JPS58156600A - Preparation of 3-5 group semiconductor crystal - Google Patents

Preparation of 3-5 group semiconductor crystal

Info

Publication number
JPS58156600A
JPS58156600A JP57039786A JP3978682A JPS58156600A JP S58156600 A JPS58156600 A JP S58156600A JP 57039786 A JP57039786 A JP 57039786A JP 3978682 A JP3978682 A JP 3978682A JP S58156600 A JPS58156600 A JP S58156600A
Authority
JP
Japan
Prior art keywords
group
raw material
compound
reaction
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57039786A
Other languages
Japanese (ja)
Other versions
JPS623120B2 (en
Inventor
Tomoki Inada
稲田 知己
Seiji Mizuniwa
清治 水庭
Toshiya Toyoshima
豊島 敏也
Masashi Fukumoto
福本 昌志
Junkichi Nakagawa
中川 順吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57039786A priority Critical patent/JPS58156600A/en
Publication of JPS58156600A publication Critical patent/JPS58156600A/en
Publication of JPS623120B2 publication Critical patent/JPS623120B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Abstract

PURPOSE:To prevent the diffusion of raw materials during the growth of a semiconductor crystal from molten liquid, by putting a III-group raw material, a V-group raw material and a III-V group compound raw material in a crucible, heating the crucible to melt the III-V group compound raw material, and covering the surface with inert molten material. CONSTITUTION:A crucible 7 containing Ga as the III-group raw material, As as the V-group raw material, GaAs compound as the III-V group compound raw material, and B2O3, is placed in a pressure vessel 1, and heated under the pressure of an inert gas to form a molten mixture composed of Ga, As and GaAs compound and covered with molten B2O3. The temperature is further raised to cause the reaction of Ga with As, and a part of the heat of reaction is allowed to be absorbed in the GaAs compound to effect the moderate reaction. After the completion of the reaction, the temperature is further raised to form the GaAs molten liquid, to which the lower end of the seed crystal is made to contact and pulled up to obtain the objective GaAs compound semiconductor single crystal 5.

Description

【発明の詳細な説明】 本発明は■−■族化合物半導体結晶の製造方法に係り、
特に、直接合成液体カプセル引上げ法による製造方法の
改良に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a ■-■ group compound semiconductor crystal,
In particular, the present invention relates to an improvement in the manufacturing method using the direct synthetic liquid capsule pulling method.

従来、GaAs 、 GaP 、 InP等を主体とし
九■−■族化合物半導体の製造には第1図のような引上
げ装置が用いられていた。図において、1は圧力容器、
2は■−■族化合物の融液、3はこの融液2に対して不
活性な融液で、普通はB2O3が用いられる。4は種結
晶であり、これを融液2に接触させた後回転し乍ら引上
げること゛により成長した■−■族化合物結晶5が得ら
れる。なお、6は種結晶の回転軸、7は坩堝、8は坩堝
7を収容支持するサセプタ、9は坩堝7を加熱するヒー
タ、10は保温材であり、11はサセプタ9を支持する
回転軸である。
Conventionally, a pulling apparatus as shown in FIG. 1 has been used to manufacture group IX-III compound semiconductors mainly made of GaAs, GaP, InP, etc. In the figure, 1 is a pressure vessel;
2 is a melt of the ■-■ group compound, and 3 is a melt that is inactive with respect to the melt 2, and B2O3 is usually used. Numeral 4 is a seed crystal, which is brought into contact with the melt 2 and then pulled up while being rotated to obtain a grown compound crystal 5 of the 1-2 group. In addition, 6 is a rotating shaft of the seed crystal, 7 is a crucible, 8 is a susceptor that accommodates and supports the crucible 7, 9 is a heater that heats the crucible 7, 10 is a heat insulating material, and 11 is a rotating shaft that supports the susceptor 9. be.

種結晶4はボート成長法や帯溶融法で製造された■−■
族化合物結晶を用いているが、最近高電気比抵抗のもの
を得る目的で坩堝7に■族原料と■族原料を直接投入し
、高圧下で両者を反応させて一且■−■族化合物を作っ
た後、引続きこの化合物の融液から引上げ成長させる直
接合成液体カプセル引上げ法と呼ばれる方法が行われ始
めている。この方法によれば不純物の取込みが他の方法
に比べて極端に減少するので、所謂真性半導体といわれ
る高電気抵抗のものを得ることができるので、IO,L
SI用として好適な材料となる。
Seed crystal 4 was manufactured by boat growth method or zone melting method■-■
Group compound crystals are used, but recently, with the aim of obtaining high electrical resistivity, group II raw materials and group II raw materials are directly charged into crucible 7, and the two are reacted under high pressure to form a group I and ■-■ compound. A method called the direct synthesis liquid capsule pulling method, in which the compound is grown by pulling it from the melt after it has been made, has begun to be used. According to this method, the incorporation of impurities is extremely reduced compared to other methods, so it is possible to obtain a so-called intrinsic semiconductor with high electrical resistance.
It is a suitable material for SI.

′ この場合は一般にV族原料の中には■族原料との反
応温度においてその蒸気圧が極めて高いものが多く、通
常不活性融液3の外から高圧の不活性ガスで押えること
によって反応時の■族元素の揮散を防止し、反応生成物
のストイキオメトリ組成を保つ試みがなされている。例
えば上記■族元素AsがGaと反応する温度での蒸気圧
はAsで約20気圧、Pでは約40気圧にも達するため
、雰囲気ガス圧を約80〜100気圧にする必要がある
。。
' In this case, many of the group V raw materials generally have extremely high vapor pressure at the reaction temperature with the group (2) raw materials, and the reaction is normally suppressed by suppressing the inert melt 3 with high-pressure inert gas from outside. Attempts have been made to prevent the volatilization of group Ⅰ elements and to maintain the stoichiometric composition of the reaction product. For example, the vapor pressure at the temperature at which the Group (1) element As reacts with Ga reaches about 20 atm for As and about 40 atm for P, so the atmospheric gas pressure needs to be about 80 to 100 atm. .

しかしそれにもμらず反応時にはV族元素が揮散し、融
液のストイキオメトリ組成がずれることが観察された。
However, it was observed that during the reaction, group V elements were volatilized and the stoichiometric composition of the melt was shifted.

これは■族元素と■族元素の反応が極めて速く、その反
応熱で原料が一瞬のうちに高温となり、■族元素よりな
る高圧ガスが放出されるためであると考えられる。
This is thought to be because the reaction between the group Ⅰ element and the group Ⅰ element is extremely fast, and the heat of the reaction instantaneously raises the temperature of the raw material, releasing a high-pressure gas consisting of the group Ⅰ element.

これを防ぐには雰囲気ガスを更に高圧にする必要がある
。しかしそのためには装置を大型化し熱源の出力を上げ
ねばならないため技術的困難を伴う。また、不活性融液
3を厚くする方法も考えられるが、これには引上げ成長
時に困難が伴う。上記の主としてストイキオメトリ組成
を保つための難問の他に直接合成液体カプセル法のみな
らず一般の液体カプセル法での■−■族化合物結晶の引
上げでもストイ′・キオメトリ組成のずれた化合物の残
渣が生じるという問題をもっている。従来はとの残渣の
有効な活用法がなく資源の無駄となるという問題点をも
っていた。
To prevent this, it is necessary to make the atmospheric gas even higher pressure. However, this requires increasing the size of the device and increasing the output of the heat source, which poses technical difficulties. Another possible method is to thicken the inert melt 3, but this involves difficulties during pulling growth. In addition to the above-mentioned difficult problem of maintaining the stoichiometric composition, not only the direct synthesis liquid capsule method but also the general liquid capsule method in which crystals of ■-■ group compounds are pulled, the residue of compounds with deviations in the stoichiometry composition is generated. The problem is that this occurs. Conventionally, there was a problem in that there was no effective way to utilize the residue, resulting in a waste of resources.

本発明は上記のような従来技術の問題点を解消し、資源
の有効を図ることができるI−V族化合物半導体結晶の
製造方法を提供することを目的とし、その特徴とすると
ころは、■−■族化合物融液が■族原料と■族原料と■
−■族化合物原料の溶融混合体であることである。
The purpose of the present invention is to provide a method for manufacturing a group IV compound semiconductor crystal that can solve the problems of the prior art as described above and make resources more efficient.The present invention is characterized by: −■ Group compound melt is mixed with ■ group raw material and ■ group raw material ■
- It is a molten mixture of group compound raw materials.

本発明の製造方法をGa Asを例によって説明すると
、従来の直接合成液体カプセル法ではGaおよび当量の
As並びにB2O3を坩堝7に入れて加熱することによ
り約700〜800℃、でGaとAsを反応させるが、
このときの反応は急激で一瞬のうちに原料周辺の温度が
上る。これを抑制して原料の周りをB2O3融液で保護
し更に60〜80気圧のガスで加圧していてもAsの揮
散が大きくストイキオメトリ組成がずれてしまう。揮散
する分のAs系を予め多くチャージすることも有効では
あるが根本的な解決とはならない。
To explain the production method of the present invention using GaAs as an example, in the conventional direct synthesis liquid capsule method, Ga and an equivalent amount of As and B2O3 are placed in a crucible 7 and heated to produce Ga and As at about 700 to 800°C. Let it react, but
The reaction at this time is rapid and the temperature around the raw material rises in an instant. Even if this is suppressed and the raw material is protected around it with a B2O3 melt and further pressurized with gas at 60 to 80 atm, the volatilization of As will be large and the stoichiometric composition will shift. It is effective to charge as much As as possible in advance to volatilize, but this is not a fundamental solution.

そこで本発明では原料にGa、AsおよびGa As化
合物を用いることでこれを解決した。このとき特に限定
するものではないが、望ましくはOa As化合物を5
〜90重量%加えることが必要である。
Therefore, in the present invention, this problem was solved by using Ga, As, and a GaAs compound as raw materials. At this time, although there is no particular limitation, it is preferable that the OaAs compound be 5
It is necessary to add ~90% by weight.

即ち、 GaとAsの反応熱の一部をGa As化合物
が奪うことによって反応を緩やかに進行させ、Asの揮
散を少くすることに大きな特徴がある。更に、Ga A
s化合物は液体カプセル法、直接合成液体カプセル法に
おける弓1上げ残渣のGa Asを再利用できることも
もう一つの大きな特徴である。
That is, the main feature is that the GaAs compound absorbs a portion of the reaction heat between Ga and As, thereby allowing the reaction to proceed slowly and reducing the volatilization of As. Furthermore, Ga A
Another major feature of the s compound is that it can reuse the GaAs residue from the liquid capsule method and the direct synthesis liquid capsule method.

本発明の第1の実施例を第1図を用いて説明する。パイ
ロリテノク窒化ホウ素製の坩堝7に純度99.9999
 %のGa300F、純度99.9999%のAs32
1Fおよびパイロリテインク窒化ポウ素製ボートで予め
成長させたGa As化合物379r (37,9重量
%)並びに水分量200 ppm以下の8203100
fを入れ、アルゴンガス6o気圧の下で加熱した所、約
500℃で溶融BZ oa層3が原料全体を覆った。更
に昇温したとこる約720℃でGaとAsが反応し、そ
の反応熱でGa As化合物の一部が融解した。更に昇
温させ約850℃になると反応はほぼ終了するので20
気圧に降圧し、更に1240℃に昇温させてGa As
融液2を生成させて結晶の下端を接触させ乍ら引上げ成
長を行った。この場合はAsの揮散が極めて少なく、得
られた結晶は組成のずれによるGa析出がなく、電気比
抵抗は10Ω、備 と高い値の半導体結晶が得られた。
A first embodiment of the present invention will be described with reference to FIG. Purity 99.9999 in Pyrolitenoch boron nitride crucible 7
% Ga300F, purity 99.9999% As32
1F and Pyrolyte Ink GaAs compound 379r (37,9% by weight) grown in advance in a boron nitride boat and 8203100 with a moisture content of less than 200 ppm
f and heated under argon gas pressure of 60°C, a molten BZ oa layer 3 covered the entire raw material at about 500°C. When the temperature was further increased to approximately 720° C., Ga and As reacted, and a portion of the GaAs compound was melted by the reaction heat. When the temperature is further increased to approximately 850°C, the reaction is almost complete, so the temperature is 20°C.
Ga As
A melt 2 was generated and the lower ends of the crystals were brought into contact with each other while pulling and growing. In this case, volatilization of As was extremely small, and the obtained crystal had no Ga precipitation due to compositional deviation, and a semiconductor crystal with an electrical resistivity of 10Ω, which was a particularly high value, was obtained.

(第2の実施例) 第1図と同じ装置を用い、石英ガラス製の坩堝7に純度
99.9999%のGa50F、純度99.9999%
のAs20Of、および直接合成液体カプセル法による
引上げ残渣の0aAs (Ga60モル、As 4 (
1モル)6009(純粋のGa Asとして約546重
量%)、並びに水分量200 ppm以下のB2031
00Fを入れ、アルゴンガス60気圧加圧下で実施例1
と同様な方法で直接合成を行い引続き引上げ成長を行っ
た。その結果反応は緩やかでAsの揮散も少く、得られ
た結晶の電気比抵抗は5×lOΩ、cfnであシ、結晶
全体にGaの析出などは認められなかった。
(Second Example) Using the same apparatus as in FIG. 1, Ga50F with a purity of 99.9999% was placed in a crucible 7 made of quartz glass.
of As20Of, and 0aAs (60 mol of Ga, As4 (
1 mol) 6009 (approximately 546% by weight as pure GaAs), and B2031 with a water content of 200 ppm or less
Example 1 under argon gas pressurization of 60 atmospheres
Direct synthesis was performed in the same manner as above, and pulling growth was continued. As a result, the reaction was slow and the volatilization of As was small, the electrical resistivity of the obtained crystal was 5×10Ω, cfn, and no Ga precipitation was observed throughout the crystal.

以上の実施例で述べたように本製造方法は、m族原料G
a 、V族原料Asおよび■−■族化合物原料Ga A
sとの3つを混融させると共に、不活性物質B2O3で
表面をカバーして積結ム引上げ成長を行なわせることに
より、原料の揮散を防止して資源の浪費を防止すると共
に電気比抵抗の優れたGa As化合物半導体の結晶が
得られるという効果をもっている。
As described in the above examples, this production method uses m-group raw material G
a, V group raw material As and ■-■ group compound raw material Ga A
By mixing and melting s and s, and by covering the surface with an inert substance B2O3 and allowing the accumulation layer to grow, it is possible to prevent the volatilization of raw materials and waste of resources, and to reduce the electrical resistivity. This has the effect that an excellent GaAs compound semiconductor crystal can be obtained.

上記実施例はGa Asの場合について述べたものであ
るが、他のm−■族の元素についても可能である。例え
ばIn とPを用いたInP化合物半導体結晶を始めと
して、■−■族化合物半導体結晶全般に亘って応用でき
る。また、当然の帰結としてGaAs 1− zpχ、
Ga 1− ztnzt’ (0≦χ≦1)などの3元
混晶系及びQ81−χInχAs1−yPy(0≦χ、
y≦1)などの4元混晶系の直接合成液体カプセル引上
げ法にも応用できる。
Although the above embodiment describes the case of GaAs, it is also possible to use other m-group elements. For example, the present invention can be applied to all types of compound semiconductor crystals of the ■-■ group, including InP compound semiconductor crystals using In and P. Also, as a natural consequence, GaAs 1-zpχ,
Ternary mixed crystal systems such as Ga1-ztnzt' (0≦χ≦1) and Q81-χInχAs1-yPy (0≦χ,
It can also be applied to the direct synthesis liquid capsule pulling method for quaternary mixed crystal systems such as y≦1).

本発明の■−■族化合物半導体結晶の製造方法は、スト
イキオメトリ組成の優れた化合物残渣を有効に利用でき
ると共に、反応を緩和して成分の揮散を抑制することが
できるという効果が得られる。
The method for manufacturing a ■-■ group compound semiconductor crystal of the present invention can effectively utilize compound residue with an excellent stoichiometric composition, and can also moderate the reaction and suppress volatilization of components. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は引上げ成長法を行う製造装置の断面図である。 FIG. 1 is a sectional view of a manufacturing apparatus that performs the pulling growth method.

Claims (1)

【特許請求の範囲】[Claims] 1 圧力容器内に設置された坩堝に収容された原料を加
熱して■−■族化合物融液を生ぜしめた後、表面を不活
性融体で覆い乍ら上記■−■族化合物融液より結晶を成
長させる方法において、上記■−■族化合物融液が■族
原料と■族原料とm−v族化合物原料の溶融混合体であ
ることを特徴とする■−■族化合物半導体結晶の製造方
法。
1. After heating the raw material contained in a crucible installed in a pressure vessel to produce a ■-■ group compound melt, the surface is covered with an inert melt and the above ■-■ group compound melt is heated. In the method for growing a crystal, the above-mentioned group ■-■ group compound melt is a molten mixture of a group ■ raw material, a group II raw material, and an m-v group compound raw material, and manufacturing of a ■-■ group compound semiconductor crystal. Method.
JP57039786A 1982-03-12 1982-03-12 Preparation of 3-5 group semiconductor crystal Granted JPS58156600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57039786A JPS58156600A (en) 1982-03-12 1982-03-12 Preparation of 3-5 group semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57039786A JPS58156600A (en) 1982-03-12 1982-03-12 Preparation of 3-5 group semiconductor crystal

Publications (2)

Publication Number Publication Date
JPS58156600A true JPS58156600A (en) 1983-09-17
JPS623120B2 JPS623120B2 (en) 1987-01-23

Family

ID=12562617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57039786A Granted JPS58156600A (en) 1982-03-12 1982-03-12 Preparation of 3-5 group semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS58156600A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012396A (en) * 1973-03-16 1975-02-07
JPS50144692A (en) * 1974-05-11 1975-11-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012396A (en) * 1973-03-16 1975-02-07
JPS50144692A (en) * 1974-05-11 1975-11-20

Also Published As

Publication number Publication date
JPS623120B2 (en) 1987-01-23

Similar Documents

Publication Publication Date Title
JPS58156600A (en) Preparation of 3-5 group semiconductor crystal
JPH0557239B2 (en)
JPS6153186A (en) Heater for resistance heating
JP2527718B2 (en) Sealant for liquid capsule pulling method and single crystal growth method
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JPH0124760B2 (en)
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPS623408Y2 (en)
JPS60118696A (en) Method for growing indium phosphide single crystal
JPS63176397A (en) Production of iii-v compound semiconductor single crystal
JPH08756B2 (en) Inorganic compound single crystal growth method
JPS60127297A (en) Preparation of single crystal of compound of group iii-v elements
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPS6042299A (en) Manufacture of single crystal
JPS60204692A (en) Preparation of cdte crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPS6213308B2 (en)
GB2205824A (en) Semi-insulating GaAs single crystal
JPH0329036B2 (en)
JPS62230695A (en) Production of arsenide semiconductor single crystal
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JPS62176997A (en) Method for bringing up hemiinsulating inp single crystal
JPS62197399A (en) Method for growing compound single crystal
JPH05279164A (en) Production of iii-v group compound semiconductor single crystal and apparatus therefor
JPS6058199B2 (en) Method for manufacturing gallium arsenide single crystal