JPS58167499A - Preparation of single crystal of gallium arsenic - Google Patents

Preparation of single crystal of gallium arsenic

Info

Publication number
JPS58167499A
JPS58167499A JP57050030A JP5003082A JPS58167499A JP S58167499 A JPS58167499 A JP S58167499A JP 57050030 A JP57050030 A JP 57050030A JP 5003082 A JP5003082 A JP 5003082A JP S58167499 A JPS58167499 A JP S58167499A
Authority
JP
Japan
Prior art keywords
crystal
gaas
melt
pressure
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57050030A
Other languages
Japanese (ja)
Other versions
JPS6058199B2 (en
Inventor
Tsuguo Fukuda
承生 福田
Kazutaka Terajima
一高 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57050030A priority Critical patent/JPS6058199B2/en
Publication of JPS58167499A publication Critical patent/JPS58167499A/en
Publication of JPS6058199B2 publication Critical patent/JPS6058199B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a single crystal of GaAs having high specific resistance and electrical semi-insulating properties in high yield, by crushing high-purity GaAs crystal prepared by high-pressure crystal pulling method, melting it under heating, growing a crystal by crystal pulling method under pressure <= middle pressure. CONSTITUTION:Ga, As and B2O3 having >=1,200ppm water content are put in the crucible 3, it is placed in the container 1, and heated under high pressure of >=50atm., to form melt comprising the B2O3 melt 8 as an upper layer and the GaAs melt 7 as a lower layer. The seed crystal 6 is brought into contact with the GaAs melt 7 and pulled up to form a GaAs crystal. The prepared GaAs crystal is crushed, subjected to etching treatment to remove impurities, the crushed GaAs material and B2O3 as a sealing compound are fed to the crucible 3 again, melted under pressure <= middle pressure of 10-20atm. under heating, the seed crystal 6 is brought into contact with the GaAs melt 7, and pulled up, to give the desired GaAs single crystal.

Description

【発明の詳細な説明】 この発明は比抵抗が10”Ω・1以上の半絶縁性ガリウ
ム砒素(GaAy)単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a semi-insulating gallium arsenide (GaAy) single crystal having a resistivity of 10"Ω·1 or more.

高純度のG、A、単結晶は比抵抗が1060・1以上の
半絶縁性とな)、このGdA、結晶を光素子と電子素子
を集積化し九オプトエレクトロ二ツク集積回路の素子基
板として用いると、配線などKよる浮遊容量を小さくで
き、素子間の分離も容易になる丸め、集積密度を大きく
することができる。
High-purity GdA single crystal is semi-insulating with a resistivity of 1060.1 or higher), and this GdA crystal is used as an element substrate for optoelectronic integrated circuits by integrating optical devices and electronic devices. With this, stray capacitance due to wiring etc. can be reduced, and separation between elements can be made easier, and integration density can be increased.

これまで半絶縁性のGaA、単結晶の製造法としてはメ
ート成長法、低圧對止引き上げ法と高圧封止引き上げ法
(GaとA7からの直接合成法)が知られていた。&−
)成長法は大気圧下で行えるが、ボート材料である石英
からシリコンが材料に混入して比抵抗が下がる。このた
め、通常クロムを添加して半絶縁性としている。しかし
、クロムの不均一分布による特性のバラツキ中熱処理工
程で特性が変化する等の問題点を有してお)、また得ら
れ九結晶つエノ・−〇内転位置度分布はU字状を示す傾
向がある。また低圧封正引き上げ法ではボート成喪法で
作成した〇mkl多結晶を原料とするため、原料純度が
低く、クロムの添加が必要である。高圧封十引き上げ法
はクロムの添加は不要であるが、高圧下で結晶が作成さ
れるため、圧力による熱環境の影響により結晶内に欠陥
部を生じ易く、液体封止剤や^比ガス対流の影響で製造
工程が複雑であ)、を九得られた結晶ウニ・・−の内転
位置度分布はW字状を示す傾向がある。
Until now, methods for producing semi-insulating GaA single crystals include the mate growth method, the low-pressure single-pull method, and the high-pressure seal-pull method (direct synthesis method from Ga and A7). &−
) The growth method can be performed under atmospheric pressure, but silicon from the quartz boat material is mixed into the material, lowering the resistivity. For this reason, chromium is usually added to make it semi-insulating. However, there are problems such as variations in properties due to uneven distribution of chromium and changes in properties during the heat treatment process), and the adduction position distribution of the nine crystals obtained has a U-shape. There is a tendency to show. In addition, in the low-pressure sealed pulling method, the raw material is 〇mkl polycrystals produced by the boat molding method, so the purity of the raw material is low and the addition of chromium is required. The high-pressure sealing method does not require the addition of chromium, but since crystals are created under high pressure, defects are likely to occur in the crystals due to the influence of the thermal environment due to pressure, and liquid sealants and gas convection (The manufacturing process is complicated due to the influence of the above), and the adduction position distribution of the obtained crystalline sea urchin tends to show a W-shape.

従って、高品質な半絶縁性単結晶を作成するのは困難で
あるが、高純度の多結晶を作成するのKは炉内への溶融
液の飛散量が少く、容易にできる。
Therefore, it is difficult to create a high-quality semi-insulating single crystal, but it is easy to create a high-purity polycrystal because the amount of molten liquid splashed into the furnace is small.

この発明はクロム等の不純物を添加することなく、即ち
、無添加で抵抗値が10’Ω・1以上の半絶縁性GgA
#1!結晶を嵩歩留りで再現性良く製造する方法を提供
することを目的とし、含水率の高いウェット酸化lロン
(!It’s)を封止剤として用いて高圧法でG、A#
結晶体を合成し、この結晶体を粉砕し、粉砕GgAz結
晶を20気圧以下の中、低圧下で加熱溶融し、引き上げ
法によF) GaAz単結晶とすることを特徴とする。
This invention is a semi-insulating GgA with a resistance value of 10'Ω・1 or more without adding impurities such as chromium.
#1! The aim is to provide a method for producing crystals with high bulk yield and good reproducibility.G and A# are produced by a high-pressure method using wet oxide (!It's) with a high water content as a sealant.
F) It is characterized in that a crystal is synthesized, the crystal is crushed, the crushed GgAz crystal is heated and melted under low pressure of 20 atmospheres or less, and a GaAz single crystal is obtained by a pulling method.

この発明を添付の図面に基いて説明すると、第1図は引
き上げ法による単結晶製造装置の一例を示し、/は高圧
容器であって、この高圧容器l内にはルツボJが設置さ
れ、このルツボは支持部材亭により回転できるように支
持されてお抄、周囲に設けられ九加熱器コによシ所定の
温度に加熱される。ルツボの上部には先端に種結晶番を
備え丸引き上げ軸3が設けられ、この引き上げ軸は回転
すると共に上下動するように構成されている。
This invention will be explained based on the attached drawings. FIG. 1 shows an example of a single crystal manufacturing apparatus by the pulling method, / is a high-pressure container, and a crucible J is installed in this high-pressure container l. The crucible is rotatably supported by a supporting member tray and heated to a predetermined temperature by nine heaters provided around the crucible. A round pulling shaft 3 with a seed crystal number at its tip is provided at the top of the crucible, and this pulling shaft is configured to rotate and move up and down.

本発明においては、ルツボJとしては石英製、パイロリ
テツク窒化ボロン製のいずれも用い得るが、後者はシリ
コンを含んでいない丸め、不純物の混入がそれだけ防げ
る。このルツボの中にガリウム(Ga)と砒素(A、?
)を所望の組成比の単結晶が得られるような割合でそれ
ぞれ入れる。次いで、封止剤としてB、0.を浴融し7
tときに1cm以上の厚さのノーを形成するような址を
入れる。第2図のグラフはB、0.のき水車と得られる
G、A、単結晶の比抵抗の関係を示し、B、0.の含水
率が高いもの程、水分による不純物のゲッタリング効果
が大きいことが明らかであり、比抵抗が106Ω・彌の
GQkl単結晶を得るKは含水率が1200 ppwL
以上のウエノ)B、O,を用いれば良いことになる。
In the present invention, the crucible J can be made of either quartz or pyrolyte boron nitride, but the latter can prevent rounding and impurity contamination since it does not contain silicon. Inside this crucible are gallium (Ga) and arsenic (A,?
) are added in such proportions as to obtain a single crystal with the desired composition ratio. Then, as a sealant, B, 0. Melt the bath 7
At the time of t, insert a hole that will form a hole with a thickness of 1 cm or more. The graph in Figure 2 is B, 0. The relationship between the ground water wheel and the resulting G, A, and single crystal resistivity is shown, and B, 0. It is clear that the higher the moisture content of , the greater the gettering effect of impurities due to moisture, and the water content of K to obtain a GQkl single crystal with a resistivity of 106 Ω is 1200 ppwL.
It is sufficient to use the above Ueno) B, O, and so on.

上述の如く、ルツボに所定電のG(1+ A# + J
ogを入れたら、ルツボを高圧容器/内に設置し、アル
ゴン、窒素等の不活性ガスを圧入して50気圧以上の高
圧下とし、加熱器コによりルツボ3をGaA、の融点(
約1260 C)以上に加熱する。
As mentioned above, when the crucible is charged with a predetermined voltage G(1+A#+J
After adding OG, place the crucible in a high-pressure container and press inert gas such as argon or nitrogen to create a high pressure of 50 atmospheres or more.
Heat to approximately 1260 C) or higher.

するとルツボ内では下部にGaA、溶融液層7が形成し
、上部に820.溶融液層tが形成し、8101層が高
圧封止剤となってG、A、溶融液の蒸発を防止する。こ
のとき、含水率の高いB* Osk使用しているため、
G、Aj溶融液中の不純物、例えばシリコン等はゲッタ
リングされ、溶融液は高純度化される。このような状態
で種結晶6をG−AI溶融液7に接触させ、引き上げて
G、A。
Then, inside the crucible, a GaA melt layer 7 is formed at the bottom, and a layer 820. A melt layer t is formed, and the 8101 layer acts as a high-pressure sealant to prevent G, A, and the melt from evaporating. At this time, since B*Osk with high moisture content is used,
G, Aj Impurities in the melt, such as silicon, are gettered and the melt is highly purified. In this state, the seed crystal 6 is brought into contact with the G-AI melt 7 and pulled up.

結晶体を作る。上記の引き上げ工程において必1’に応
じてG、A、溶融液を均質に維持するため、ルツボ或は
引き上げ軸jを適当な速度で回転、攪拌する。また種結
晶の引き上げ速度は、単結晶を製造するのではないので
、5〜20m+/A  9度の速度で良い。
Create a crystal. In the above-mentioned pulling process, the crucible or the pulling shaft j is rotated and stirred at an appropriate speed in order to maintain G, A, and the melt homogeneously as required. Further, since a single crystal is not manufactured, the pulling speed of the seed crystal may be 5 to 20 m+/A 9 degrees.

このようKして得られた結晶物は適当な方法により溶融
を容易にするため、151角以下に粉砕する。次にこの
粉砕物に付着し九不純物を除去する丸めエツチング処理
を行う。このエツチング処理は硫酸、塩酸、硝酸、過酸
化水素等を用いて行うが、硫酸は粉砕物表面に付着した
有機物の除去に有効であシ、塩酸、硝酸は重金属類の除
去に有効である。
The crystalline product thus obtained is ground to a size of 151 squares or less by an appropriate method in order to facilitate melting. Next, a rounding etching process is performed to remove impurities attached to the pulverized material. This etching treatment is carried out using sulfuric acid, hydrochloric acid, nitric acid, hydrogen peroxide, etc., but sulfuric acid is effective for removing organic matter adhering to the surface of the pulverized material, while hydrochloric acid and nitric acid are effective for removing heavy metals.

このように粉砕、精製したGaA#結晶体は封止剤とし
てOB!0.と共に再びルツボへ入れ、高比容器内を不
活性ガスにて10〜20気圧の中圧またはそれ以下の圧
力下で加熱してG、A、結晶及びB、 O,をWImさ
せ、種結晶をGa人I溶液に接触させ、1〜5#/に程
度の速度で引き上げることにより比抵抗が10’Ω・1
以上のGaA、単結晶が得られる。上記に添加のBオO
1はウェットタイプ、ドライタイプのいずれで本用い得
る。また種結晶を引き上げる際には必要に応じてルツボ
、引色上は軸を適当な速度で回転させる。
The GaA# crystals crushed and purified in this way can be used as a sealant in OB! 0. The mixture is then placed in the crucible again, and the inside of the high-ratio container is heated with an inert gas under a medium pressure of 10 to 20 atmospheres or lower to WIm G, A, crystals and B, O, and the seed crystal is By bringing it into contact with Ga I solution and raising it at a rate of about 1 to 5 #/, the specific resistance becomes 10'Ω・1
The above GaA single crystal can be obtained. BO added to the above
1 can be used in either wet type or dry type. In addition, when pulling up the seed crystal, the crucible and the shaft are rotated at an appropriate speed as necessary.

本発明は上述の説明で明らかなように、封止剤として用
いるB、0.を含水率の高いウェットタイプのものも用
いてゲッタリング効果により不純物を除いたaahz結
晶体を一旦作り、この結晶体を再溶融した後に中圧以下
の加圧下で引き上げるととKより高圧法に見られる結晶
欠陥がなく、比抵抗が1060・1以上のGaA、単結
晶が再現性夷〈得られる。更に含水率が1500 pp
rm以上のB、 O,を用い、種結晶の引き上げ速度を
制御することによシ比抵抗が10畠Ω・1以上であり、
抵抗分布が結晶内で実賞的に均一のGaAy 単結晶も
容易に得られる。
As is clear from the above description, the present invention is directed to B, 0. A wet type with a high water content is used to create an AAHZ crystal from which impurities are removed by the gettering effect, and this crystal is remelted and then pulled up under pressure below medium pressure. A GaA single crystal with no crystal defects and a specific resistance of 1060·1 or more can be obtained reproducibly. Furthermore, the moisture content is 1500 pp
By using B, O, of rm or more, and controlling the pulling speed of the seed crystal, the specific resistance is 10 Ω·1 or more,
GaAy single crystals with practically uniform resistance distribution within the crystal can also be easily obtained.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

lXx図に示すような構造の単結晶製造装置を用い、内
径109■、高さZoo■のバイ01Jチツク窒化ボロ
ン製ルツボに純度6Nの原料Gαと〜を500 f死人
れ、次いで含水率が2000 ppmのB、 O,を1
6Of入れた。このルツボは高圧容器の中に入れ、アル
ゴンガスを圧入して約50気圧とし、一方ルツボは加熱
器によす約1300 ’CK加熱した。上記加熱により
ルツボ内には、上層にB、 Os溶融液が、下層K G
aA#溶融液が形成し丸。
Using a single-crystal manufacturing apparatus having the structure shown in the diagram, raw material Gα with a purity of 6N and ~500 f were placed in a B01J-chik boron nitride crucible with an inner diameter of 109 mm and a height of Zoo ■, and then the water content was reduced to 2000 mm. ppm B, O, 1
I put 6Of. This crucible was placed in a high-pressure container, and argon gas was pressurized to create a pressure of about 50 atmospheres, while the crucible was heated to about 1300'CK using a heater. As a result of the above heating, in the crucible, the upper layer contains B and Os melt, and the lower layer contains KG.
aA# Melt forms a circle.

aahaがルツボ内で完全に溶融し九ら、種結晶をGa
A、#融液に′II&触させ、15%/hの速度で引き
上げた。この引き上げ操作の際、ルツボは1分間20回
の割合で種結晶はルツボに対して反対方向に5回の割合
で回転させた。
After the aaha is completely melted in the crucible, the seed crystal is
A, #The melt was brought into contact with 'II&' and pulled up at a rate of 15%/h. During this pulling operation, the crucible was rotated 20 times per minute, and the seed crystal was rotated 5 times in the opposite direction to the crucible.

上記の引き上げ轡作により直径約50.、長さ約100
 m、重量的900 tのGaA、?結晶体が得られ丸
The diameter is approximately 50mm due to the above-mentioned lifting process. , length about 100
m, 900 t of GaA by weight, ? A round crystal is obtained.

次にこのGaA#結晶体を1傷角以下の大きさに粉砕し
、Ht 804 : He Ot ;Ht Oが5:1
:1の混合液を用いて5分間エツチング処理を行い、充
分水洗し九後、Hct : HNO,: H,Oが1:
1:1の混合液で3分間再びエツチング処理1〜九後、
純水で充分水洗した。このようにして粉砕、精製し九〇
a Az結晶は再びB!0.と共にルツボに入れ、ルツ
ボを高圧容器内に設置し、アルゴンガスを圧入して約1
0気圧とし、ルツボを約1300℃に加熱し九。ルツボ
内のGaA zが完全に溶融したら、GαムI溶融液に
種結晶を接触させて5−の割合で引き上げた。このとき
のルツボは1分間20回の割合で、種結晶はルツボとは
反対方向に6@の割合で回転させ九。上記の引き上げ操
作により直径約50■、長さ約Zoo−の円筒状GaA
t単結晶が得られ九。
Next, this GaA# crystal was crushed to a size of 1 flaw angle or less, and Ht 804 : He Ot ; Ht O was 5:1.
Etching treatment was performed for 5 minutes using a mixed solution of :1:Hct:HNO,:H,O was 1:1 after washing thoroughly with water.
After etching treatment 1 to 9 again for 3 minutes with a 1:1 mixture,
Washed thoroughly with pure water. In this way, the 90a Az crystal is crushed and refined and becomes B again! 0. Place the crucible in a crucible, place the crucible in a high-pressure container, pressurize argon gas,
Set the pressure to 0 atmospheric pressure and heat the crucible to about 1300℃.9. When the GaAz in the crucible was completely melted, a seed crystal was brought into contact with the Gaam I melt and pulled up at a rate of 5-. At this time, the crucible was rotated at a rate of 20 times per minute, and the seed crystal was rotated at a rate of 6 @ in the opposite direction to the crucible. By the above pulling operation, a cylindrical GaA with a diameter of about 50 cm and a length of about Zoo-
A single crystal was obtained.

次にこの円筒状GaAt単結晶の肩の部分と真中の部分
を切如出し、それぞれのウニI・−の一端部より直径を
通って他端部までの比抵抗を測定し九。肩部ウェハーの
比抵抗は1M3図Fg)に、胴部ウェハーの比抵抗は第
3図(A)に示す。上記のグラフよに明らかなように1
肩部、胴部のいずれのウェハーも比抵抗が1080・謂
を超え、抵抗分布もどの点においてもほぼ均一であった
Next, the shoulder part and the middle part of this cylindrical GaAt single crystal were cut out, and the resistivity was measured from one end of each uni I to the other end through the diameter.9. The specific resistance of the shoulder wafer is shown in Figure 1M3 (Fg), and the specific resistance of the body wafer is shown in Figure 3(A). As is clear from the graph above, 1
The specific resistance of both the shoulder and body wafers exceeded 1080, and the resistance distribution was almost uniform at all points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単結晶製造装置の一例を示す断面図、第2図は
本発明においてカプセル削として用いるB、 o、の含
水率と得られるGaA、単結晶の比抵抗の関係を示すグ
ラフ、第3図は本発明の方法により得られ九〇gA#単
結晶の比抵抗を示すグラフ。 図中、/は高圧容器、コは加熱器、3はルツボ、6は種
結晶、7はG、A、溶融液、lは一01溶融液である。
FIG. 1 is a cross-sectional view showing an example of a single crystal manufacturing apparatus, and FIG. 2 is a graph showing the relationship between the water content of B, O, used for capsule cutting in the present invention, the GaA obtained, and the specific resistance of the single crystal. Figure 3 is a graph showing the specific resistance of a 90gA# single crystal obtained by the method of the present invention. In the figure, / is a high-pressure container, C is a heater, 3 is a crucible, 6 is a seed crystal, 7 is G, A, a melt, and l is a 101 melt.

Claims (3)

【特許請求の範囲】[Claims] (1)  ガリウムと砒素と含水、率1200 ppm
以上の酸化ボロンを高圧下でガリウム砒素の溶融温度以
上で加熱して、上層が酸化ボロ/溶融液、下層がガリウ
ム砒素溶融液から成る、溶融液を形成し、骸ガリウム砒
素溶液に種結晶を接触させ、引き上げてガリウム砒素結
晶を作成し、得られ九結晶を粉砕し中圧以下の加圧下で
酸化ボロンと共に加熱溶融させ、下層に形成したガリウ
ム砒素溶融i[4て種結晶を接触させて引き上げること
を特徴とするガリウム砒素単結晶の製造方法。
(1) Gallium, arsenic and water content, rate 1200 ppm
The above boron oxide is heated under high pressure to a temperature higher than the melting temperature of gallium arsenide to form a melt in which the upper layer is boron oxide/melt and the lower layer is gallium arsenide melt, and seed crystals are added to the skeleton gallium arsenide solution. The gallium arsenide crystals are brought into contact and pulled up to create gallium arsenide crystals. A method for producing a gallium arsenide single crystal, characterized by pulling it.
(2)  ^圧は50気圧以上であることを特徴とする
特許請求の範囲第1項記載のガリウム砒素単結晶の製造
方法。
(2) The method for producing a gallium arsenide single crystal according to claim 1, wherein the pressure is 50 atmospheres or more.
(3)  中圧は10〜20気圧であることを特徴とす
る特許請求の範1!JIEI項又は第2項記載のガリウ
ム砒素単結晶の製造方法。
(3) Claim 1 characterized in that the intermediate pressure is 10 to 20 atmospheres! A method for producing a gallium arsenide single crystal according to JIEI or 2.
JP57050030A 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal Expired JPS6058199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050030A JPS6058199B2 (en) 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050030A JPS6058199B2 (en) 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal

Publications (2)

Publication Number Publication Date
JPS58167499A true JPS58167499A (en) 1983-10-03
JPS6058199B2 JPS6058199B2 (en) 1985-12-18

Family

ID=12847594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050030A Expired JPS6058199B2 (en) 1982-03-30 1982-03-30 Method for manufacturing gallium arsenide single crystal

Country Status (1)

Country Link
JP (1) JPS6058199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374199U (en) * 1986-10-31 1988-05-18

Also Published As

Publication number Publication date
JPS6058199B2 (en) 1985-12-18

Similar Documents

Publication Publication Date Title
US4528061A (en) Process for manufacturing boron-doped gallium arsenide single crystal
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
CN101570888B (en) Method capable of removing carbon-containing impurities for preparing solar-grade silicon crystals
EP2722420A2 (en) Equipment and method for producing a compound polycrystal, and method for growing a compound single crystal
US4637854A (en) Method for producing GaAs single crystal
JPS58167499A (en) Preparation of single crystal of gallium arsenic
JPS61501984A (en) Method for producing a single crystal thin layer of silver thiogallate (AgGaS↓2)
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JP2712594B2 (en) Method for producing group 3-5 compound semiconductor single crystal
JPS6111920B2 (en)
JPS60195016A (en) Purification of metallic silicon
JP2517738B2 (en) Method for producing compound semiconductor single crystal
JPS62176997A (en) Method for bringing up hemiinsulating inp single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPH0124760B2 (en)
JP2929006B1 (en) Manufacturing method of high quality crystal sheet material
KR930002959B1 (en) Method of casting crystaline silicon
JPH0341432B2 (en)
JPH0798715B2 (en) Method for producing silicon single crystal
RU1809847C (en) Method of crystalline gallium arsenide preparing
JPH0411513B2 (en)
JPS6042299A (en) Manufacture of single crystal
JPS63176398A (en) Method for growing compound semiconductor single crystal
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JPH05117091A (en) Production of granular silicon single crystal for solar cell