JPS62176997A - Method for bringing up hemiinsulating inp single crystal - Google Patents

Method for bringing up hemiinsulating inp single crystal

Info

Publication number
JPS62176997A
JPS62176997A JP1388886A JP1388886A JPS62176997A JP S62176997 A JPS62176997 A JP S62176997A JP 1388886 A JP1388886 A JP 1388886A JP 1388886 A JP1388886 A JP 1388886A JP S62176997 A JPS62176997 A JP S62176997A
Authority
JP
Japan
Prior art keywords
single crystal
inp
melt
pulling
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1388886A
Other languages
Japanese (ja)
Inventor
Keiji Katagiri
片桐 圭司
Osamu Oda
修 小田
Teru Araki
荒木 暉
Hironori Kusumi
久須美 大乗
Kenji Sato
賢次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1388886A priority Critical patent/JPS62176997A/en
Publication of JPS62176997A publication Critical patent/JPS62176997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain hemiinsulating InP single crystal doped with Fe in excellent reproducibility through all parts of crystal by making the following iron concn. in an initial period the specified range which is contained in a melt having the prescribed carrier concn. for synthetic InP single crystal and bringing up single crystal. CONSTITUTION:A device for pulling up single crystal due to a Czochralski process provided with used liquid sealing is set in the inside of an external vessel in the high-pressure inert gas atmosphere. A melt and a sealant B2O3 covering the top surface thereof are housed in a crucible 1. The outside of the crusible 1 is surrounded by a graphite susceptor 2 and evaporation of the melt is inhibited by B2O3 and a heater 3 is provided outside the susceptor. Single crystal C is brought up through the B2O3 layer by pulling up a pulling shaft 4. In the applied melt, iron is added to the melt of the raw material for synthetic InP polycrystal which has 8X10<15>-1X10<16>cm<-3> carrier concn. so that iron concn. in an initial period is regulated to 0.030-0.040wt%.

Description

【発明の詳細な説明】 本発明は、半絶縁性InP単結晶の育成方法に関するも
のであり、特には比抵抗が107Ωm以上の半絶縁性F
aドープInP単結晶を再現性良く、結晶全体を通して
得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing semi-insulating InP single crystals, and particularly relates to a method for growing semi-insulating InP single crystals, and particularly relates to semi-insulating F single crystals having a resistivity of 107 Ωm or more.
This invention relates to a method for obtaining an a-doped InP single crystal throughout the crystal with good reproducibility.

発明の背景 InP化合物半導体は、長波長帯での半導体レーザ、受
光器の基板結晶として有用なものであり、最近では簡速
FET用材料としても注目されているものである。近頃
、同−InP基板上にフォトダイオード、FET及び半
導体レーザを集積した光ICが開発され、この場合In
P基板としては、これら素子のmk的分離を容易ならし
めるよう半絶縁性結晶が用いられねばならない。
BACKGROUND OF THE INVENTION InP compound semiconductors are useful as substrate crystals for semiconductor lasers and light receivers in long wavelength bands, and have recently attracted attention as materials for simple FETs. Recently, optical ICs have been developed that integrate photodiodes, FETs, and semiconductor lasers on -InP substrates.
A semi-insulating crystal must be used as the P substrate to facilitate mk separation of these elements.

半絶縁性InP単結晶は、Fe、Co等の遷移金側をド
ープすることにより作成することが出来る。
A semi-insulating InP single crystal can be created by doping the transition gold side with Fe, Co, etc.

これら不純物は深いアクセプタ準立を形成し、残留キャ
リアが補償されることによって半絶縁性を示す。とりわ
け、FeドープInPが有望視されている。比抵抗値が
107Ω1以上である半絶縁性FeドープInP単結晶
の製造へ深い関心が寄せられている。
These impurities form deep acceptor levels and exhibit semi-insulating properties by compensating for residual carriers. In particular, Fe-doped InP is viewed as promising. There is great interest in the production of semi-insulating Fe-doped InP single crystals having a resistivity value of 107Ω1 or more.

従来技術とその問題点 一般にF・ドープInP単結晶を液体封止チョクラルス
キー法で引き上げて作成する時に、融液中の欽2!w1
度が低いと、得られる単結晶の欽ドープ量の再現性が悪
いため101Ω(以上となる単結晶の固化率りの値が大
きくなって歩留りが悪くなる。
Prior Art and its Problems Generally, when an F-doped InP single crystal is pulled up using the liquid-sealed Czochralski method, Qin2! w1
If the degree is low, the reproducibility of the amount of doping in the obtained single crystal is poor, and the solidification rate of the single crystal of 101Ω (or more) becomes large, resulting in poor yield.

即ち、引上単結晶の上部に101QcWIの抵抗値を有
しない部分が出来る。逆に、融液中の鉄濃度を増すと、
単結晶の比抵抗は増大し、歩留りはよくなる反面鉄のリ
ン化合物(FsP、FePz等)の析出吻が生じやすく
なる。また、鉄濃度が高いと、ウェハ上へのエピタキシ
ャル成長やイオン注入により温度が700〜800℃に
なった時にウェハ中のFe濃度が不均一となり、電気的
性質が不均一となるといった不都合も生じる。このよう
に、単結晶中へのF・ドープ量が少ないと比抵抗が10
1Ω副以上となる結晶歩留りが低くなり、逆に多すぎる
と簡鉄濃度と関連する不利益が生ずるのである。
That is, there is a portion in the upper part of the pulled single crystal that does not have a resistance value of 101QcWI. Conversely, when increasing the iron concentration in the melt,
Although the specific resistance of the single crystal increases and the yield improves, precipitation of iron phosphorus compounds (FsP, FePz, etc.) becomes more likely to occur. Further, if the iron concentration is high, the Fe concentration in the wafer becomes non-uniform when the temperature reaches 700 to 800° C. due to epitaxial growth or ion implantation onto the wafer, resulting in non-uniform electrical properties. In this way, if the amount of F doped into the single crystal is small, the resistivity will be 10
The yield of crystals with a resistance of 1Ω or more will be low, and conversely, if it is too large, disadvantages related to the concentration of simple iron will occur.

また、従来、F・ドープInP単結晶は、InP多結晶
原料を一度液体封止チョクラルスキー法(LEC法)で
引き上げて作成したアンドープInP多結晶を員発原料
として用い、その融液中にF・を添加し、その融液から
再度LEC法によってF・ドープInP単結晶を引上げ
ていくことにより作成していた。一つの実験例によれば
、次のような結果が報告されている: F・をInP融液中にα022%以上添加することで固
化率9−rJ、04以上で比抵抗が101Ω譚以上の単
結晶を作成している。しかし、101Ω側以上の比抵抗
を有する単結晶を再現性良くしかも歩留りよく製造する
条件は確立されていない。
Conventionally, F-doped InP single crystals are produced by using undoped InP polycrystals, which are created by pulling InP polycrystalline raw materials once using the liquid-encapsulated Czochralski method (LEC method), as raw materials, and It was created by adding F. and pulling an F.-doped InP single crystal from the melt again by the LEC method. According to one experimental example, the following results have been reported: By adding α022% or more of F into the InP melt, the solidification rate is 9-rJ, and the specific resistance is 101Ω or more at 04 or more. Creating single crystals. However, conditions for producing a single crystal having a resistivity of 101Ω or more with good reproducibility and high yield have not been established.

斯様に従来技術は次の問題点を有している=1 原料準
備のために一度引上げを打っているので、最終製品とし
ての半絶縁性F・ドープInP単結晶を得るには計2回
のLEC法による引上げを必要とし、コスト尚となり且
つ生産性も急い。
As such, the conventional technology has the following problems: 1 Since pulling is performed once to prepare the raw material, a total of two pulls are required to obtain the semi-insulating F-doped InP single crystal as the final product. It is necessary to raise the amount by the LEC method, which increases costs and reduces productivity.

2、  iF・ドープ量と関連する整置を生じることな
く、比抵抗が107Ω国以上の半絶縁性InP単結晶を
再現性良くしかも結晶全体を通して(結晶上端から下端
まで全長を通して)得る技術が確立されていない〇 発明の概要 上記問題点を解決するべく、本発明者等は検討を重ねた
。その結果、上記問題1については、全く意外にも、キ
ャリア密度8 X 101”〜I X 10”m−3の
純度の低い多結晶を原料として単結晶引上げを行っても
製品品質に差がないことが見出された。
2. A technology has been established to obtain a semi-insulating InP single crystal with a resistivity of 107Ω or more reproducibly throughout the entire crystal (throughout the entire length from the top to the bottom of the crystal) without causing alignment related to iF/doping amount. Summary of the invention In order to solve the above problems, the present inventors have conducted repeated studies. As a result, regarding problem 1 above, quite surprisingly, there is no difference in product quality even when single crystals are pulled using low-purity polycrystals with a carrier density of 8 x 101" to I x 10" m-3 as raw materials. It was discovered that

従来、−反引上げた多結晶(アンドープ状態)を最終引
上げの原料として使用したのは、尚純度の原料でないと
最終ドープ製品に残留不純物の影箒が出るとの固定概念
に支配されていたためである。
Conventionally, unpulled polycrystals (undoped) were used as raw materials for final pulling because it was ruled by the fixed concept that if the raw materials were not of high purity, residual impurities would appear in the final doped product. be.

本発明者等は実験を重ねた結果、これは誤った考えであ
ることを確認するに至った。キャリア密度(2〜3 )
X 101111M、   の鍋純度のInP多結晶を
LEC法で引上げて得られる単結晶とそれより純度がf
iイ#ヤリア濃度8 X 10” 〜I X 10” 
cm−3のInP多結晶を同じく引上げて得られる単結
晶の純度は変らない。つまり、原料である多結晶のキャ
リア一度の重紙によらず同程度のキャリア濃・度の単結
晶が得られるのである。従って、原料準備のためにLE
C法による引上げを行う必要はなく、水平ブリッジマン
法で得られた合成InP多結晶をそのままFeドープI
nP単結晶原料としても何ら差支えない。こうした理由
で、本発明はキャリア密度8 X 10”〜1X101
6譚 の合成多結晶を原料とする。
As a result of repeated experiments, the present inventors have come to confirm that this is a mistaken idea. Carrier density (2~3)
X 101111M, a single crystal obtained by pulling an InP polycrystal with a pot purity of
i# Yaria Density 8 x 10" ~ I x 10"
The purity of the single crystal obtained by pulling a cm-3 InP polycrystal in the same manner does not change. In other words, single crystals with the same carrier concentration and concentration can be obtained regardless of the weight of the polycrystalline carrier used as the raw material. Therefore, for raw material preparation, LE
There is no need to perform pulling using the C method, and the synthesized InP polycrystal obtained by the horizontal Bridgman method is directly used as Fe-doped I
There is no problem in using it as an nP single crystal raw material. For these reasons, the present invention has a carrier density of 8 x 10'' to 1 x 101
The raw material is synthetic polycrystals of 6 tan.

第2の問題については、上記原料を使用して、比抵抗が
101Ω譚以上となる歩留りが尚<シかもPaドープ量
が尚くなりすぎない適正濃度のF・ドープInP単結晶
を生成する条件を碌立するべく実験を重ねた。その結果
、F・をα030〜α040 vt%添加した融液を使
用して引上げを何えば、上記目的が実現しうろことが判
明した。
Regarding the second problem, the conditions for producing an F-doped InP single crystal with an appropriate concentration in which the specific resistance is 101Ω or higher and the Pa doping amount is not too high, using the above raw materials. We conducted repeated experiments to improve this. As a result, it was found that the above object could be achieved by pulling the melt using a melt containing α030 to α040 vt% of F.

斯くして、本発明は、半絶縁性F・ドープInP単結晶
を液体封止チョクラルスキー法で育成する方法において
、キャリア濃度8 X 10”〜1×10”m−3の合
成InP多結晶を原料とし、該原料融液中の初期鉄濃度
をQ、030〜α040wt%としてF・ドープInP
単結晶を引上げることを特徴とする半絶縁性InP単結
晶の育成方法を提供する。
Thus, the present invention provides a method for growing a semi-insulating F-doped InP single crystal by the liquid-sealed Czochralski method, in which a synthetic InP polycrystal with a carrier concentration of 8 x 10'' to 1 x 10'' m-3 is grown. was used as a raw material, and the initial iron concentration in the raw material melt was set to Q, 030 to α040 wt%, and F-doped InP
A method for growing a semi-insulating InP single crystal is provided, which is characterized by pulling the single crystal.

第1図は液体封止チョクラルスキー法(I、EC法)に
よる単結晶引上げ装置の概略を示す。装置は外部容器内
に不活性ガス面圧雰囲気下に置かれる。ルツボ1は、融
液とその上面を覆う封止剤B!03を収納している。ル
ツボ1の外側をグラファイトサセプタ2が取囲んでいる
。B2 osは融液の蒸発を抑制する。サセプタの外側
にヒータ3が設定される。引上軸4及びルツボ軸5を回
転しながら、引上軸4を引上げていくことにより単結晶
CがIh0sR1を通して育成される。説明の都合上単
結晶は引上げた状態において示しである。
FIG. 1 schematically shows a single crystal pulling apparatus using the liquid-filled Czochralski method (I, EC method). The device is placed in an external container under an inert gas surface pressure atmosphere. Crucible 1 is a sealant B that covers the melt and its upper surface! It stores 03. A graphite susceptor 2 surrounds the outside of the crucible 1. B2 os suppresses evaporation of the melt. A heater 3 is set outside the susceptor. By pulling up the pulling shaft 4 while rotating the pulling shaft 4 and the crucible shaft 5, the single crystal C is grown through Ih0sR1. For convenience of explanation, the single crystal is shown in a pulled state.

融液は、本発明に従えば、キャリア濃度8×1013〜
I X 1016α の合成InP多結晶原料の融液に
初期鉄濃度(LOjO〜α040wt%となるよう鉄を
添加したものである。
According to the present invention, the melt has a carrier concentration of 8 x 1013~
Synthesis of I x 1016α Iron was added to the melt of the InP polycrystalline raw material so that the initial iron concentration (LOjO to α040 wt%) was obtained.

゛前記した通り、本発明においては従来のように一旦引
上げにより純化した原料を使用する面倒を避けて、キャ
リア濃度8X10重’ 〜I X 10 ”cm−3の
比較的純度の恋い合成InP多結晶を原料として使用す
る。これは原料である多結晶のキャリア濃度、即ち純度
の高低によらず、それから引上げて得られる単結晶は同
程度のキャリア濃度を示すとの実験結果に基く。
゛As mentioned above, in the present invention, the trouble of using a raw material that has been purified once by pulling as in the conventional method is avoided, and a relatively pure synthetic InP polycrystal with a carrier concentration of 8 x 10 cm-3 is used. is used as a raw material.This is based on the experimental result that regardless of the carrier concentration of the raw material polycrystal, that is, the level of purity, the single crystal obtained by pulling it shows the same carrier concentration.

(2〜S ) X 10”cm−”の禍純度のInP多
結晶(1)と、それより純度の低い8 X 101藝〜
I X 10”6R−3の低純度InP多結晶(2)を
原料として、LEC法に上りアンドープ単結晶を引上げ
た場合の引上げた単結晶のキャリア温度は次の通りであ
った:すなわち、(1)のキャリア濃度2〜5 X I
 QIIIon−”の尚純度の多結晶を原料とした場合
はむしろ単結晶は汚染されて、そのキャリア濃度は4〜
6X101scm−3とナル。また(2)+7) 8 
X 10” 〜I X 101’ff1−3のキャリア
濃度の比較的純度の低い多結晶を原料とした場合は、引
上げにより純化されて、そのキャリア濃度は4〜6 X
 10”3  となる。
(2~S) InP polycrystal (1) with a purity of X 10"cm-" and 8 X 101 polycrystals with a lower purity
When an undoped single crystal was pulled using the LEC method using a low-purity InP polycrystal (2) of I x 10"6R-3 as a raw material, the carrier temperature of the pulled single crystal was as follows: ( 1) Carrier concentration 2 to 5 X I
If the raw material is polycrystalline polycrystalline QIIIon-", the single crystal will be contaminated and its carrier concentration will be 4 to 4.
6X101scm-3 and null. Also (2)+7) 8
When a relatively low purity polycrystal with a carrier concentration of X 10'' to I
It becomes 10”3.

従って、原料である多結晶のキャリア濃度の高低によら
ず、同程度のキャリア濃度の単結晶が得られる。
Therefore, regardless of the carrier concentration of the raw material polycrystal, single crystals with the same carrier concentration can be obtained.

本発明がInP多結晶原料のキャリア濃度を8×101
s〜l×1015m  と規定したのは、この程度だと
水平ブリッジマン法等の合成法によって容易に実現しう
るからである。この範囲より簡純度のものを使用するこ
とは、純化処理等の追加操作を必要とし本発明の意義を
失わしめる。この範囲より低純度のものを原料とすると
純度が悪すぎて単結晶品質に恕影輸を及ぼす。
The present invention increases the carrier concentration of InP polycrystalline raw material to 8×101
The reason why it is defined as s~l×1015 m is that this level can be easily realized by a synthesis method such as the horizontal Bridgman method. Use of a compound with a purity lower than this range requires additional operations such as purification treatment, which would defeat the purpose of the present invention. If a material with a purity lower than this range is used as a raw material, the purity will be too poor and will affect the quality of the single crystal.

こうしたInP多結晶原料を使用して単結晶全体を通し
て1070譚以上の比抵抗を再現性良く実現し、しかも
面濃度の鉄ドープに関連する問題を生しない条件を確立
するととが本発明の次の課題である。
The next objective of the present invention is to use such an InP polycrystalline raw material to achieve a resistivity of 1070 tan or higher throughout the single crystal with good reproducibility, and to establish conditions that do not cause problems related to surface iron doping. This is a challenge.

単結晶引上げ時の固化率と不純物濃度の関係は次式によ
シ表わされる: C= CoK (1−g )K−” gは第1図に記入したように生成単結晶の最上端におい
てg==Qとなシそしてその最下端においてg=α95
となシ、その間でO→α95へと増大する。
The relationship between solidification rate and impurity concentration when pulling a single crystal is expressed by the following formula: C = CoK (1-g)K-" g is g at the top of the produced single crystal as shown in Figure 1. ==Q and at the bottom g=α95
Meanwhile, the value increases from O to α95.

Fe ドープInP単結晶の場合、偏析係数には10−
3〜10−4であり、この値は実験のばらつきとして1
桁の巾がある。まfcK<<1であるので、同化率gと
不純物濃度Cとの関係は第2−のようになり、同化率が
高くなると不純物濃度Cが急増する。
In the case of Fe-doped InP single crystal, the segregation coefficient is 10-
3 to 10-4, and this value is 1 due to experimental variation.
There is a digit width. Since fcK<<1, the relationship between the assimilation rate g and the impurity concentration C is as shown in the second -, and as the assimilation rate increases, the impurity concentration C rapidly increases.

従って、FeをInP単結晶中にドープするに当っては
、gが小さい範囲において鉄ドープ量が不足し、107
Ω百以上の比抵抗とカらない部分が出現しやすい。初期
Fe ドープ濃度Ci(g=0のC値)が所定のドープ
量水準に達することが必要である。Fe′ドープ濃度は
後半急激に増加するので、単結晶全体が許容F@水準以
下であるためには最終Feドープ濃度Cf(g=α95
のC値)が許容水準即ち鉄による弊害が出ない水準以下
でなければならない。
Therefore, when doping Fe into an InP single crystal, the amount of iron doped is insufficient in a small g range, and 107
A resistivity of 100 Ω or more and a portion that does not overlap are likely to appear. It is necessary that the initial Fe doping concentration Ci (C value at g=0) reaches a predetermined doping amount level. Since the Fe' doping concentration increases rapidly in the second half, the final Fe doping concentration Cf (g = α95
C value) must be below an acceptable level, that is, a level at which iron does not cause any adverse effects.

ところで、InP単結晶中のFe濃度と比抵抗との関係
が第3図に示される。第3図かられかるようにFea度
α2ppmw 以上で比抵抗10γΩ百以上が得られる
Incidentally, the relationship between the Fe concentration and specific resistance in the InP single crystal is shown in FIG. As can be seen from FIG. 3, a specific resistance of 10 γΩ or more can be obtained when the Fea degree is α2 ppmw or more.

そこで、C1を確実にα2ppmw  以上とししかも
Cfが許容水準以下となるようなFeドープ自−Cを与
える融液中のFe初期濃度が設定しうるなら、生成Fe
 ドープInP単結晶の上端から下端まで全体を通して
107Ω譚以上の抵抗率は保証されしかも鉄ドープ量が
高すぎることの弊害も発生しないことになる。上記原料
を対象として実験を重ねた結果、原料融液中に初期鉄濃
度が1030〜0.040wt%となるよう鉄を添加す
ることがよいことが判明した。1050 wt%未満で
はgの小さい範囲において所定のFe ドープ量が得ら
れ難く、比抵抗が107Ω副以下の部分が出現して歩留
を低下する。0.040 wtチを越えると、gの大き
な範囲において鉄ドープ量が許容水準を越え、Fl!P
、 FOP!等の析出といった弊害が生じゃすくなる。
Therefore, if it is possible to set the initial concentration of Fe in the melt that provides Fe-doped self-C such that C1 is reliably above α2ppmw and Cf is below the allowable level, the produced Fe
A resistivity of 10<7>Ω or more is guaranteed throughout the doped InP single crystal from the upper end to the lower end, and the adverse effects of an excessively high iron doping amount do not occur. As a result of repeated experiments using the above raw materials, it was found that it is preferable to add iron to the raw material melt so that the initial iron concentration is 1030 to 0.040 wt%. If it is less than 1050 wt%, it is difficult to obtain a predetermined Fe 2 doping amount in a small g range, and a portion with a specific resistance of less than 10 7 Ω appears, resulting in a decrease in yield. When it exceeds 0.040 wt, the iron doping amount exceeds the permissible level in a large g range, and Fl! P
, FOP! Defects such as precipitation of etc. are less likely to occur.

Fe の溶解は例えばα05IIll+犀の箔を使用し
て行うことが、溶解速度が速く未溶解物HDにくいこと
から好ましい。
It is preferable to dissolve Fe 2 using α05IIll + rhinoceros foil, for example, because the dissolution rate is fast and undissolved matter HD is less likely to occur.

本発明に従って育成された半絶縁性Fe ドープInP
は、最初に述べた元IC基板吟において有用である。
Semi-insulating Fe-doped InP grown according to the present invention
is useful in examining the original IC board mentioned at the beginning.

発明の効果 1、 比抵抗が107Ω個以上の半絶縁性InP単結晶
が再現性良く結晶全体を通して得られる。
Effect of the invention 1: A semi-insulating InP single crystal with a resistivity of 107Ω or more can be obtained throughout the crystal with good reproducibility.

2−  Fe  ドープ蒙が適正に抑えられているので
、Fe PH1FeP等の析出物は生ぜず、tたウェハ
昇温時にウェハ中のF@濃度が不均一となシ、電気的性
質が不均一となるといった弊害が生じない。
2- Since the Fe doping level is appropriately suppressed, precipitates such as FePH1FeP are not generated, and when the wafer temperature is raised, the F@ concentration in the wafer is not uniform, and the electrical properties are not uniform. There are no harmful effects such as

五 キャリア濃度8X1[)’″〜I X 10” c
m−”の純度の多結晶原料を使用するので、純化の為の
引上工程を省略出来、生産性を高め、またコスト削減に
寄与するり 4、 光IC素子の開発を一段と進展させうる。
5. Carrier concentration 8X1[)'''~I X 10''c
Since a polycrystalline raw material with a purity of "m-" is used, the pulling process for purification can be omitted, which increases productivity, contributes to cost reduction, and further advances the development of optical IC devices.

実施例 キャリア濃g 9 X 10”cm−”のInP多結晶
I Kgを原料とし、厚さα05−のFe箔を350■
添加して、液体封止チョクラルスキー法で単結晶引上げ
を行なった。
Example: InP polycrystalline I kg of carrier density 9 x 10"cm-" was used as a raw material, and Fe foil of α05-thickness was 350cm thick.
A single crystal was pulled using the liquid-sealed Czochralski method.

この時、得られた身、#A品は、 ■ 比抵抗が1070譚以上の領域が0<g<195の
範囲について得られ、 ■ FeP2、FeP等の析出物も遅られす、高品餉の
ものであった。
At this time, the #A product obtained is: ■ A region with resistivity of 1070 tan or more is obtained in the range of 0<g<195, and ■ Precipitates such as FeP2 and FeP are also delayed, making it a high-quality product. It belonged to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は整体封止チョクラルスキー法を説明する概略図
、第2図は固化率と単結晶不純物濃度の関係を示すグラ
フ、そして第5図は単結晶中のFe濃度と比抵抗の関係
を示すグラフでおる。 1ニルツボ     2:サセプタ 3:ヒータ     4:引上軸 5ニルツボ軸 第2図 第3図 Fe濃度(ppmw) 手続浦正書 昭和61年 3月240
Figure 1 is a schematic diagram explaining the Czochralski method for manipulative sealing, Figure 2 is a graph showing the relationship between solidification rate and single crystal impurity concentration, and Figure 5 is the relationship between Fe concentration in the single crystal and specific resistance. Here is a graph showing. 1 Nil acupuncture point 2: Susceptor 3: Heater 4: Pulling axis 5 Nil acupoint axis Figure 2 Figure 3 Fe concentration (ppmw) Procedure Ura Masaru March 1986 240

Claims (1)

【特許請求の範囲】[Claims] 1)半絶縁性FeドープInP単結晶を液体封止チョク
ラルスキー法で育成する方法において、キャリア濃度8
×10^1^5〜1×10^1^6cm^−^3の合成
InP多結晶を原料とし、該原料融液中の初期鉄濃度を
0.030〜0.040wt%としてFeドープInP
単結晶を引上げることを特徴とする半絶縁性InP単結
晶の育成方法。
1) In the method of growing a semi-insulating Fe-doped InP single crystal by the liquid-sealed Czochralski method, the carrier concentration is 8.
×10^1^5 to 1 × 10^1^6 cm^-^3 synthesized InP polycrystals are used as raw materials, and the initial iron concentration in the raw material melt is set to 0.030 to 0.040 wt% to produce Fe-doped InP.
A method for growing a semi-insulating InP single crystal, characterized by pulling a single crystal.
JP1388886A 1986-01-27 1986-01-27 Method for bringing up hemiinsulating inp single crystal Pending JPS62176997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1388886A JPS62176997A (en) 1986-01-27 1986-01-27 Method for bringing up hemiinsulating inp single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1388886A JPS62176997A (en) 1986-01-27 1986-01-27 Method for bringing up hemiinsulating inp single crystal

Publications (1)

Publication Number Publication Date
JPS62176997A true JPS62176997A (en) 1987-08-03

Family

ID=11845736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1388886A Pending JPS62176997A (en) 1986-01-27 1986-01-27 Method for bringing up hemiinsulating inp single crystal

Country Status (1)

Country Link
JP (1) JPS62176997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103394A (en) * 1989-09-18 1991-04-30 Nippon Mining Co Ltd Production of semiinsulating inp single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103394A (en) * 1989-09-18 1991-04-30 Nippon Mining Co Ltd Production of semiinsulating inp single crystal

Similar Documents

Publication Publication Date Title
US4637854A (en) Method for producing GaAs single crystal
JPS62176997A (en) Method for bringing up hemiinsulating inp single crystal
JPH06219900A (en) Production of si-doped n-type gallium arsenide single crystal
JPH0234597A (en) Growing method for gaas single crystal by horizontal bridgman method
DE10057413B4 (en) Process for the direct synthesis of indium phosphide
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JPH08151290A (en) Method for growing single crystal of compound semiconductor
JP2527718B2 (en) Sealant for liquid capsule pulling method and single crystal growth method
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPH08756B2 (en) Inorganic compound single crystal growth method
JPS58167500A (en) Preparation of single crystal of gallium arsenic
JPH0529639B2 (en)
JPH08188499A (en) Production of gallium-arsenic single crystal
JPS59203793A (en) Preparation of semiinsulative ga-as single crystal
JPH03252385A (en) Production of single crystal having high dissociation pressure
JPS6153186A (en) Heater for resistance heating
JPS58167499A (en) Preparation of single crystal of gallium arsenic
CN114808131A (en) GaAs single crystal and VGF preparation method thereof
JPS60118696A (en) Method for growing indium phosphide single crystal
JPH08104591A (en) Apparatus for growing single crystal
JPS63176397A (en) Production of iii-v compound semiconductor single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH03279299A (en) Semi-insulating inp single crystal and production thereof
JPS6042299A (en) Manufacture of single crystal