JPS6058199B2 - Method for manufacturing gallium arsenide single crystal - Google Patents

Method for manufacturing gallium arsenide single crystal

Info

Publication number
JPS6058199B2
JPS6058199B2 JP57050030A JP5003082A JPS6058199B2 JP S6058199 B2 JPS6058199 B2 JP S6058199B2 JP 57050030 A JP57050030 A JP 57050030A JP 5003082 A JP5003082 A JP 5003082A JP S6058199 B2 JPS6058199 B2 JP S6058199B2
Authority
JP
Japan
Prior art keywords
crystal
gallium arsenide
single crystal
crucible
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57050030A
Other languages
Japanese (ja)
Other versions
JPS58167499A (en
Inventor
承生 福田
一高 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57050030A priority Critical patent/JPS6058199B2/en
Publication of JPS58167499A publication Critical patent/JPS58167499A/en
Publication of JPS6058199B2 publication Critical patent/JPS6058199B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は比抵抗が1σΩ・ cm以上の半絶縁性ガリ
ウム砒素(CaAs)単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a semi-insulating gallium arsenide (CaAs) single crystal having a resistivity of 1σΩ·cm or more.

高純度のGaAs単結晶は比抵抗がぼΩ・0景上の半絶
縁性となり、このGaAs結晶を光素子と電子素子を集
積化したオプトエレクトロニック集積回路の素子基板と
して用いると、配線などによる浮遊容量を小さくでき、
素子間の分離も容易になるため、集積密度を大きくする
ことができる。
A high-purity GaAs single crystal has a specific resistance of approximately Ω and is semi-insulating on the zero plane. Capacity can be reduced,
Since elements can be easily separated, integration density can be increased.

これまで半絶縁性のGaAs単結晶の製造法としてはポ
ート成長法、低圧封止引き上げ法と高圧封止引き上げ法
(GaとAsからの直接合成法)が知L−、−、、゛
、 ヨ、+11↓ 4Zが、ボート材料である
石英からシリコンが材料に混入して比抵抗が下がる。こ
のため、通常クロムを添加して半絶縁性としている。し
かし、クロムの不均一分布による特性のバラツキや熱処
理工程で特性が変化する等の問題点を有しており、また
得られた結晶ウェハーの内転位密度分布はU字状を示す
傾向がある。また低圧封止引き上け法ではボート成長法
で作成したGaAs多結晶を原料とするため、原料純度
が低く、クロムの添加が必要である。高圧封止引き上げ
法はクロムの添加は不要であるが、高圧下で結晶が作成
されるため、圧力による熱環境の影響により結晶内に欠
陥部を生じ易く、液体封止剤や高圧ガス対流の影響で製
造工程が複雑であり、また得られた結晶ウェハーの内転
位密度分布はW字状を示す傾向がある。従つて、高品質
な半絶縁性単結晶を作成するのは困難てあるが、高純度
の多結晶を作成するのには炉内への溶融液の飛散量が少
く、容易にできる。I この発明はクロム等の不純物を
添加することなく、即ち、無添加で抵抗値が1びΩ・α
以上の半絶縁・ aAs単結晶を高歩留りて再現住良く
製造する方法を提供することを目的とし、含水率の高い
ウェット酸化ボロン(B2O3)を封止剤として用iい
て高圧法でGaAs結晶体を合成し、この結晶体を粉砕
し、粉砕GaAs結晶を加気圧以下の中、低圧下て加熱
溶融し、引き上げ法によりGaAs単結晶とすることを
特徴とする。
Up to now, methods for manufacturing semi-insulating GaAs single crystals include port growth, low-pressure sealing pulling method, and high-pressure sealing pulling method (direct synthesis method from Ga and As).
, Yo, +11↓ 4Z has silicon mixed into the material from quartz, which is the boat material, and its resistivity decreases. For this reason, chromium is usually added to make it semi-insulating. However, it has problems such as variations in properties due to non-uniform distribution of chromium and changes in properties during the heat treatment process, and the internal dislocation density distribution of the obtained crystal wafer tends to be U-shaped. Furthermore, since the low-pressure sealing and pulling up method uses GaAs polycrystals produced by the boat growth method as a raw material, the purity of the raw material is low and chromium must be added. The high-pressure seal pulling method does not require the addition of chromium, but since crystals are created under high pressure, defects are likely to occur in the crystals due to the influence of the thermal environment due to pressure, and the use of liquid sealants and high-pressure gas convection As a result, the manufacturing process is complicated, and the internal dislocation density distribution of the obtained crystal wafer tends to be W-shaped. Therefore, although it is difficult to produce high-quality semi-insulating single crystals, it is easy to produce high-purity polycrystals because the amount of molten liquid splashed into the furnace is small. I This invention does not add impurities such as chromium, that is, the resistance value is 1Ω・α without addition.
The purpose of the present invention is to provide a method for producing the above semi-insulating aAs single crystal with high yield and good reproducibility. is synthesized, this crystal is crushed, the crushed GaAs crystal is heated and melted under low pressure below the atmospheric pressure, and a GaAs single crystal is obtained by a pulling method.

この発明を添付の図面に基いて説明すると、第1図は引
き上げ法による単結晶製造装置の一例を示し、1は高圧
容器であつて、この高圧容器1内にはルツボ3が設置さ
れ、このルツボは支持部材4により回転できるように支
持されており、周囲に設けられた加熱器2により所定の
温度に加熱される。
To explain this invention based on the attached drawings, FIG. 1 shows an example of a single crystal manufacturing apparatus by a pulling method, in which 1 is a high-pressure container, a crucible 3 is installed in this high-pressure container 1, The crucible is rotatably supported by a support member 4, and heated to a predetermined temperature by a heater 2 provided around the crucible.

ルツボの上部には先端に種結晶6を備えた引き上げ軸5
が設けられ、この引き上げ軸は回転すると共に上下動す
るように構成されている。本発明においては、ルツボ3
としては石英製、パイロリテツク窒化ポ狛ン製のいずれ
も用い得るが、後者はシリコンを含んでいないため、不
純物の混入がそれだけ防げる。このルツボの中にガリウ
ム(Ga)と砒素(As)を所望の組成比の単結晶が得
られるような割合でそれぞれ入れる。次いで、封止剤と
してB2O3を溶融したときに1C71以上の厚さの層
を形成するような量を入れる。第2図のグラフはB,O
3の含水率と得られるGaAs単結晶の比抵抗の関係を
示し、B2O3の含水率が高いもの程、水分による不純
物のゲツタリング効果が大きいことが明らかであり、比
抵抗が1Cf′Ω・CmのGaAs単結晶を得るには含
水率が1200ppm以上のウエツト八03を用いる必
要がある。上述の如く、ルツボに所定量のGa,,AS
,B2O3を入れたら、ルツボを高圧容器1内に設置し
、アルゴン、窒素等の不活性ガスを圧入して5洩圧以上
の高圧下とし、加熱器2によりルツボ3を.GaAsの
融点(約1260′C)以上に加熱する。
At the top of the crucible is a pulling shaft 5 with a seed crystal 6 at the tip.
is provided, and this pulling shaft is configured to rotate and move up and down. In the present invention, the crucible 3
Either quartz or pyrolyte nitride polymer may be used, but since the latter does not contain silicon, contamination with impurities can be prevented to that extent. Gallium (Ga) and arsenic (As) are placed in this crucible in such proportions that a single crystal with a desired composition ratio can be obtained. Next, B2O3 is added as a sealant in such an amount that when melted, it forms a layer with a thickness of 1C71 or more. The graphs in Figure 2 are B, O
It is clear that the higher the water content of B2O3, the greater the gettering effect of impurities due to water, and the specific resistance of 1Cf'Ω・Cm is shown. In order to obtain a GaAs single crystal, it is necessary to use wet 803 having a water content of 1200 ppm or more. As mentioned above, a predetermined amount of Ga, AS is placed in the crucible.
, B2O3, the crucible is placed in a high-pressure container 1, an inert gas such as argon or nitrogen is pressurized to create a high pressure of 5 leakage pressure or more, and the crucible 3 is heated by a heater 2. Heat to above the melting point of GaAs (approximately 1260'C).

するとルツボ内では下部にGaAs溶融液層7が形成し
、上部にB2O3溶融液層8が形成し、B2O3層が高
圧封止剤となつてGaAs溶融液の蒸発を防止する。こ
のとき、含水率の高いB2O3を使用してい.るため、
GaAs溶融液中の不純物、例えばシリコン等はゲツタ
リングされ、溶融液は高純度化される。このような状態
で種結晶6をGaAs溶融液7に接触させ、引き上げて
GaAs結晶体を作る。上記の引き上げ工程において必
要に応じてGaAs溶・融液を均質に維持するため、ル
ツボ或は引き上げ軸5を適当な速度て回転、攪拌する。
また種結晶の引き上げ速度は、単結晶を製造するのでは
ないので、5〜20W$L/h程度の速度て良い。この
ようにして得られた結晶物は適当な方法により溶融を容
易にするため、1an角以下に粉砕する。次にこの粉砕
物に付着した不純物を除去するためエッチング処理を行
う。このエッチング処理は硫酸、塩酸、硝酸、過酸化水
素等を用いて行うが、硫酸は粉砕物表面に付着した有機
物の除去に有効であり、塩酸、硝酸は重金属類の除去に
有効である。このように粉砕、精製したGa,As結晶
体は封止)剤としてのB2O3と共に再びルツボへ入れ
、高圧容器内を不活性ガスにて10〜2呟圧の中圧また
はそれ以下の圧力下で加熱してGaAs結晶及びB2O
3を溶融させ、種結晶をGa.As溶液に接触させ、1
〜5wn/h程度の速度て引き上げることにより比・抵
抗が1Cf′Ω・α以上のGaAs単結晶が得られる。
Then, in the crucible, a GaAs melt layer 7 is formed in the lower part, and a B2O3 melt layer 8 is formed in the upper part, and the B2O3 layer acts as a high-pressure sealant to prevent evaporation of the GaAs melt. At this time, B2O3 with a high moisture content is used. In order to
Impurities, such as silicon, in the GaAs melt are gettered, and the melt is highly purified. In this state, the seed crystal 6 is brought into contact with the GaAs melt 7 and pulled up to form a GaAs crystal. In the above-mentioned pulling process, the crucible or the pulling shaft 5 is rotated and stirred at an appropriate speed in order to maintain the GaAs melt/solution homogeneous as required.
Further, since a single crystal is not manufactured, the pulling speed of the seed crystal may be about 5 to 20 W$L/h. The crystalline material thus obtained is ground into pieces of 1 an square or less by an appropriate method in order to facilitate melting. Next, an etching process is performed to remove impurities attached to the pulverized material. This etching treatment is carried out using sulfuric acid, hydrochloric acid, nitric acid, hydrogen peroxide, etc.; sulfuric acid is effective for removing organic matter adhering to the surface of the pulverized material, and hydrochloric acid and nitric acid are effective for removing heavy metals. The Ga, As crystals crushed and purified in this way are put into the crucible again together with B2O3 as a sealing agent, and the inside of the high-pressure container is heated with inert gas under medium pressure or lower pressure of 10 to 2 msec. Heating GaAs crystal and B2O
Ga. Contact with As solution, 1
By pulling at a speed of about 5 wn/h, a GaAs single crystal having a specific resistance of 1 Cf'Ω·α or more can be obtained.

上記に添加のB2O3はウツトタイプ、ドライタイプの
いずれでも用い得る。また種結晶を引き上げる際には必
要に応じてルツボ、引き上げ軸を適当な速度で回転させ
る。本発明は上述の説明で明らかなように、封止剤とし
て用いるY!B2O3を含水率の高いウェットタイプの
ものも用いてゲツタリング効果により不純物を除いたG
aAs結晶体を一旦作り、この結晶体を再溶融した後に
中圧以下の加圧下で引き上げることにより高圧法に見ら
れる結晶欠陥がなく、比抵抗が1Cf′Ω・α以上のG
aAs単結晶が再現性良く得られる。
B2O3 added above can be used in either wet type or dry type. Further, when pulling the seed crystal, the crucible and the pulling shaft are rotated at an appropriate speed as necessary. As is clear from the above description, the present invention uses Y! as a sealant! G that uses wet type B2O3 with high water content to remove impurities by gettering effect.
By once making an aAs crystal, and then remelting this crystal and pulling it under pressure below medium pressure, it is possible to produce a G with a specific resistance of 1 Cf'Ω・α or more without the crystal defects seen in the high-pressure method.
An aAs single crystal can be obtained with good reproducibility.

更に含水率が1500ppm以上のB2O3を用い、種
結晶の引き上げ速度を制御することにより比抵抗が10
3Ω・α以上であり、抵抗分布が結晶内で実質的に均一
のGaAs単結晶も容易に得られる。次に本発明の実施
例を述べる。
Furthermore, by using B2O3 with a water content of 1500 ppm or more and controlling the pulling speed of the seed crystal, the specific resistance can be reduced to 10.
A GaAs single crystal having a resistivity of 3Ω·α or more and having a substantially uniform resistance distribution within the crystal can be easily obtained. Next, examples of the present invention will be described.

第1図に示すような構造の単結晶製造装置を用い、内径
100W$L1高さ10c)T!r!nのパイロリテツ
ク窒化ボロン製ルツボに純度?の原料GaとAsを50
0y宛入れ、次いで含水率が2000ppm(7)B2
O3を160f入れた。
Using a single crystal manufacturing apparatus having the structure shown in Fig. 1, the inner diameter is 100W$L1 and the height is 10c)T! r! Is the purity of N's Pyrolytec boron nitride crucible? 50% of the raw materials Ga and As
0y, then the moisture content is 2000ppm (7) B2
I put in 160f of O3.

このルツボは高圧容器の中に入れ、アルゴンガスを圧入
して約(4)気圧とし、一方ルツボは加熱器により約1
300℃に加熱した。上記加熱によりルツボ内には、上
層にB2O3溶融液が、下層にGaAs溶融液が形成し
た。GaAsがルツボ内で完全に溶融したら、種結晶を
GaAs溶融液に接触させ、157n!n/hの速度で
引き上げた。この引き上げ操作の際、ルツボは1分間2
〔の割合で種結晶はルツボに対して反対方向に5回の割
合で回転させた。上記の引き上げ操作により直径約50
W1m1長さ約100TfrIfL1重量約900yの
Ga壓結晶体が得られた。
This crucible is placed in a high-pressure container, and argon gas is pressurized to bring the pressure to about (4), while the crucible is heated to about
It was heated to 300°C. As a result of the above heating, a B2O3 melt was formed in the upper layer and a GaAs melt was formed in the lower layer in the crucible. When the GaAs is completely melted in the crucible, a seed crystal is brought into contact with the GaAs melt, and 157n! It was pulled up at a speed of n/h. During this lifting operation, the crucible is
The seed crystal was rotated five times in the opposite direction relative to the crucible at a rate of [. Approximately 50mm in diameter due to the above lifting operation.
A Ga crystal having a length of W1m1 and a length of about 100TfrIfL1 and a weight of about 900y was obtained.

次にこのGaAs結晶体を1cm角以下の大きさに粉砕
し、H2SO4:H2O2:H2Oが5:1:1の混合
液を用いて5分間エッチング処理を行い、充分水洗した
後、HCl:HNO3:H2Oが1:1:1の混合液で
3分間再びエッチング処理した後、純水で充分水洗した
。このようにして粉砕、精製したGaAs結晶は再びB
,O3と共にルツボに入れ、ルツボを高圧容器内に設置
し、アルゴンガスを圧入して約w気圧とし、ルツボを約
1300スCに加熱した。ルツボ内のGaAsが完全に
溶融したら、GaAs溶融液に種結晶を接触させて5T
n!n/hの割合で引き上げた。このときのルツボは1
分間20回の割合で、種結晶はルツボとは反対方向に6
回の割合で回転させた。上記の引き上げ操作により直径
約5『、長さ約100mの円筒状GaAs単結晶が得ら
れた。次にこの円筒状ρAAs単結晶の肩の部分と真中
の部分を切り出し、それぞれのウェハーの一端部より直
径を通つて他端部まての比抵抗を測定した。肩部ウェハ
ーの比抵抗は第3図aに、胴部ウェハーの比抵抗は第3
図bに示す。上記のグラフより明らかなように、肩部、
胴部のいずれのウェハーも比抵抗が1Cf3Ω・礪を超
え、抵抗分布もどの点においてもほぼ均一であつた。
Next, this GaAs crystal was crushed to a size of 1 cm square or less, etched for 5 minutes using a mixed solution of H2SO4:H2O2:H2O in a ratio of 5:1:1, and after thoroughly washing with water, HCl:HNO3: After etching was performed again for 3 minutes using a 1:1:1 H2O mixture, the substrate was thoroughly washed with pure water. The GaAs crystals crushed and purified in this way are again B
, O3, and the crucible was placed in a high-pressure container, and argon gas was injected under pressure to bring the pressure to about W atm, and the crucible was heated to about 1300 sc. When the GaAs in the crucible is completely melted, a seed crystal is brought into contact with the GaAs melt and 5T
n! It was pulled up at a rate of n/h. At this time, the crucible is 1
At a rate of 20 times per minute, the seed crystal is
rotated at a rate of 1. By the above-mentioned pulling operation, a cylindrical GaAs single crystal with a diameter of about 5" and a length of about 100 m was obtained. Next, the shoulder portion and the middle portion of this cylindrical ρAAs single crystal were cut out, and the specific resistance from one end of each wafer through the diameter to the other end was measured. The specific resistance of the shoulder wafer is shown in Figure 3a, and the specific resistance of the body wafer is shown in Figure 3.
Shown in Figure b. As is clear from the graph above, the shoulder area,
The resistivity of all the wafers in the body exceeded 1 Cf3Ω·double, and the resistance distribution was almost uniform at all points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単結晶製造装置の一例を示す断面図、第2図は
本発明においてカプセル剤として用いるB2O3の含水
率と得られるGaAs単結晶の比抵抗の関係を示すグラ
フ、第3図は本発明の方法により得られたGa,As単
結晶の比抵抗を示すグラフ。
FIG. 1 is a cross-sectional view showing an example of a single crystal production apparatus, FIG. 2 is a graph showing the relationship between the water content of B2O3 used as a capsule in the present invention and the specific resistance of the GaAs single crystal obtained, and FIG. 2 is a graph showing the specific resistance of Ga, As single crystals obtained by the method of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ガリウムと砒素と含水率が1200ppm以上の酸
化ボロンを50気圧以上の高圧下でガリウム砒素の溶融
温度以上で加熱して上層が酸化ボロン溶融液、下層がガ
リウム砒素溶融液から成る、溶融液を形成し、該ガリウ
ム砒素溶液に種結晶を接触させ、引き上げてガリウム砒
素結晶を作成し、得られた結晶を10〜20気圧の加圧
下で酸化ボロンと共に加熱溶融させ、下層に形成したガ
リウム砒素溶融液に種結晶を接触させて引き上げること
を特徴とするガリウム砒素単結晶の製造方法。
1. Gallium, arsenic, and boron oxide with a water content of 1200 ppm or more are heated at a temperature higher than the melting temperature of gallium arsenide under a high pressure of 50 atmospheres or higher to form a melt in which the upper layer is a boron oxide melt and the lower layer is a gallium arsenide melt. A seed crystal is brought into contact with the gallium arsenide solution and pulled up to create a gallium arsenide crystal, and the obtained crystal is heated and melted together with boron oxide under a pressure of 10 to 20 atmospheres to melt the gallium arsenide formed in the lower layer. A method for producing a gallium arsenide single crystal, characterized by bringing a seed crystal into contact with a liquid and pulling it up.
JP57050030A 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal Expired JPS6058199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050030A JPS6058199B2 (en) 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050030A JPS6058199B2 (en) 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal

Publications (2)

Publication Number Publication Date
JPS58167499A JPS58167499A (en) 1983-10-03
JPS6058199B2 true JPS6058199B2 (en) 1985-12-18

Family

ID=12847594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050030A Expired JPS6058199B2 (en) 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JPS6058199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374199U (en) * 1986-10-31 1988-05-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374199U (en) * 1986-10-31 1988-05-18

Also Published As

Publication number Publication date
JPS58167499A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
JPS6058199B2 (en) Method for manufacturing gallium arsenide single crystal
JPH0341433B2 (en)
US4824520A (en) Liquid encapsulated crystal growth
JPH0244798B2 (en)
JP2001180918A (en) Method of directly synthesizing indium phosphide
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JPS5983999A (en) Preparation of single crystal of compound of iii-v group
JP2766716B2 (en) Single crystal manufacturing method
JPS61197499A (en) Method of growing single crystal of inorganic compound
JPH0124760B2 (en)
JPS6021899A (en) Apparatus for preparing compound semiconductor single crystal
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JPS6212692A (en) Method for growing single crystal semiconductor
JPH02212395A (en) Production of compound semiconductor crystal and producing device
JPH027919B2 (en)
JPH02149494A (en) Method for growing compound semiconductor single crystal
JPS63176398A (en) Method for growing compound semiconductor single crystal
JPS6385085A (en) Method for growing silicon single crystal
JPH0329036B2 (en)
JPS58156600A (en) Preparation of 3-5 group semiconductor crystal
JPH06172098A (en) Production of gaas single crystal
JPH04160091A (en) Production of single crystal
JPS58130194A (en) Manufacture of silicon single crystal
Morrison Total immersion crystal growth
JPS58199796A (en) Pulling device of crystal under sealing with liquid