JPS58157135A - Forming method for pattern - Google Patents

Forming method for pattern

Info

Publication number
JPS58157135A
JPS58157135A JP57041273A JP4127382A JPS58157135A JP S58157135 A JPS58157135 A JP S58157135A JP 57041273 A JP57041273 A JP 57041273A JP 4127382 A JP4127382 A JP 4127382A JP S58157135 A JPS58157135 A JP S58157135A
Authority
JP
Japan
Prior art keywords
radiation
sensitive resin
forming method
pattern forming
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57041273A
Other languages
Japanese (ja)
Other versions
JPH035653B2 (en
Inventor
Masaru Sasako
勝 笹子
Kazuhiko Tsuji
和彦 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57041273A priority Critical patent/JPS58157135A/en
Publication of JPS58157135A publication Critical patent/JPS58157135A/en
Publication of JPH035653B2 publication Critical patent/JPH035653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the deviation in pattern dimensions and the attendant lowered resolution by a method wherein treatment to prevent melting and mixing is performed for the surface of a first resin film for the isolation thereof from a second resin film and the two films are simultaneously subjected to patterning, when two layers of radiation-sensitive resin are applied. CONSTITUTION:A layer 5 of positive type UV sensitive resin (positive UV photoresist) is applied to a substrate 4, subjected to soft baking, and then exposed to a UV beam 6. Fluorine-base glass plasma 7 is so applied to the surface of the exposed UV photoresist 5a that a modified layer 5b is produced with its sensitivity to light not being degraded. A second positive UV photoresist 8 is applied to the modified layer 5b and subjected to baking. Due to the modified layer 5b, a lamination of completely isolated layers can be formed. Through a mask 9, a UV beam 11 is directed at the lamination, except where the beam 11 is blocked by Cr sections 10, for selective and simultaneous processing.

Description

【発明の詳細な説明】 本発明はパターン形成方法とくに放射線感応性樹脂を用
いたパターン形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pattern forming method, and particularly to a pattern forming method using a radiation-sensitive resin.

集積回路の高集積化、高密度化は従来のりソグラフィ技
術の進歩により増大してきた。その最小線幅も程1μm
前後となってきており、この加工線幅を達成するには、
高開口レンズを有した縮少投影法により紫外線露光する
方法、基板上に直接描画する電子ビーム露光法、X線を
用いたグロキシミティ露光法があげられる。しかし、い
ずれの方法もスループットを犠牲にすることなく良好な
線幅制御と高解像度及び良好な段差部のカバレジを同時
に得ることは困難である。特に実際の集積回路上におい
ては必然的に凹凸が発生し、放射線感応性樹脂を塗布し
た後では、凹凸部における放射線感応性樹脂膜の膜厚差
が発生し、良好な線幅制御が不可能となる。
BACKGROUND OF THE INVENTION The integration and density of integrated circuits has increased due to advances in conventional lithography technology. The minimum line width is about 1μm
In order to achieve this processing line width,
Examples include a method of exposing to ultraviolet light using a reduction projection method using a high aperture lens, an electron beam exposure method of directly drawing on a substrate, and a gloximity exposure method using X-rays. However, with either method, it is difficult to simultaneously obtain good line width control, high resolution, and good step coverage without sacrificing throughput. In particular, unevenness inevitably occurs on actual integrated circuits, and after coating the radiation-sensitive resin, differences in the thickness of the radiation-sensitive resin film occur at the uneven parts, making it impossible to control the line width well. becomes.

これについて第1図を用いて説明する。第1図は従来法
により、単層放射線感応性樹脂膜を段差部へ塗布し、そ
の段差部に対して交叉してパターン形成上を行なった状
態を示したものである。第1図ta+は基板1上に段差
物2が形成されておりその上に放射線感応性樹脂3が塗
布された状態の断面図である。この場合、段差物2がな
い平坦な基板1上の放射線感応性樹脂3の膜厚をtR4
に塗布した時、段差物2上の放射線感応性樹脂3の膜厚
は、放射線感応性樹脂自身の粘性と塗布時の回転数によ
り膜厚は’R2に決定される。この時”R4=’R2に
すること、つまり凹凸部での放射線感応性樹脂膜の膜厚
差を階無にすることは物理的に不可能である。このよう
に”R4’< ’R2の膜厚においてパターンを形成し
た場合の平面を第1図fb)に示す。
This will be explained using FIG. 1. FIG. 1 shows a state in which a single-layer radiation-sensitive resin film is applied to a stepped portion by a conventional method, and a pattern is formed across the stepped portion. FIG. 1 ta+ is a sectional view of a state in which a step 2 is formed on a substrate 1 and a radiation-sensitive resin 3 is applied thereon. In this case, the film thickness of the radiation-sensitive resin 3 on the flat substrate 1 without the step 2 is tR4.
When applied, the film thickness of the radiation-sensitive resin 3 on the stepped object 2 is determined to be 'R2' depending on the viscosity of the radiation-sensitive resin itself and the number of revolutions during application. At this time, it is physically impossible to make "R4='R2," that is, to make the difference in the thickness of the radiation-sensitive resin film at the uneven portions negligible.In this way, "R4"<'R2. FIG. 1 fb) shows a plane when a pattern is formed in the film thickness.

これは、段差物パターン2に対して直角に交叉して放射
線感応性樹脂パターン3を形成するとパターン3の膜厚
’R1位置ではパターン幅が11と決定されると、膜厚
tR2位置では’R4> tR2という関係があるため
パターン幅は、12と、11〉l!2トなシ段差部にお
けるパターン寸法変換差が発生してしまう。つまり、非
常に微細パターンになると良好な線幅制御が得られず、
更に段差物2のエツジ部2aでは実質上、平坦部の膜厚
’Ihよシ厚くなるため、解像度が低下する。
This means that when the radiation-sensitive resin pattern 3 is formed perpendicularly to the step pattern 2, the pattern width is determined to be 11 at the film thickness 'R1 position of the pattern 3, and 'R4' at the film thickness tR2 position. > Since there is a relationship tR2, the pattern width is 12 and 11>l! A difference in pattern size conversion occurs at the two step portions. In other words, when it comes to extremely fine patterns, good line width control cannot be obtained.
Furthermore, the edge portion 2a of the stepped object 2 is substantially thicker than the film thickness 'Ih of the flat portion, resulting in a decrease in resolution.

一般に解像度は、放射線感応性樹脂の膜厚が薄くなれば
なるほど向上する。これは放射線自身の波長によって微
細間隙になると干渉9回折現像のため入射するエネルギ
ーは減衰してしまうためである。
Generally, the resolution improves as the film thickness of the radiation-sensitive resin becomes thinner. This is because when a fine gap is created due to the wavelength of the radiation itself, the incident energy is attenuated due to interference 9 diffraction development.

第2図は段差物2を有する基板1上に放射線感応性樹脂
3を塗布した断面図である。この場合、第1図[alの
放射線感応性樹脂膜厚のtRlより厚く塗布した状態を
示す。tH1’に厚く塗布した場合では、図示されるよ
うに放射線感応性樹脂膜3上の表面は平坦となる。やは
りこの場合も良好な凹凸部でのカバレジを得ることは出
来ないが、段差物2の膜厚tSより基板1の平坦上の放
射線感応性樹脂3の膜厚tR1’をたとえば倍以上に厚
く塗布した場合は、’R1’と段差物2上の放射線感応
性樹脂3の膜厚’R2’は、はぼtR1′=tR2’と
なり段差物2の膜厚t3に影響されなくなる。
FIG. 2 is a cross-sectional view of a substrate 1 having a step 2 and a radiation-sensitive resin 3 coated thereon. In this case, FIG. 1 shows a state where the coating is thicker than the radiation-sensitive resin film thickness tRl of [al]. When it is applied thickly at tH1', the surface of the radiation-sensitive resin film 3 becomes flat as shown in the figure. In this case as well, it is not possible to obtain good coverage of uneven parts, but the film thickness tR1' of the radiation-sensitive resin 3 on the flat surface of the substrate 1 is coated to be, for example, more than twice as thick as the film thickness tS of the stepped object 2. In this case, 'R1' and the film thickness 'R2' of the radiation sensitive resin 3 on the stepped object 2 become approximately tR1'=tR2' and are not affected by the film thickness t3 of the stepped object 2.

しかし、前述したように放射線感応性樹脂は膜厚が厚く
なると逆に解像度が低下するため、ただ単に放射線感応
性樹脂を厚く塗布し段差を軽減しようとするのはパター
ン形成上好ましくない。同時にこれを実証するだめ第3
図に放射線感応性樹脂膜厚tHを変化させた場合の放射
線感応性樹脂ライン幅+l)と現像時間(td)特性を
示した。この特性曲線は単一波長で縮小屈折光学系を介
して、ジアジド系紫外線感光性樹脂に紫外線照射し、そ
の照射エネルギーを一定とし現像時間のみを可変とした
ときのライン幅変動の理論曲線(シュミレーション結果
)である。つまシライン幅[J)においてtl)がLに
なるだめの現像時間tdは放射線感応性樹脂膜厚tUが
厚くなればなる程大きくなる。
However, as described above, as the film thickness of the radiation-sensitive resin increases, the resolution decreases, so it is not preferable in terms of pattern formation to simply apply a thick layer of the radiation-sensitive resin to reduce the level difference. At the same time, we must prove this.
The figure shows the radiation-sensitive resin line width +l) and development time (td) characteristics when the radiation-sensitive resin film thickness tH is changed. This characteristic curve is a theoretical curve (simulation) of line width variation when a diazide-based ultraviolet-sensitive resin is irradiated with ultraviolet light at a single wavelength through a reduction refractive optical system, the irradiation energy is constant, and only the development time is variable. result). The development time td required for tl) to become L in the line width [J) increases as the radiation-sensitive resin film thickness tU increases.

つまりtHが厚くなると放射線の照射エネルギー量を増
すことにより、”Rが薄い場合と同等なライン幅(1)
が得られる訳であるため、第1図ta> 、 (b)第
2図に示すように段差がある上に放射線感応性樹脂膜を
塗布した場合には前述のようにパターン幅変動が発生す
ることになる。
In other words, when tH becomes thicker, by increasing the amount of radiation irradiation energy, the line width (1) is the same as when R is thinner.
Therefore, if a radiation-sensitive resin film is applied on a step as shown in Fig. 1, (b) Fig. 2, pattern width fluctuations will occur as described above. It turns out.

そこで、従来のように単層で放射線感応性樹脂を凹凸を
有する実際の集積回路上にパターン形成する際に障害と
なる、パターン寸法変換差とそれに伴なう解像度の低下
を防ぐため、本発明者らは放射線感応性樹脂の膜厚を厚
く塗布しながらも、段差部におけるパターン寸法変換差
を少なくしかつ解像度の低下を防ぐために、放射線感応
性樹脂を2層に塗布することにより、厚く塗布しながら
かつ最初に塗布した放射線感応性樹脂膜全面に放射性感
応させ、更に第2の放射線感応性樹脂膜を塗布する際に
、第1の放射線感応性樹脂膜との溶解混合を防ぐため第
1の放射線感応性樹脂膜表面に第2の放射線感応性樹脂
を分離するだめの処理を施こし、最後に第1.第2の放
射線感応性樹脂膜を同時にパターンを形成しようとする
パターン形成方法を提供しようとするものである・本発
明の実施例を第4図を用いて詳細に説明する。まず第1
の実施例をポジ型放射線感応性樹脂の特にポジ型紫外線
感光性樹脂を例にとって説明する。基板4上にポジ型紫
外線感光性樹脂(以後、ポジUVフォトレジスト)5を
塗布し、ソフトベーキングを施こす(第4図a)。次に
ポジUVフォトレジスト6にUV光6を全面に照射する
ことによって感光したポジUVフォトレジスト6aにす
る(第4図b)。そして感光したポジUVフォトレジス
ト6aの表面にフッ素系ガスプラズマ7によってポジU
Vフォトレジスト6a表面に店先反応に変化が生じない
程度に変質層6bを施こす(第4図C)。
Therefore, in order to prevent the difference in pattern dimension conversion and the accompanying decrease in resolution, which are obstacles when patterning a radiation-sensitive resin in a single layer on an actual integrated circuit having unevenness as in the past, the present invention was developed. While applying a thick layer of radiation-sensitive resin, they applied it thickly by applying two layers of radiation-sensitive resin in order to reduce the difference in pattern dimension conversion at the step part and prevent a decrease in resolution. At the same time, when the entire surface of the first radiation-sensitive resin film is radiosensitized and the second radiation-sensitive resin film is applied, the first radiation-sensitive resin film is coated to prevent dissolution and mixing with the first radiation-sensitive resin film. A treatment to separate the second radiation-sensitive resin is applied to the surface of the radiation-sensitive resin film of the first radiation-sensitive resin film. The present invention aims to provide a pattern forming method for simultaneously forming a pattern on the second radiation-sensitive resin film.An embodiment of the present invention will be described in detail with reference to FIG. First of all
Examples will be explained by taking as an example a positive type radiation-sensitive resin, particularly a positive type ultraviolet-sensitive resin. A positive UV-sensitive resin (hereinafter referred to as positive UV photoresist) 5 is applied onto the substrate 4, and soft baking is performed (FIG. 4a). Next, the entire surface of the positive UV photoresist 6 is irradiated with UV light 6 to form an exposed positive UV photoresist 6a (FIG. 4b). Then, the surface of the exposed positive UV photoresist 6a is exposed to a positive U by a fluorine-based gas plasma 7.
A degraded layer 6b is applied to the surface of the V photoresist 6a to such an extent that no change occurs in the shop front reaction (FIG. 4C).

次に第一層目のポジUVフォトレジスト6と同タイプの
第2のポジUVフォトレジスト8を第1のポジUVフォ
トレジストの変質層6b上に塗布しベーキングを施こす
。この際、変質層5bが形成されているため、第1.第
2ΩポジUVフォトレジスト5,8における第2のポジ
UVフォトレジスト8塗布時の溶解がなく完全に分離し
た形で積層形成が可能である(第4図d)。
Next, a second positive UV photoresist 8 of the same type as the first layer of positive UV photoresist 6 is applied onto the altered layer 6b of the first positive UV photoresist and baked. At this time, since the altered layer 5b is formed, the first. There is no dissolution in the second Ω positive UV photoresists 5 and 8 when the second positive UV photoresist 8 is applied, and it is possible to form a stack in a completely separated form (FIG. 4d).

次にパターンを有したマスク9によりクロム部1o以外
に紫外線11を用いて選択的に第2のポジUVフォトン
ジス)8a、第1のポジUVフォトンジス)5a、5b
同時に照射する(第4図e)。
Next, using a mask 9 having a pattern, ultraviolet rays 11 are selectively applied to areas other than the chrome part 1o to selectively apply a second positive UV photon resist) 8a, and a first positive UV photon resist) 5a, 5b.
irradiate at the same time (Fig. 4e).

そして紫外線非照射部8bを除去し、紫外線照射部8a
、5b、5aを現像除去する(第4図f)。
Then, the ultraviolet non-irradiated portion 8b is removed, and the ultraviolet irradiated portion 8a is removed.
, 5b and 5a are developed and removed (FIG. 4f).

これら一連の工程をえて、レジスト厚く塗布しながらも
微細パターンをかつ段差部における寸法変換差を少なく
することができる。
Through this series of steps, it is possible to form a fine pattern while applying a thick resist and to reduce the difference in dimension conversion at the stepped portion.

このことをもっと詳細に説明する。第5図に単層放射線
感応性樹脂(ポジ形)の照射特性(同図a)、本発明に
かかるパターン形成方法による2層放射線感応性樹脂の
照射特性(同図b)を示した。
This will be explained in more detail. FIG. 5 shows the irradiation characteristics of a single-layer radiation-sensitive resin (positive type) (FIG. 5a) and the irradiation characteristics of a two-layer radiation-sensitive resin formed by the pattern forming method according to the present invention (FIG. 5b).

第6図ta+は、第1の実施例で説明した第1層目のポ
ジUVフォトレジストのみの照射特性で第4図ta+に
示す膜厚t1を厚くしていくと、完全に現像しうる露光
エネルギーETは大きくなる。っまりtl(Kk Ii
ニア   k (定数〕・・・・旧・・(1)式の関係
があることがわかる。
FIG. 6 ta+ shows the irradiation characteristics of only the first layer of positive UV photoresist explained in the first example, and when the film thickness t1 shown in FIG. 4 ta+ is increased, the exposure can be completely developed. Energy ET becomes larger. Tmari tl (Kk Ii
Near k (constant)... Old... It can be seen that there is a relationship as shown in equation (1).

次に第6図tb)は、本発明にかかるパターン形成方法
による2層ポジUVフォトレジストの照射%性で第1層
、第2層膜厚(t、十t2)〔第4図参照〕を厚くして
も完全に現像しうる露光エネルギーは、はとんど変化量
がない。つまり、第1層目のポジ形UVフォトレジスト
が感光しているため、選択性が高く、感度の低下がない
ことを証明している。このことは、レジスト厚の変動に
露光(照射)エネルギーが依存しない。つまり段差部に
おけるレジスト厚の変動にもがかわらず、パターン幅変
動率が少ないということである。
Next, Fig. 6 tb) shows the irradiation percentage of the two-layer positive UV photoresist by the pattern forming method according to the present invention, and the film thicknesses of the first and second layers (t, t2) [see Fig. 4]. There is almost no change in the exposure energy required for complete development even if the thickness is increased. In other words, since the first layer of positive UV photoresist is exposed to light, the selectivity is high and it is proven that there is no decrease in sensitivity. This means that the exposure (irradiation) energy does not depend on variations in resist thickness. In other words, the pattern width variation rate is small despite variations in the resist thickness at the step portion.

第1の実゛施例(第4図参照)と第6図の照射特性の結
果、段差物パターン2上にパターニングしたパターン3
は、従来法による単層レジスト法によると寸法変換率は
第6図の斜線のごとくなるが、本発明によるパターン形
成法を用いると第6図の実線のごとく寸法変換率が少な
く、本発明者らの実験によると%以下に減少することが
可能であった。例えば、従来法で、段差(tl2) o
、epmで、レジスト厚(tRl)を1.8μmである
と寸法変換比(12/11×1oo ・・1呻・川・川
・・川・・[21式)は60%2本発明の第1の実施例
においてはレジスト厚(11+12)を2.ollmで
、同様にo、epmの段差基板上での寸法変換比は、8
0%と良好であった0 次に第2の実施例について第7図を用いて説明する。第
1の実施例において第1の放射線感応性樹脂表面処理工
程(第4図C)を、赤外線熱源12を第1の放射線感応
性樹脂5aの表面5cに照射することにより行い、熱変
質層5cを形成する工程をもつものである(第7図a)
。この時第1の放射線感応性樹脂6の表面熱変質層6C
は、第1の実施例と同様に、第2の放射線感応性樹脂を
完全に積層形成が可能となる。
As a result of the irradiation characteristics shown in the first embodiment (see FIG. 4) and FIG. 6, the pattern 3 patterned on the step pattern 2
According to the conventional single-layer resist method, the dimensional conversion rate is as shown by the diagonal line in Figure 6, but when the pattern forming method according to the present invention is used, the dimensional conversion rate is small as shown by the solid line in Figure 6. According to the experiments conducted by et al., it was possible to reduce the amount to below %. For example, in the conventional method, the step (tl2) o
, epm, and the resist thickness (tRl) is 1.8 μm, the dimension conversion ratio (12/11×1oo...1 groan, river, river, river... [Formula 21]) is 60%2. In Example 1, the resist thickness (11+12) was set to 2. Similarly, the dimensional conversion ratio on the step board for ollm and epm is 8.
Next, a second example will be described using FIG. 7. In the first embodiment, the first radiation-sensitive resin surface treatment step (FIG. 4C) is performed by irradiating the surface 5c of the first radiation-sensitive resin 5a with an infrared heat source 12, and the thermally altered layer 5c is (Figure 7a)
. At this time, the surface thermally altered layer 6C of the first radiation-sensitive resin 6
Similarly to the first embodiment, it is possible to completely laminate the second radiation-sensitive resin.

次に第3の実施例として、第2の実施例における赤外線
熱源12の代わりに高出力紫外線源を照射することによ
り、熱変質層6cを形成してもよい。
Next, as a third embodiment, the thermally altered layer 6c may be formed by irradiating with a high-power ultraviolet source instead of the infrared heat source 12 in the second embodiment.

次に第4の実施例について第7図を用いて説明する。す
なわち、第1の実施例にオコいて第1の放射線感応性樹
脂に全面放射線照射工程(第4図b)。
Next, a fourth embodiment will be described using FIG. 7. That is, in addition to the first embodiment, a step of irradiating the entire first radiation-sensitive resin with radiation is performed (FIG. 4b).

また表面処理工程(第4図C)を、同時に行なおおうと
するものである。これは、第4図において、第1の放射
線感応性樹脂塗布後(第4図a)、フッ素系プラズマ照
射と放射線照射機能を有した装置により、放射線感応反
応層6aと表面変質層6dを、フッ素系プラズマと放射
線13により形成するものである(第7図b)。
Furthermore, the surface treatment step (FIG. 4C) is to be carried out at the same time. In FIG. 4, after coating the first radiation-sensitive resin (FIG. 4a), a radiation-sensitive reaction layer 6a and a surface-altered layer 6d are coated with a device having fluorine-based plasma irradiation and radiation irradiation functions. It is formed using fluorine-based plasma and radiation 13 (FIG. 7b).

次に第6の実施例について説明する。第4図において、
第1の放射線感応性樹脂5をあらかじめ放射線感応した
ものを塗布することにより、放射線照射する工程(第4
図b)を省略するものである。
Next, a sixth embodiment will be described. In Figure 4,
A step of irradiating radiation by applying a radiation-sensitized first radiation-sensitive resin 5 (fourth step)
Figure b) is omitted.

次に第1の実施例にもとづく具体例を第4図を用いて説
明する。
Next, a specific example based on the first embodiment will be explained using FIG. 4.

第1のポジ形UVフォトレジスト(キノンジアジド系)
6を膜厚1.0μm(tl)に塗布し、90’C5分間
のソフトベーキングを施こす(第4図a)。
First positive UV photoresist (quinone diazide type)
6 was applied to a film thickness of 1.0 μm (tl) and soft baked at 90'C for 5 minutes (Figure 4a).

次に、Hqランプより発生させた紫外線領域(3000
〜6ooO人)の紫外線6を200m1/crAの露光
エネルギーで照射することにより完全に光分解反応を施
こす(第4図b)。そしてCF4ガスによりプラズマを
発生させ、フッ素ラジカル7によって全面露光された第
1のポジ形UVフォトレジス)5aの表面に変質層6b
を数十〜数百人形成する(第4図d)。
Next, ultraviolet light (3000
A complete photodecomposition reaction is carried out by irradiation with ultraviolet rays 6 of 200 ml/crA (Figure 4b). Plasma is then generated using CF4 gas, and a degraded layer 6b is formed on the surface of the first positive UV photoresist 5a, which is entirely exposed to fluorine radicals 7.
They form several tens to hundreds of people (Fig. 4 d).

次に、第1のポジ形UVフォトレジストと同タイグであ
る第2のポジ形フォトレジスト8を、第1のポジ形UV
フォトレジストの変質層6b上に1.0μm厚(t2)
に塗布する。この時の総合膜厚はほぼ2.0μm(t1
+t2)になる(第4図d)。
Next, a second positive photoresist 8 having the same type as the first positive UV photoresist is applied to the first positive UV photoresist.
1.0 μm thick (t2) on the photoresist altered layer 6b
Apply to. The total film thickness at this time is approximately 2.0 μm (t1
+t2) (Fig. 4d).

次に、微細パターン10を有したレチクル9を介して縮
小投影露光法を用いて、更に4365人の単一波長11
により100 ml1crlで第2.第1のポジ形UV
7オトレジスト(8a、5b、5a)に照射する(第4
図e)o最後に、アルカリ性現像液により光感光したポ
ジ形フォトレジス)(8a。
Next, using the reduction projection exposure method through the reticle 9 having the fine pattern 10, the single wavelength 11 of 4365 people was further exposed.
2nd with 100ml1crl. First positive UV
7 Irradiate the otoresist (8a, 5b, 5a) (4th
Figure e) o Finally, a positive photoresist (8a) exposed to light using an alkaline developer.

5b、5aの一部)を除去し、膜厚の厚いかつ微細パタ
ーン(8b、5b、5aの一部)を得るものである。こ
れによると第1のポジ形UVフォトレジス)5aが紫外
線領の全波長により照射されるために、パターン(8b
、5b、5a)部のボトム部5aでの定在波の影響が出
ないことになる。
5b, part of 5a) to obtain a thick and fine pattern (part of 8b, 5b, 5a). According to this, since the first positive UV photoresist (5a) is irradiated with all wavelengths in the ultraviolet region, the pattern (8b)
, 5b, 5a), there is no influence of standing waves at the bottom portion 5a.

いずれの実施例においても、表面処理された第1の放射
線感応性樹脂層は、現像除去反応が起こりうる条件によ
ってそれぞれ設定すべきものである。また、第1.第2
の放射線感応性樹脂の膜厚条件は、下地である基板の凹
凸の段差量によって定めるべきであり、各々の実施例は
一例にすぎない。そして放射線感応性樹脂の種別に関し
ても、X線、電子ビーム、遠紫外線、紫外線、イオンビ
ームいずれに関しても本発明を適用できることは明確で
ある。
In any of the examples, the surface-treated first radiation-sensitive resin layer should be set depending on the conditions under which the development and removal reaction can occur. Also, 1st. Second
The film thickness conditions of the radiation-sensitive resin should be determined depending on the amount of unevenness of the underlying substrate, and each embodiment is merely an example. Regarding the type of radiation-sensitive resin, it is clear that the present invention can be applied to any of X-rays, electron beams, deep ultraviolet rays, ultraviolet rays, and ion beams.

以上のように、本発明によると、放射線感応性樹脂膜を
厚く塗布(形成)することそ、段差部の凹凸を軽減する
ことができ、かつその上で段差部におけるパターン幅変
動率を減少させ、解像度。
As described above, according to the present invention, by coating (forming) a radiation-sensitive resin film thickly, it is possible to reduce the unevenness of the stepped portion, and furthermore, it is possible to reduce the pattern width variation rate at the stepped portion. ,resolution.

感度の低下がない。また定在波の影響が少なくすること
ができる5つまり、本発明は今後の微細化への半導体集
積回路の重要な価値発揮するものである。
No decrease in sensitivity. In addition, the influence of standing waves can be reduced.5 In other words, the present invention exhibits the important value of semiconductor integrated circuits for future miniaturization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(→は従来の単層放射線感応性樹脂法による段差
部ヘパターニングした断面図、同(b)は同(a)の平
面図、第2図は従来法によシ段差部へ放射線感応性樹脂
を厚く塗布した状態の断面図、第3図は単層放射線感応
性樹脂による現像特性図、第4図(−)〜(f)は本発
明の一実施例にかかるノ(ターン形成方法の工程図、第
6図(a)は従来法による照射特図、同(b)は本発明
による照射特性図、第6図は本発明の実施例のパターン
形成の平面図、第7図(a)。 (b) H本発明による他の実施例の工程図である。 4 Ill@@1111基板、5 massesポジU
Vフォトレジスト、6a拳・・・・・感光したポジUV
フォトレジスト、5 b 、 5 C1111+1@・
・変質層、6・・・・・・UV光、7・・・・asガス
プラズマ、8・・・・IIOI2O3ジUVフォトレジ
スト、86 mmm@@@照射部、9 messesマ
スク、11・・・・・O紫外線、12・・・・・・赤外
線熱源、13・Φ・・・・放射線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@1
!1! 2  t1 第4図 第4図 第5図 1XX九本ルギ′− 16図
Figure 1 (→ is a cross-sectional view of the step part patterned using the conventional single-layer radiation-sensitive resin method, (b) is a plan view of the same (a), and Figure 2 is a cross-sectional view of the step part patterned using the conventional single-layer radiation-sensitive resin method. 3 is a cross-sectional view of a state in which a sensitive resin is thickly applied, FIG. 3 is a development characteristic diagram of a single-layer radiation-sensitive resin, and FIGS. Process diagram of the method, FIG. 6(a) is a special irradiation characteristic diagram according to the conventional method, FIG. 6(b) is a diagram showing irradiation characteristics according to the present invention, FIG. (a). (b) H is a process diagram of another embodiment according to the present invention. 4 Ill@@1111 substrate, 5 masses positive U
V photoresist, 6a fist...exposed positive UV
Photoresist, 5 b, 5 C1111+1@・
-Altered layer, 6...UV light, 7...AS gas plasma, 8...IIOI2O3 di-UV photoresist, 86 mm@@@irradiation part, 9 messes mask, 11... ...O ultraviolet rays, 12...Infrared heat source, 13.Φ...Radiation. Name of agent: Patent attorney Toshio Nakao and 1 other person @1
! 1! 2 t1 Figure 4 Figure 4 Figure 5 1XX Nine Lugi'- Figure 16

Claims (1)

【特許請求の範囲】 (1)基板上に第1の放射線感応性樹脂を塗布させる工
程と、放射線照射を行ない、前記第1の放射線感応性樹
脂膜を放射線反応させる工程と、前記放射線反応した第
1の放射線感応性樹脂に表面処理を施す工程と、前記表
面処理を施した放射線反応した第1の放射線感応性樹脂
上に、第2の放射線感応性樹脂を塗布し、選択的に放射
線照射を行なう工程と、現像処理により、前記第1と第
2の放射線感応性樹脂膜を選択的に除去して放射線感応
性樹脂パターンを形成する工程とを備えたことを特徴と
するパターン形成方法。 @)第1及び第2の放射線感応性樹脂を同一放射線反応
機構を有するものを用いることを特徴とする特許請求の
範囲第1項に記載のパターン形成方法0 (a)  7ツ素系ガススラズマによって第1の放射線
感応性樹脂に表面処理を施こすことを特徴とする特許請
求の範囲第1項に記載のパターン形成方法。 隣) 赤外線熱源によって第1の放射線感応性樹脂に表
面処理を施こすことを特徴とする特許請求の範囲第1項
に記載のパターン形成方法。 @)高出力紫外線熱源によって第1の放射線感応性樹脂
に表面処理を施こすことを特徴とする特許請求の範囲第
1項に記載のパターン形成方法。 (6)第1.第2の放射線感応性樹脂が、紫外線感応性
樹脂であることを特徴とする特許請求の範囲第1項に記
載のパターン形成方法。 (7)第1.第2の放射線感応性樹脂が、遠紫外線感応
性樹脂であることを特徴とする特許請求の範囲第1項に
記載のパターン形成方法。 (8)第1.第2の放射線感応性樹脂が、電子ビーム感
応性樹脂であることを特徴とする特許請求の範囲第1項
に記載のパターン形成方法。 (9)第1.第2の放射線感応性樹脂が、X線感応性樹
脂であることを特徴とする特許請求の範囲第1項に記載
のパターン形成方法。 (1o)第1の放射線感応性樹脂に、紫外線領域の全波
長を有する紫外線源を照射することを特徴とする特許請
求の範囲第1項または第6項に記載のパターン形成方法
。 (11)単一紫外線波長源を用いて選択的に照射するこ
とを特徴とする特許請求の範囲第1項または第5項に記
載のパターン形成方法。 (12)単一紫外線波長源に、屈折式投影露光法を用い
て照射することを特徴とする特許請求の範囲第10項に
記載のパターン形成方法。 (13)第1の放射線感応性樹脂を塗布した後、放射線
照射と表面処理を同時に前記第1の放射線感応性樹脂に
施こすことを特徴とする特許請求の範囲第1項に記載の
パターン形、成力法。 (14)第1の放射線感応性樹脂に放射線感応反応した
ものを塗布することを特徴とする特許請求の範囲第1項
に記載のパターン形成方法。
[Scope of Claims] (1) A step of coating a first radiation-sensitive resin on a substrate, a step of irradiating with radiation to cause the first radiation-sensitive resin film to react with radiation, and a step of causing the first radiation-sensitive resin film to react with radiation; A step of surface-treating the first radiation-sensitive resin, and applying a second radiation-sensitive resin on the radiation-reacted first radiation-sensitive resin that has been subjected to the surface treatment, and selectively irradiating the radiation-sensitive resin. and a step of selectively removing the first and second radiation-sensitive resin films by a development process to form a radiation-sensitive resin pattern. @) Pattern forming method according to claim 1, characterized in that the first and second radiation-sensitive resins have the same radiation reaction mechanism. 2. The pattern forming method according to claim 1, wherein the first radiation-sensitive resin is subjected to a surface treatment. 2. The pattern forming method according to claim 1, wherein the first radiation-sensitive resin is subjected to surface treatment using an infrared heat source. @) The pattern forming method according to claim 1, wherein the first radiation-sensitive resin is subjected to surface treatment using a high-power ultraviolet heat source. (6) 1st. 2. The pattern forming method according to claim 1, wherein the second radiation-sensitive resin is an ultraviolet-sensitive resin. (7) First. 2. The pattern forming method according to claim 1, wherein the second radiation-sensitive resin is a far-ultraviolet-sensitive resin. (8) 1st. 2. The pattern forming method according to claim 1, wherein the second radiation-sensitive resin is an electron beam-sensitive resin. (9) 1st. 2. The pattern forming method according to claim 1, wherein the second radiation-sensitive resin is an X-ray-sensitive resin. (1o) The pattern forming method according to claim 1 or 6, characterized in that the first radiation-sensitive resin is irradiated with an ultraviolet source having all wavelengths in the ultraviolet region. (11) The pattern forming method according to claim 1 or 5, characterized in that selective irradiation is performed using a single ultraviolet wavelength source. (12) The pattern forming method according to claim 10, characterized in that the irradiation is performed using a refractive projection exposure method with a single ultraviolet wavelength source. (13) The pattern shape according to claim 1, characterized in that after applying the first radiation-sensitive resin, radiation irradiation and surface treatment are simultaneously performed on the first radiation-sensitive resin. , Seirikiho. (14) The pattern forming method according to claim 1, wherein the first radiation-sensitive resin is coated with a radiation-sensitive resin.
JP57041273A 1982-03-15 1982-03-15 Forming method for pattern Granted JPS58157135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041273A JPS58157135A (en) 1982-03-15 1982-03-15 Forming method for pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041273A JPS58157135A (en) 1982-03-15 1982-03-15 Forming method for pattern

Publications (2)

Publication Number Publication Date
JPS58157135A true JPS58157135A (en) 1983-09-19
JPH035653B2 JPH035653B2 (en) 1991-01-28

Family

ID=12603828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041273A Granted JPS58157135A (en) 1982-03-15 1982-03-15 Forming method for pattern

Country Status (1)

Country Link
JP (1) JPS58157135A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563242B1 (en) * 1999-12-02 2006-03-27 액셀리스 테크놀로지스, 인크. Uv-assisted chemical modification of photoresist
US8039399B2 (en) 2008-10-09 2011-10-18 Micron Technology, Inc. Methods of forming patterns utilizing lithography and spacers
US8409457B2 (en) 2008-08-29 2013-04-02 Micron Technology, Inc. Methods of forming a photoresist-comprising pattern on a substrate
US9076680B2 (en) 2011-10-18 2015-07-07 Micron Technology, Inc. Integrated circuitry, methods of forming capacitors, and methods of forming integrated circuitry comprising an array of capacitors and circuitry peripheral to the array
US9653315B2 (en) 2008-12-04 2017-05-16 Micron Technology, Inc. Methods of fabricating substrates
US9761457B2 (en) 2006-07-10 2017-09-12 Micron Technology, Inc. Pitch reduction technology using alternating spacer depositions during the formation of a semiconductor device and systems including same
US10151981B2 (en) 2008-05-22 2018-12-11 Micron Technology, Inc. Methods of forming structures supported by semiconductor substrates

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563242B1 (en) * 1999-12-02 2006-03-27 액셀리스 테크놀로지스, 인크. Uv-assisted chemical modification of photoresist
US9761457B2 (en) 2006-07-10 2017-09-12 Micron Technology, Inc. Pitch reduction technology using alternating spacer depositions during the formation of a semiconductor device and systems including same
US10096483B2 (en) 2006-07-10 2018-10-09 Micron Technology, Inc. Pitch reduction technology using alternating spacer depositions during the formation of a semiconductor device and systems including same
US10607844B2 (en) 2006-07-10 2020-03-31 Micron Technology, Inc. Pitch reduction technology using alternating spacer depositions during the formation of a semiconductor device and systems including same
US11335563B2 (en) 2006-07-10 2022-05-17 Micron Technology, Inc. Pitch reduction technology using alternating spacer depositions during the formation of a semiconductor device and systems including same
US11935756B2 (en) 2006-07-10 2024-03-19 Lodestar Licensing Group Llc Pitch reduction technology using alternating spacer depositions during the formation of a semiconductor device and systems including same
US10151981B2 (en) 2008-05-22 2018-12-11 Micron Technology, Inc. Methods of forming structures supported by semiconductor substrates
US8409457B2 (en) 2008-08-29 2013-04-02 Micron Technology, Inc. Methods of forming a photoresist-comprising pattern on a substrate
US8039399B2 (en) 2008-10-09 2011-10-18 Micron Technology, Inc. Methods of forming patterns utilizing lithography and spacers
US9653315B2 (en) 2008-12-04 2017-05-16 Micron Technology, Inc. Methods of fabricating substrates
US9076680B2 (en) 2011-10-18 2015-07-07 Micron Technology, Inc. Integrated circuitry, methods of forming capacitors, and methods of forming integrated circuitry comprising an array of capacitors and circuitry peripheral to the array

Also Published As

Publication number Publication date
JPH035653B2 (en) 1991-01-28

Similar Documents

Publication Publication Date Title
US6015650A (en) Method for forming micro patterns of semiconductor devices
US5245470A (en) Polarizing exposure apparatus using a polarizer and method for fabrication of a polarizing mask by using a polarizing exposure apparatus
JPS58157135A (en) Forming method for pattern
JPS60500229A (en) Two-layer Shibagai resist system for substrate patterns with high reflectance
JPH0627636A (en) Photomask and production of photomask as well as etching method and exposing method
JP2560773B2 (en) Pattern formation method
JPH0664337B2 (en) Photomask for semiconductor integrated circuit
JPH02238457A (en) Formation of thick-film resist pattern
JPS5834921A (en) Manufacture of semiconductor device
JPH04206812A (en) Formation of fine pattern
JPS58218120A (en) Pattern forming method
JPS59141230A (en) Formation of pattern
US7078133B2 (en) Photolithographic mask
JPH0792605B2 (en) Resist pattern formation method
JP2866010B2 (en) Pattern formation method
JPS5951527A (en) Pattern formation
JPS61209450A (en) Photomask
TW200300961A (en) Multiple photolithographic exposures with different clear patterns
JPH04368135A (en) Formation of t-shaped pattern
JPS63220140A (en) Pattern forming method
JPS59155926A (en) Forming method of pattern
JPH0950115A (en) Production of phase shift photomask having phase shift layer consisting of sog
JPH01238659A (en) Pattern forming method
JPS59155930A (en) Forming method of minute pattern
JPH0458245A (en) Mask for forming fine pattern and production thereof