JPS63220140A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPS63220140A
JPS63220140A JP62053302A JP5330287A JPS63220140A JP S63220140 A JPS63220140 A JP S63220140A JP 62053302 A JP62053302 A JP 62053302A JP 5330287 A JP5330287 A JP 5330287A JP S63220140 A JPS63220140 A JP S63220140A
Authority
JP
Japan
Prior art keywords
energy beam
resist
light
forming method
pattern forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62053302A
Other languages
Japanese (ja)
Other versions
JP2553545B2 (en
Inventor
Kazufumi Ogawa
一文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62053302A priority Critical patent/JP2553545B2/en
Priority to EP88301564A priority patent/EP0282201B1/en
Priority to DE3850151T priority patent/DE3850151T2/en
Priority to KR1019880002382A priority patent/KR920003315B1/en
Publication of JPS63220140A publication Critical patent/JPS63220140A/en
Application granted granted Critical
Publication of JP2553545B2 publication Critical patent/JP2553545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/265Selective reaction with inorganic or organometallic reagents after image-wise exposure, e.g. silylation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser

Abstract

PURPOSE:To permit sufficient exhibition of the performance of an exposing device having a shallow depth of focus by adhering a material which absorbs a 2nd energy beam to the exposed part on the surface of a thin org. film and exposing the entire surface of the thin org. film with the 2nd energy beam. CONSTITUTION:Only the part near the surface of, for example, a positive resist 2 is used for the primary energy beam exposing and is selectively exposed by deep UV light 3, by which only the part near the surface of the resist 2 is modified. The modified part is then selectively dyed by a chemical material, for example, dye or the like which absorbs the light 4 of the secondary energy beam exposing. The entire surface is in succession thereof exposed by the light 4 having good transmittance through the resist, for example, UV light, as the secondary energy beam and the positive resist 2 except only the dyed part is developed and removed. The sufficiently high resolution is thereby obtd. when this method is applied to the exposing device of the shallow depth of focus, for example, device such as excimer stepper.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体デバイス製造等におけるホトリングラフ
イー技術に関するものである。さらに詳しくは、ホトリ
ソグラフィーにおけるレジストパターン形成に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to photorinography technology used in semiconductor device manufacturing and the like. More specifically, the invention relates to resist pattern formation in photolithography.

従来の技術 近年、半導体デバイス製造技術の発展に伴い、ホトリソ
グラフィー技術も0.5ミクロンオーダーの加工技術を
要望されるようになってきている。
BACKGROUND OF THE INVENTION In recent years, with the development of semiconductor device manufacturing technology, there has been a demand for photolithography technology for processing on the order of 0.5 microns.

この0.5μmのオーダーを突破する技術として、装置
面では、従来ステッパーの短波長化、高NA化、エキシ
マレーザ−ステッパー、X線ステッパー、あるいは直播
型電子ビーム露光装置が開発されつつある。
In terms of equipment, technologies to break through the 0.5 μm order include shortening the wavelength of conventional steppers, increasing NA, excimer laser steppers, X-ray steppers, and direct seeding electron beam exposure devices.

発明が解決しようとした問題点 ところが、従来ステッパーの高HA(レンズの開口数)
化、短波長化にも限界があり、X線ステッパーではマス
ク装作がむつかしく、電子ビーム露光ではスループット
が低い等の理由で、今のところ、エキシマ−ステッパが
最も有望視されている。ところが、エキシマ−ステッパ
ーでも問題が無いわけではない。すなわち、次のレーリ
ーの式0式% λ:露光波長、NA:レンズの開口数 同一波長で解像度を良くしようとすれば、NAを大きく
しなければならないが、NAを大きくすると弐〇に示さ
れるように焦点深度(F、D)が浅くなる欠点がある。
However, the problem that the invention sought to solve was the high HA (numerical aperture of the lens) of conventional steppers.
Excimer steppers are currently considered to be the most promising because there are limits to how much light can be used and wavelengths can be shortened, mask mounting is difficult with X-ray steppers, and throughput is low with electron beam exposure. However, even excimer steppers are not without problems. In other words, the following Rayleigh equation 0 formula % λ: Exposure wavelength, NA: Numerical aperture of lens If you want to improve the resolution at the same wavelength, you must increase the NA, but if you increase the NA, it is shown in 2〇 The disadvantage is that the depth of focus (F, D) becomes shallow.

一方、レジストプロセス技術においても数々の方法が提
案され試みられている。例えば、多層レジスト(MLR
)法1反射コーティング(ABC)法、コントラストエ
ンハンス(CEL)法、ポータプルコンフォーマプル(
PCM)法、(メージリパーサル(IR)法等がある。
On the other hand, many methods have been proposed and tried in resist process technology. For example, multilayer resist (MLR)
) method 1 reflective coating (ABC) method, contrast enhancement (CEL) method, portable conformal (
There are the PCM) method, the Image Repersal (IR) method, etc.

いずれの方法もホトプロセスにおける焦点深度劣化をカ
バーする効果はあるが、プロセスが複雑であったり、焦
点深度拡大効果が小さい等の問題があり、あまり実用的
でなかった。
Although both methods have the effect of covering depth of focus deterioration in photoprocessing, they have problems such as complicated processes and small depth of focus expansion effects, and are not very practical.

すなわち、従来のレジストプロセス技術では、エキシマ
−ステッパーにおける短波長化、高NA化に伴う焦点深
度劣化に十分対処できるものではなかった。
That is, the conventional resist process technology cannot sufficiently cope with the deterioration in depth of focus caused by shorter wavelengths and higher NA in excimer steppers.

本発明は、以上述べたような従来レジストプロセスの欠
点に鑑み開発されたホトレジストプロセス等のパターン
形成に関するものであり、エキシマ−ステッパーの如き
焦点深度の浅い露光装置の性能を十分発揮できるレジス
トプロセス技術を提供しようとしたものである。
The present invention relates to pattern formation such as a photoresist process developed in view of the drawbacks of conventional resist processes as described above, and is a resist process technology that can fully utilize the performance of exposure equipment with a shallow depth of focus such as an excimer stepper. This is what we tried to provide.

問題点を解決するための手段 本発明のパターン形成方法は、任意の基板上に、第1の
エネルギービームに感応して化学的性質が変化する有機
薄膜を塗布する工程と、前記有機薄膜の表面近傍を前記
第1のエネルギービームで選択的に露光する工程と、前
記有機薄膜の表面の露光部に選択的に第2のエネルギー
ビームを吸収する物質を付着する工程と、前記第2のエ
ネルギービームで前記有機薄膜全面を露光する工程と、
前記露光された有機薄膜を現像してパターンを形成する
ものである。
Means for Solving the Problems The pattern forming method of the present invention includes the steps of: coating an arbitrary substrate with an organic thin film whose chemical properties change in response to a first energy beam; selectively exposing the vicinity to the first energy beam; attaching a substance that selectively absorbs the second energy beam to the exposed portion of the surface of the organic thin film; and the second energy beam. exposing the entire surface of the organic thin film to light;
The exposed organic thin film is developed to form a pattern.

作  用 本発明のレジストプロセスは、MLR,CEL。For production The resist process of the present invention is MLR, CEL.

PCM、IR法等の全ての良い点のみを利用したレジス
トプロセスを可能としたものである。
This enables a resist process that utilizes only all the good points of PCM, IR method, etc.

すなわち、第1次のエネルギービーム露光はたとえばポ
ジレジストの表面近傍のみを使用し、選択的にdeep
UV光(例えばKrFエキシマ−光;248nm)で露
光し、前記レジストの表面近傍のみを変性する。次に、
前記変性された部分を第2次のエネルギービーム露光の
光を吸収する化学物質例えば染料等で選択的に染色する
0続いて。
That is, the first energy beam exposure uses, for example, only the vicinity of the surface of the positive resist and selectively exposes it to a deep
Exposure is performed with UV light (for example, KrF excimer light; 248 nm) to modify only the vicinity of the surface of the resist. next,
The modified area is then selectively dyed with a chemical substance, such as a dye, that absorbs the light of the second energy beam exposure.

第2次のエネルギービームとしてレジストに対し透過性
の良い光例えばUV光で全面を露光し、すでに染色され
ている部分のみを残してポジレジストを現像除去するこ
とを特徴とした0つまシ、本発明のレジストパターン形
成方法を用いれば、ポジレジストの表面近傍のごく薄い
部分のみが第1の露光で選択的に露光されるため、ML
Rの長所を取り入れたことになる。また1選択的に露光
された部分を染色することにより、CELプロセスにお
ける密着マスク効果が発揮される・さらに。
This book is characterized by exposing the entire surface of the resist to a second energy beam that is highly transparent to the resist, such as UV light, and developing and removing the positive resist, leaving only the already dyed parts. If the resist pattern forming method of the invention is used, only a very thin portion near the surface of the positive resist is selectively exposed in the first exposure, so that the ML
This means that the advantages of R have been incorporated. Furthermore, by dyeing the selectively exposed areas, the close masking effect in the CEL process can be achieved.

選択的に光吸収パターンをレジスト上に形成することで
PCMの長所も取り入れたことになる。さらにまた、第
2成金面露光により、ポジレジストパターンを形成する
ことより、IR法の効果も取り入れることができる。
By selectively forming a light absorption pattern on the resist, the advantages of PCM are also incorporated. Furthermore, by forming a positive resist pattern by exposing the second metal forming surface, the effects of the IR method can also be incorporated.

従って、本発明のレジストパターン形成方法(Dye 
Image Reversal:ダイ 、イーメージ 
リバーサル)法(DIR法)は、超微細なレジストパタ
ーン形成例えば、0.5μmパターン以下のレベルで効
果大なるものがある。
Therefore, the resist pattern forming method of the present invention (Dye
Image Reversal: Die, Image
The reversal method (DIR method) is highly effective when forming ultra-fine resist patterns, for example, at a level of 0.5 μm or less.

実施例 以下、本発明のレジストパターン形成方法(DIR法)
の実施例を工程断面図を用いて説明する。
Examples Below, the resist pattern forming method of the present invention (DIR method)
An example will be described using process cross-sectional diagrams.

まず、第1図に示すように、任意の基板例えば半導体ウ
ェハーすなわち510210/S1基板1上に通常のポ
ジレジスト2〔例えばAZ1400゜AZ4000.A
Z5200(いずれもヘキスト社製品)〕を1〜2μm
の厚みでコートする。次に、第1次の露光としてdee
pUV光(遠紫外のたとえばKrFエキシマ−光)3を
用いて選択的に短時間照射し、ポジレジスト2の表面近
傍を選択的に露光する(第2図)。このとき、通常用い
るこれらのポジレジスト2はメインポリマーがdeep
UV光を大部分吸収するため、多少露光加乗になっても
ポジレジスト2は0.1〜0.2μm8変の厚さの表面
層のみ選択的にパターン状に露光され表面にのみ極めて
薄い露光パターン2oが形成される。従って、この工程
で多層レジストと同じように、薄いレジストを重ねて塗
布し上層レジストのみを選択的に露光するのと同じ効果
が得られる。
First, as shown in FIG. 1, an ordinary positive resist 2 (for example, AZ1400°, AZ4000°. A
Z5200 (both Hoechst products)] to 1 to 2 μm
Coat to a thickness of . Next, as the first exposure, dee
PUV light (deep ultraviolet, for example, KrF excimer light) 3 is selectively irradiated for a short time to selectively expose the vicinity of the surface of the positive resist 2 (FIG. 2). At this time, the main polymer of these normally used positive resists 2 is deep.
Since it absorbs most of the UV light, even if the exposure is multiplied to some extent, only the surface layer with a thickness of 0.1 to 0.2 μm is selectively exposed in a pattern, and only the surface is exposed in an extremely thin layer. A pattern 2o is formed. Therefore, in this step, the same effect as when applying thin resists in layers and selectively exposing only the upper resist layer can be obtained in the same way as with multilayer resists.

すなわち、焦点深度の浅い高解像度の露光装置を使用で
き、高解像度でシャープな0.6μm以下の幅の微細パ
ターン2oが得られる。
That is, a high-resolution exposure device with a shallow depth of focus can be used, and a high-resolution, sharp fine pattern 2o with a width of 0.6 μm or less can be obtained.

次に、前記選択的に露光されたポジレジストの表面層2
0は、感光材としてナフトキノンジアジ光のみで式■の
光反応が生じる。
Next, the surface layer 2 of the selectively exposed positive resist is
0, the photoreaction of formula (2) occurs only with naphthoquinonediazide light as a photosensitive material.

したがって、この第1次の露光で生じた一〇〇〇H基の
みを選択的に通常のアルカリ染料(例えば赤色はツクシ
ン等、黄色はオーラミン等黒色はアニリングブラック等
)で染色して染色層3oを形成する(第3図)。このと
き、赤、黄、黒色のアルカリ染料は、少くとも450 
nm以下の波長の光は、全て吸収する。したがって第2
次の露光に、前述のdeepUV光より長波長でたとえ
ば450 nm以下の波長の光4を用いて全面露光すれ
ば、レジスト2の染色されていない部分200のみ選択
的に露光される(第4図)。すなわち、この工程で、C
EL法とPCM法とIR法の3つの効果が一度に取り入
れられたことになる。
Therefore, only the 1000H groups generated in this first exposure are selectively dyed with ordinary alkaline dyes (for example, red for tsukushin, yellow for auramine, black for black by aniling black, etc.) to create a dyed layer. 3o (Fig. 3). At this time, the red, yellow, and black alkaline dyes must be at least 450%
All light with a wavelength of nm or less is absorbed. Therefore, the second
For the next exposure, if the entire surface is exposed using light 4 having a wavelength longer than the deep UV light described above, for example, 450 nm or less, only the undyed portion 200 of the resist 2 will be selectively exposed (Fig. 4). ). That is, in this step, C
This means that three effects of the EL method, PCM method, and IR method are incorporated at once.

最後に、ポジ型レジストの現像液で現像することにより
染色されていない部分200のみが除去され、IR法と
同じく、ポジ型レジストを用いてマスクパターンと反対
の0.5μm程度の高解像レジストパターン5が得られ
る(第5図)。
Finally, only the undyed portion 200 is removed by developing with a positive resist developer, and similarly to the IR method, a high resolution resist of about 0.5 μm opposite to the mask pattern is created using a positive resist. Pattern 5 is obtained (Figure 5).

なお、以上の実施例においては、第1次露光の光として
KrF  エキシマ−光、第2次露光にUV光を用いる
例を示したが、レジストの選択によっては、第1次と第
2次の光として同じ波長の光を用いることも可能である
In the above example, an example was shown in which KrF excimer light was used as the light for the first exposure and UV light was used for the second exposure. It is also possible to use light of the same wavelength as the light.

また、パターンの染色にアルカリ染料を用いたが、第2
次露光光の光を吸収し、選択的に露光パターン部に付着
させることができる物質であれば染料に限定されること
がないことは明らかであシ、例えば、アニリン等でもq
線の光を吸収するので利用可能である。
In addition, alkaline dye was used to dye the pattern, but the second
It is clear that the substance is not limited to dyes as long as it absorbs the light of the next exposure light and can be selectively attached to the exposed pattern area.For example, aniline etc. can also be used.
It can be used because it absorbs linear light.

さらに、露光された部分のみ選択的に染色する例を示し
たが、逆に、露光された部分以外を染色する方法を用い
ても、パターンが逆転することを除き、同じ効果が得ら
れることは明らかである。
Furthermore, although we have shown an example of selectively dyeing only the exposed areas, conversely, the same effect cannot be obtained by dyeing areas other than the exposed areas, except that the pattern is reversed. it is obvious.

また、第1に次の露光の光としてエキシマレーザ光に限
らず、X線、電子ビーム、イオンビーム等も使用可能で
あるとともに、第2次の露光の光としてはq線に限らず
、i線、可視光、軟X線等でもよい。
First, the light for the next exposure is not limited to excimer laser light, but also X-rays, electron beams, ion beams, etc., and the light for the second exposure is not limited to q-rays, but also i-rays. rays, visible light, soft X-rays, etc. may be used.

さらにまた、有機薄膜がポジ型レジストに限定されるも
のでなく、ポリカーボネート樹脂等温1のエネルギービ
ームで化学反応を生じ、第2の工ネルギービームを吸収
又は透過しない物質を選択的に付着できるものであれば
利用可能である。
Furthermore, the organic thin film is not limited to a positive type resist, but may be one in which a chemical reaction occurs on the polycarbonate resin with an isothermal energy beam, and a substance that absorbs or does not transmit the second energy beam can be selectively attached. If so, it is available.

本発明の方法では、パターン状の第1次の露光には、レ
ジスト表面部のみしか使用しないため、露光装置が高N
A化、短波長化され焦点深度が浅くなっても、十分使用
可能となり、装置解像度を完全に発揮できる効果がある
In the method of the present invention, only the surface area of the resist is used for the first exposure of the pattern, so the exposure equipment is
Even if the depth of focus becomes shallow due to A and short wavelengths, it is still usable and has the effect of making full use of the device's resolution.

すなわち、従来の多層レジストプロセス(MLR法)に
比べ、コート工程が一回で済む。さらに、レジスト除去
は1回の現像のみですむため、工程は大幅に簡略化され
る。
That is, compared to the conventional multilayer resist process (MLR method), only one coating step is required. Furthermore, since resist removal requires only one development, the process is greatly simplified.

また、従来のイメージリバーサルプロセス(IR法)に
比べ熱処理工程が不要なため、プロセス安定性が良い。
Furthermore, since no heat treatment step is required compared to the conventional image reversal process (IR method), the process stability is good.

さらにまた、コントラストエンハンス法(CEL法)の
ごとく、レジスト上面に光漂白膜がないため、露光時間
は大幅に短縮され、コントラストも十分得られ、塗布工
程も一回で済む。
Furthermore, unlike the contrast enhancement method (CEL method), since there is no photobleaching film on the top surface of the resist, the exposure time can be significantly shortened, sufficient contrast can be obtained, and the coating process can be done only once.

さらにまた、反射防止コーティング法(ARC法)に比
べ、レジスト表面付近のみしか露光されず、パターン露
光光はレジスト下部まで到達しないので、基板面よシの
反射がなくパターン解像度が大幅に向上できる。
Furthermore, compared to the anti-reflection coating method (ARC method), only the vicinity of the resist surface is exposed, and the pattern exposure light does not reach the bottom of the resist, so there is no reflection from the substrate surface, and pattern resolution can be greatly improved.

サラに、ポータプルコンフォーマプル(PCM)法に比
べ2層コートすることなく、レジスト表面に高いコント
ラストのパターン状の光吸収層を形成できるので、レジ
ストパターンの解像度を大幅に向上できる等々の効果が
ある〇 発明の効果 以上述べてきたように、本発明のレジストパターン形成
方法は、従来のレジストプロセス技術に比べて大幅な改
良を行うことなく、焦点深度の浅い露光装置例えばエキ
シマ−ステッパーのような装置に適要して十分高い解像
度が得られる特長がある。従って今後、半導性デバイス
の微細化が進展する過程で、ホトリソグラフィー技術の
向上に効果大なるものである。
Compared to the portable conformal (PCM) method, it is possible to easily form a patterned light-absorbing layer with high contrast on the resist surface without the need for two-layer coating, resulting in effects such as greatly improving the resolution of the resist pattern. Certain Effects of the Invention As described above, the resist pattern forming method of the present invention can be applied to exposure equipment with a shallow depth of focus, such as an excimer stepper, without making any significant improvements compared to conventional resist process technology. It has the advantage of being able to obtain sufficiently high resolution when applied to the device. Therefore, in the future, as the miniaturization of semiconductor devices progresses, it will be very effective in improving photolithography technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明の一実施例のレジストプロセス
を説明するための工程断面図である〇1・・・・・・基
板、2・・・・・・ポジレジスト、3・・・・・・第1
′次deepUV光、4・・・・・・第2次露光の光、
6・・・・・・レジストパターン、30・・・・・・染
色層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
Is
1 to 6 are process cross-sectional views for explaining a resist process according to an embodiment of the present invention.〇1...Substrate, 2...Positive resist, 3... ...First
'th deep UV light, 4... second exposure light,
6...Resist pattern, 30...Dyeing layer. Name of agent: Patent attorney Toshio Nakao and 1 other person
Is

Claims (8)

【特許請求の範囲】[Claims] (1)任意の基板上に、第1のエネルギービームに感応
して化学的性質が変化する有機薄膜を塗布する工程と、
前記有機薄膜の表面近傍を前記第1のエネルギービーム
で選択的に露光する工程と、前記有機薄膜の表面の露光
部に選択的に第2のエネルギービームを吸収する物質を
付着する工程と、前記第2のエネルギービームで前記有
機薄膜全面を露光する工程と、前記露光された有機薄膜
を現像してパターンを形成することを特徴としたパター
ン形成方法。
(1) Applying an organic thin film whose chemical properties change in response to the first energy beam on an arbitrary substrate;
selectively exposing the vicinity of the surface of the organic thin film with the first energy beam; attaching a substance that selectively absorbs the second energy beam to the exposed portion of the surface of the organic thin film; A pattern forming method comprising: exposing the entire surface of the organic thin film with a second energy beam; and developing the exposed organic thin film to form a pattern.
(2)有機薄膜がポジ型レジストであることを特徴とし
た特許請求の範囲第1項記載のパターン形成方法。
(2) The pattern forming method according to claim 1, wherein the organic thin film is a positive resist.
(3)エネルギービームを吸収する物質が染料であるこ
とを特徴とした特許請求の範囲第2項記載のパターン形
成方法。
(3) The pattern forming method according to claim 2, wherein the substance that absorbs the energy beam is a dye.
(4)第1および第2のエネルギービームが紫外線であ
ることを特徴とした特許請求の範囲第1項記載のパター
ン形成方法。
(4) The pattern forming method according to claim 1, wherein the first and second energy beams are ultraviolet rays.
(5)第1エネルギービームの波長が第2のエネルギー
ビームの波長より短いことを特徴とした特許請求の範囲
第1項記載のパターン形成方法。
(5) The pattern forming method according to claim 1, wherein the wavelength of the first energy beam is shorter than the wavelength of the second energy beam.
(6)第1のエネルギービームが遠紫外エキシマー光で
あることを特徴とした特許請求の範囲第1項記載のパタ
ーン形成方法。
(6) The pattern forming method according to claim 1, wherein the first energy beam is far ultraviolet excimer light.
(7)染料がアルカリ性染料であることを特徴とした特
許請求の範囲第3項記載のパターン形成方法。
(7) The pattern forming method according to claim 3, wherein the dye is an alkaline dye.
(8)ポジ型レジストが、▲数式、化学式、表等があり
ます▼基を含むことを特徴とした特許請求の範囲第2項
記載のパターン形成方法。
(8) The pattern forming method according to claim 2, wherein the positive resist contains a ▲ group that includes a mathematical formula, a chemical formula, a table, etc.
JP62053302A 1987-03-09 1987-03-09 Pattern forming method Expired - Fee Related JP2553545B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62053302A JP2553545B2 (en) 1987-03-09 1987-03-09 Pattern forming method
EP88301564A EP0282201B1 (en) 1987-03-09 1988-02-24 Pattern forming method
DE3850151T DE3850151T2 (en) 1987-03-09 1988-02-24 Process for the production of samples.
KR1019880002382A KR920003315B1 (en) 1987-03-09 1988-03-08 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62053302A JP2553545B2 (en) 1987-03-09 1987-03-09 Pattern forming method

Publications (2)

Publication Number Publication Date
JPS63220140A true JPS63220140A (en) 1988-09-13
JP2553545B2 JP2553545B2 (en) 1996-11-13

Family

ID=12938931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62053302A Expired - Fee Related JP2553545B2 (en) 1987-03-09 1987-03-09 Pattern forming method

Country Status (1)

Country Link
JP (1) JP2553545B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124849A (en) * 1986-08-08 1989-05-17 Matsushita Electric Ind Co Ltd Pattern forming method
JPH01149040A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Pattern forming method and pattern forming material
JPH01152451A (en) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd Photosensitive material and process for forming pattern by using the photosensitive material
JPH02132446A (en) * 1988-07-26 1990-05-21 Matsushita Electric Ind Co Ltd Formation of fine resist pattern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260947A (en) * 1984-05-25 1985-12-24 チバ‐ガイギー アクチエンゲゼルシヤフト Image formation
JPS61189640A (en) * 1985-02-18 1986-08-23 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260947A (en) * 1984-05-25 1985-12-24 チバ‐ガイギー アクチエンゲゼルシヤフト Image formation
JPS61189640A (en) * 1985-02-18 1986-08-23 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124849A (en) * 1986-08-08 1989-05-17 Matsushita Electric Ind Co Ltd Pattern forming method
JPH01149040A (en) * 1987-12-07 1989-06-12 Matsushita Electric Ind Co Ltd Pattern forming method and pattern forming material
JPH01152451A (en) * 1987-12-08 1989-06-14 Matsushita Electric Ind Co Ltd Photosensitive material and process for forming pattern by using the photosensitive material
JPH02132446A (en) * 1988-07-26 1990-05-21 Matsushita Electric Ind Co Ltd Formation of fine resist pattern

Also Published As

Publication number Publication date
JP2553545B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
JP2011199321A (en) Lithography method
TWI278013B (en) Self-aligned pattern formation using dual wavelengths
JP2543195B2 (en) Method of forming fine resist pattern
JPS6313035A (en) Pattern forming method
JPS63220140A (en) Pattern forming method
EP0282201B1 (en) Pattern forming method
JPH02118651A (en) Pattern forming material
JP2653072B2 (en) Pattern formation method
JPS58157135A (en) Forming method for pattern
JP2560773B2 (en) Pattern formation method
JP2588192B2 (en) Pattern forming method
JPH06267890A (en) Lithography for manufacturing small mask aperture part and its product
KR0128833B1 (en) Micro-patterning method of semiconductor device
JP2827518B2 (en) Method of forming photoresist and resist pattern
US20210088901A1 (en) Photoresist for euv and/or e-beam lithography
JP2000089464A (en) Pattern forming method
JPS63246822A (en) Formation of pattern
JPH04206812A (en) Formation of fine pattern
KR100272519B1 (en) Patterning method of semiconductor device
JPH0553322A (en) Pattern forming method
JPH01238659A (en) Pattern forming method
JPH04194939A (en) Formation of mask and pattern
JPS62269947A (en) Resist pattern forming method
JPH08293454A (en) Formation method for resist pattern
JPS6255650A (en) Formation of resin pattern onto substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees