Set.

このような内部ライトガイド1611Cコネクタ部lQ
t介して外部ライトガイド(図示せず)が〔背景技術の
問題点〕 上記のように外囲ekllの側面から光6を導入fる構
造の光駆動型半導体装置では、例えば複数個組み合わせ
て、電力装置等に組み込む場合、取り扱いが容易である
などの利点がある。
Such an internal light guide 1611C connector part lQ
[Background art problem] In a light-driven semiconductor device having a structure in which light 6 is introduced from the side surface of the outer enclosure ekll as described above, an external light guide (not shown) is connected through the external light guide (not shown), for example, by combining a plurality of light guides. When incorporated into a power device or the like, there are advantages such as ease of handling.

しかしながら、第211に示すように内部ライトガイド
16を横方向から縦方向に約90″に折シ曲げる必要が
ある。この場合、内部ライトガイド16の湾一部(第2
囚の16a)の曲率半径は、光伝送損失をおさえるため
、ある程度大きくする必要がある0通常、光透過率〔−
〕と曲率半径とは、第3図に示すように、内部ライトガ
イド160ロ径をノ母うメータとして一定の関係がある
。すなわち、通常内部ライトガイド16の口径は1■φ
@度であるため、十分な光透過率(10o[ニー])を
得るには、曲率半径を10■以上にする必要がある。し
たがって、従来では   パ内部ライトガイド1#の曲
率半径が比較的大きくなる丸め、例えば電気トリがサイ
リスタと比較して半導体装置全体の厚さが大きくなる。
However, as shown in No. 211, it is necessary to bend the internal light guide 16 from the horizontal direction to the vertical direction by approximately 90''.
The radius of curvature of the curvature 16a) needs to be increased to some extent in order to suppress optical transmission loss.Normally, the optical transmittance [-
] and the radius of curvature have a certain relationship based on the diameter of the internal light guide 160, as shown in FIG. That is, the diameter of the internal light guide 16 is usually 1■φ.
Since the radius of curvature must be 10° or more in order to obtain sufficient light transmittance (10° [knee]). Therefore, in the conventional case, the radius of curvature of the internal light guide 1# is relatively large, for example, an electric tree has a large thickness of the entire semiconductor device compared to a thyristor.

そのため、例えば7ノード電極11&およびカッーr電
極13bの厚さが大きくなp1熱抵抗が大きくなる。す
なわち、光サイリスク11の接合部に発生する熱が放熱
しKm<<なり、光サイリスタ1ノに熱による悪影響が
及ぼす欠点がありたQ 〔発明の目的〕 この発明は、上記の事情を鑑みてなされたもので、光サ
イリスタの受光部に光を導く内部ライトガイドの湾曲部
の曲率半径が比較的大きくなり、装置全体の厚さが大き
くなった場合でも、光サイリスタに対する放熱効果を十
分得ることができ、高い信頼性を有する光駆動型半導体
装置を提供することを目的とする。
Therefore, for example, the thickness of the 7-node electrode 11& and the curl electrode 13b becomes large, and the p1 thermal resistance becomes large. In other words, the heat generated at the junction of the optical thyristor 11 is dissipated to Km<<, and there is a drawback that the optical thyristor 1 is adversely affected by the heat. Even if the radius of curvature of the curved part of the internal light guide that guides light to the light receiving part of the optical thyristor becomes relatively large and the thickness of the entire device increases, the heat dissipation effect for the optical thyristor can be obtained sufficiently. It is an object of the present invention to provide an optically driven semiconductor device that can perform the following steps and has high reliability.

〔発明の概要〕[Summary of the invention]

すなわち、この発!Iにおいては光サイリスタ等の受光
部に十分な伝送効率で光を導く内部ライトガイドを有す
る光駆動型半導体装置において、アノード電極およびカ
ン−PIEI11の両者の少なくとも−1に金属製のフ
ィン等の放熱体を設ける(Oである。
In other words, this departure! In I, in an optically driven semiconductor device having an internal light guide that guides light with sufficient transmission efficiency to a light receiving part such as an optical thyristor, a heat dissipating metal fin or the like is provided on at least -1 of both the anode electrode and the can-PIEI 11. Provide a body (O.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例について説明す
る。jl1411は、この発明に係る光駆動型半導体装
置の構成を示すもので、光サイリスタ11は外囲器11
のアノード電極13&およびカソード電極11b間に設
けられており、通常熱緩衝板14上に保持されている。
An embodiment of the present invention will be described below with reference to the drawings. jl1411 shows the configuration of the optically driven semiconductor device according to the present invention, in which the optical thyristor 11 is connected to the envelope 11.
It is provided between the anode electrode 13& and the cathode electrode 11b, and is usually held on a thermal buffer plate 14.

光サイリスタ11の受光部Illには、光を導く内部ラ
イトガイド1−の一端がシリコンゴム尋の支持部材11
で固定されている。さらに、内部ライトがイド1−のも
う一方の一端は、外囲器12の開口部l111C設けら
れる金属筒21に低融点ガラス等で気密に固定されてい
る。そして、光源からの光6を受光部15に導くために
、内部ライトガイド1#には所定の曲率半径の湾曲部1
6aが形成されている。この湾曲部16mの曲率半径は
、内部ライトがイド16の口径が1■φ11度であれば
、10−以上とする。それによ勤先透過率をtoo (
1)近<Ktでできる(IE3図に示す)。さらに上記
アノード電極IJaおよびカンード電極11bO両者に
は、光ナイリスタ11の熱抵抗による放熱効果を促進す
るための放熱体41、すなわち例えばアル建ニウムまた
は銅等のフィンが一体となって設けられている。なお、
他の構成は前記第2図に示す場合と同様であるため説明
は省略する。
In the light receiving part Ill of the optical thyristor 11, one end of the internal light guide 1- for guiding light is a support member 11 made of silicone rubber.
is fixed. Further, the other end of the inner light 1- is airtightly fixed to a metal cylinder 21 provided in an opening l111C of the envelope 12 with low melting point glass or the like. In order to guide the light 6 from the light source to the light receiving part 15, the internal light guide 1# has a curved part 1 with a predetermined radius of curvature.
6a is formed. The radius of curvature of this curved portion 16m is set to be 10 or more if the diameter of the inner light 16 is 1×11 degrees. This increases the workplace transparency rate to too (
1) It can be done when near < Kt (as shown in IE3 diagram). Further, both the anode electrode IJa and the cando electrode 11bO are integrally provided with a heat dissipation body 41, that is, a fin made of aluminum or copper, etc., for promoting the heat dissipation effect due to the thermal resistance of the photonyristor 11. . In addition,
The other configurations are the same as those shown in FIG. 2, so their explanation will be omitted.

上記のような構成において、横方向からの光6を十分な
光伝送効率をもって光サイリスタ11の受光部15に導
くことができる。この場合、内部ライトがイド16の湾
自部111hの曲率半径を十分大きくする必要があるた
め、半導体装置全体の厚みが大きくなる。その丸め、上
記のように主として7ノード電極JJaおよびカソード
電極13bの両者O厚みが大きくなシ、熱抵抗が大きく
なる。とζろで、第4図に示すように7ノード電極JJ
aおよび力、ンード電極fjbの両者に放熱体41が設
けられているため、光サイリスタ11の接合部で発生す
る熱は上記のように熱抵抗が大暑くなるにもかかわらず
、容易に放熱される。したがりて、熱による元サイリス
タ11への悪影響を大幅に防止することができる。なお
、半導体装置全体の厚みを薄くするために、内部ライト
ガイド16の口径を小さくすることが考えられる。しか
し壜から、この場合には、内部ライトガイドICに光6
t−導くための外部ライトガイド(図示せず)の口径も
小さくする必要がある。そのため、この外部ライトガイ
ドと:″源との結合効率が極端に低下して、結果的光サ
イリスタ11の受光部15への光伝送効率を大幅に低下
させることになり、望ましくない。
In the above configuration, the light 6 from the lateral direction can be guided to the light receiving section 15 of the optical thyristor 11 with sufficient optical transmission efficiency. In this case, it is necessary for the internal light to have a sufficiently large radius of curvature of the curved portion 111h of the id 16, which increases the thickness of the entire semiconductor device. Due to the rounding, the thermal resistance increases mainly because the thickness of both the 7-node electrode JJa and the cathode electrode 13b is large as described above. and ζ, the 7-node electrode JJ as shown in FIG.
Since the heat radiator 41 is provided on both the terminal electrode fjb and the terminal electrode fjb, the heat generated at the junction of the optical thyristor 11 is easily radiated, even though the thermal resistance becomes very hot as described above. Ru. Therefore, the adverse effect of heat on the original thyristor 11 can be largely prevented. Note that in order to reduce the thickness of the entire semiconductor device, it is conceivable to reduce the diameter of the internal light guide 16. However, from the bottle, in this case, the light 6 is transmitted to the internal light guide IC.
The diameter of the external light guide (not shown) for t-guiding also needs to be small. Therefore, the coupling efficiency between this external light guide and the source is extremely reduced, resulting in a significant reduction in the light transmission efficiency to the light receiving section 15 of the optical thyristor 11, which is undesirable.

なお、上記実mnにおいてアノード電極32aおよびカ
ソード電極Jjbの両者に放熱体41を設けたが、これ
に限ることなくどちらか一方のみでもよい・ 〔発明の効果〕 以上詳述したようにこの発明によれば、横方向からの光
を光サイリスタの受光部に内部ライにおいて、光伝送効
率を高めるためKFP3部ライトライトガイド部の曲率
や径が比較的大きくなり、装置全体の厚さが大きくなる
場合でも、光サイリスタに対する放熱効果を十分高める
ことができる。したがって、光サイリスタに対する熱の
悪影響を大幅に防止して、蟲り信頼性を得ることができ
るものである。
Although the heat sink 41 is provided on both the anode electrode 32a and the cathode electrode Jjb in the above actual mn, the heat dissipation body 41 is not limited to this, and only either one may be provided. [Effects of the Invention] As described in detail above, the present invention According to the above, in order to increase the light transmission efficiency by internally directing light from the lateral direction to the light receiving part of the optical thyristor, the curvature and diameter of the KFP 3 light guide part are relatively large, which increases the thickness of the entire device. However, the heat dissipation effect for the optical thyristor can be sufficiently enhanced. Therefore, the adverse effect of heat on the optical thyristor can be largely prevented and reliability can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光トリtサイリスタの構成を示す断面図
、第2図は従来の光駆動型半導体装置の構成図、第3図
はその内部ライ)ffイドの口径に対する曲率半径と光
透過率oIIlst説明する図、第4図はこの発明の一
実施例に係る党駆動飄半導体装置の構成図である。 11−・元サイリスタ、11−・・外l!l器、Jjm
・・・アノード電極、13b−・カソード電極、16・
・・内部ライトガイド、41−放熱体。 出願人代理人  弁理士 鈴 江 武 彦第1図
Figure 1 is a cross-sectional view showing the configuration of a conventional optical tri-thyristor, Figure 2 is a configuration diagram of a conventional optically driven semiconductor device, and Figure 3 is its internal line. FIG. 4 is a diagram illustrating the structure of a semiconductor device with a drive shaft according to an embodiment of the present invention. 11-・Former thyristor, 11-・Outside l! l vessel, Jjm
・・・Anode electrode, 13b-・Cathode electrode, 16・
...internal light guide, 41-heat dissipation body. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】 光信号で駆動する半導体素子と、この半導体素子を収納
する外囲器と、この外囲器に設けられるアノード電極お
よびカソード電極と、上記外囲器内に設けられて上記半
導体素子の受光部に光を導き所定の曲率半径の湾一部を
有する内。 部ライトガイドと、上記アノード電極およびカソード電
極の両者の少なくとも一方に設けられる放熱効果を有す
る放熱体とを具備していることを%黴とする光駆動製半
導体装置。
[Claims] A semiconductor element driven by an optical signal, an envelope housing the semiconductor element, an anode electrode and a cathode electrode provided in the envelope, and a semiconductor element driven by an optical signal, an anode electrode and a cathode electrode provided in the envelope; The inside has a curved part with a predetermined radius of curvature that guides light to the light receiving part of the semiconductor element. 1. An optically driven semiconductor device comprising: a light guide; and a heat dissipating body having a heat dissipating effect, which is provided on at least one of the anode electrode and the cathode electrode.
JP57039032A 1982-03-12 1982-03-12 Photo-driven type semiconductor device Pending JPS58157161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57039032A JPS58157161A (en) 1982-03-12 1982-03-12 Photo-driven type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57039032A JPS58157161A (en) 1982-03-12 1982-03-12 Photo-driven type semiconductor device

Publications (1)

Publication Number Publication Date
JPS58157161A true JPS58157161A (en) 1983-09-19

Family

ID=12541763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57039032A Pending JPS58157161A (en) 1982-03-12 1982-03-12 Photo-driven type semiconductor device

Country Status (1)

Country Link
JP (1) JPS58157161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132165A (en) * 1983-01-18 1984-07-30 Hitachi Ltd Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848082A (en) * 1971-10-21 1973-07-07
JPS55117285A (en) * 1979-02-28 1980-09-09 Toshiba Corp Light drive semiconductor device
JPS5662379A (en) * 1979-10-29 1981-05-28 Toshiba Corp Optical operated semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848082A (en) * 1971-10-21 1973-07-07
JPS55117285A (en) * 1979-02-28 1980-09-09 Toshiba Corp Light drive semiconductor device
JPS5662379A (en) * 1979-10-29 1981-05-28 Toshiba Corp Optical operated semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132165A (en) * 1983-01-18 1984-07-30 Hitachi Ltd Semiconductor device
JPH027192B2 (en) * 1983-01-18 1990-02-15 Hitachi Ltd

Similar Documents

Publication Publication Date Title
US4267559A (en) Low thermal impedance light-emitting diode package
US2640901A (en) Photoelectric semiconductor device
US9099602B2 (en) Photocoupler
US9450134B2 (en) Photocoupler
US3508100A (en) Electroluminescent semiconductor devices
JPS58157161A (en) Photo-driven type semiconductor device
US5621237A (en) Semiconductor device
EP0677879A1 (en) Light trigger type semiconductor device
JPS583281A (en) Photovoltaic type semiconductor device
US3353051A (en) High efficiency semiconductor light emitter
GB847179A (en) Improvements in or relating to semiconductor rectifier devices
US4389662A (en) Light-activated semiconductor device
JP2851985B2 (en) Power semiconductor device
JPS584836B2 (en) Optical semiconductor device package
JPS58157166A (en) Photo-driven type semiconductor device
JPS58157160A (en) Photo-driven type semiconductor device
JP3240575B2 (en) Solid state relay
JP3402831B2 (en) Semiconductor device and photocoupler
TWI752811B (en) Dual transistor thermoelectric separation package structure
JPS6092686A (en) Semiconductor laser
CN106876348A (en) Chip-packaging structure and its manufacture method
JPS6081877A (en) Photocoupling semiconductor device
JPS58215071A (en) Photo-driven semiconductor device
JP2017103351A (en) Ultraviolet light emitting device and ultraviolet light irradiating device
JP2894025B2 (en) Resin-sealed semiconductor device