JPS58155770A - Substrate for amorphous silicon solar cell - Google Patents

Substrate for amorphous silicon solar cell

Info

Publication number
JPS58155770A
JPS58155770A JP57038462A JP3846282A JPS58155770A JP S58155770 A JPS58155770 A JP S58155770A JP 57038462 A JP57038462 A JP 57038462A JP 3846282 A JP3846282 A JP 3846282A JP S58155770 A JPS58155770 A JP S58155770A
Authority
JP
Japan
Prior art keywords
substrate
solar cell
layers
electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57038462A
Other languages
Japanese (ja)
Other versions
JPH0125234B2 (en
Inventor
Shinichiro Ishihara
伸一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57038462A priority Critical patent/JPS58155770A/en
Publication of JPS58155770A publication Critical patent/JPS58155770A/en
Publication of JPH0125234B2 publication Critical patent/JPH0125234B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the amorphous Si solar cell applicable to various power simply by forming a plurality of beltlike conductive layers to the other end from one end of an insulating substrate and overlapping a conductive layer consisting of different quality of material extending over the whole longitudinal region except one part of the width of a belt. CONSTITUTION:A transparent electrode 10 is evaporated onto a glass plate 9 ane etched selectively, electrode layers 10' are formed at regular intervals, and Al 11 is evaporated selectively to the one parts. When amorphous Si thin-films 12 are deposited in order of a pin type, Al 11 diffuses among the thin-films and reaches up to the surfaces of the thin-films 12, and diffusion layers 13 are formed. Al layers 14 are formed adjacent to the layers 13, and sections among elements are connected in series, and used as the back electrodes of adjacent elements at the same time. Electrode leads 15, 16 are fitted to elements at both ends. According to said constitution, outputs can be varied freely without changing a mask, and the solar cell, a utilization rate of the substrate therein is high, is obtained.

Description

【発明の詳細な説明】 本発明は一アモルファスシリコン太陽電池用基板に関す
るものであり、種々の消費電力に対応する太陽電池を簡
単に形成できる太陽電池用基板を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous silicon solar cell substrate, and provides a solar cell substrate that can easily form solar cells compatible with various power consumptions.

従来、単一基板上に光電変換薄膜を堆積してなる薄膜太
陽電池はアモルファスシリコン(以下a−8iと略記す
る)より太陽電池に代表されるように基板上で直列接続
されている。第1図a、bは従来から提案されている直
列接続方式の太陽電池を示すものである。第1図a、b
において、1は絶縁基板、2は受光側電極、3はa−8
i薄膜、4は裏面側電極である。これらは何れも素子と
して完成させた場合、絶縁基板上の導電膜は前記基板端
°まで連続して存在せず島状になっている。一方、半導
体回路の進歩により、それらの消費電力が減少し続けて
いるが、消費電力が異なる太陽電池をつくるたびに、従
来技術では、その都度新しいマスクを用意しなければな
らないという欠点があった。
Conventionally, thin film solar cells in which a photoelectric conversion thin film is deposited on a single substrate are connected in series on the substrate, as typified by solar cells made of amorphous silicon (hereinafter abbreviated as A-8I). FIGS. 1a and 1b show series-connected solar cells that have been proposed in the past. Figure 1 a, b
, 1 is an insulating substrate, 2 is a light-receiving side electrode, and 3 is a-8
i thin film, 4 is the back side electrode. When any of these devices is completed as a device, the conductive film on the insulating substrate does not exist continuously to the edge of the substrate, but has an island shape. On the other hand, advances in semiconductor circuits have continued to reduce their power consumption, but conventional technology had the disadvantage of having to prepare a new mask each time a solar cell with a different power consumption was created. .

本発明は、従来例同様a−8i薄膜を同一基板上に複数
個直列接続する機能をもたせながら、しかもマスクを変
更せずに出力電力を自由に変化させることができる基板
利用効率の高いa−8i太陽電池用基板を提供するもの
である。
The present invention has a function of connecting a plurality of A-8I thin films in series on the same substrate as in the conventional example, and has high substrate usage efficiency that allows the output power to be freely changed without changing the mask. 8i solar cell substrate.

以下、本発明の基礎となる技術について説明する。第2
図a−cは・a−8i薄膜中に金属を貫通して埋蔵させ
る工程を示している。まず洗)されたガラス基板5の一
部にAIl、よりなる電極6 i 、 62を蒸着する
(第2図a)。次にa−8i薄膜7をAIl。
The technology underlying the present invention will be described below. Second
Figures a-c show the process of penetrating and embedding metal in the a-8i thin film. First, electrodes 6 i and 62 made of Al are deposited on a part of the washed glass substrate 5 (FIG. 2a). Next, the a-8i thin film 7 was coated with AI1.

電極61.62から電極端子がとり出せるように堆積さ
せる(第2図b)。堆積条件は基板温度180”C〜3
00’C真空度0.2〜2 Torrの範囲を用いた。
The electrodes 61 and 62 are deposited so that electrode terminals can be taken out (FIG. 2b). Deposition conditions are substrate temperature 180”C~3
00'C vacuum degree was used in the range of 0.2 to 2 Torr.

a−8i薄膜7を堆積することによって予め蒸着したA
r1.電極61,62がa−8i薄膜7中を拡散し、そ
の表面まで達する。A2電極6 i t 62の膜厚は
a−8i薄膜7と同程度か多少厚めの方が望ましい。
A previously deposited by depositing an a-8i thin film 7
r1. Electrodes 61 and 62 diffuse through the a-8i thin film 7 and reach its surface. It is desirable that the film thickness of the A2 electrode 6 it 62 be approximately the same as that of the a-8i thin film 7 or slightly thicker.

次にa−8i薄膜T上にAuよりなる電極81,82を
蒸着し、このAμ電極81 とA!電極61とでa−8
i薄膜7をはさみ込むようにする(第2図C)。
Next, electrodes 81 and 82 made of Au are deposited on the a-8i thin film T, and this Aμ electrode 81 and A! a-8 with electrode 61
i Sandwich the thin film 7 (FIG. 2C).

第2図Cにおいて、AIl電極61 とA2電極81お
よびAI電極61の両端間の抵抗を測定しだが、10Q
Crn以下という比抵抗が得られた。通常得られるa−
8iO比抵抗が109Ωm程度であることからすると、
Ar1.電極61の金属拡散により十分に低い比抵抗が
得られることがわかる。直列接続用電極の大きさを幅o
、saI、長さ10 crn%厚さ5000Aとすると
、その実抵抗は1o Ω・以下となり、1A電流を流す
のに抵抗損は、1mV以下と極めて小さい。
In Fig. 2C, the resistance between the AI1 electrode 61, the A2 electrode 81, and the AI electrode 61 was measured.
A specific resistance of Crn or less was obtained. Usually obtained a-
Considering that the specific resistance of 8iO is about 109Ωm,
Ar1. It can be seen that a sufficiently low resistivity can be obtained by metal diffusion in the electrode 61. The size of the electrodes for series connection is determined by the width o
, saI, length 10 crn%, thickness 5000 A, the actual resistance is less than 10 Ω·, and the resistance loss is extremely small, less than 1 mV when a current of 1 A flows.

次にこの技術を用いた本発明の一実施例の基板とそれを
用いたa−8i太陽電池について説明する。
Next, a substrate according to an embodiment of the present invention using this technology and an a-8i solar cell using the same will be described.

同一ガラス基板上に複数の光起電力素子を直列接続させ
る場合について適用する。第3図a−dは、本発明の一
実施例に係る光起電力素子を製造する手順を説明した図
である。ガラス基板9のほぼ全面に透明電極10を蒸着
する(第3図a)。適当なパターンで透明電極1oをエ
ツチングして一定間隔だけ離して並設された電極層10
′を形成した後、その一部にAρよシなる金属層11を
蒸着する。なお、全面にA4金属層を蒸着した後、エツ
チングにより適当なパターンに形成しても良い(第3図
b)。これを基板とし、a−8i薄膜12を例えばp型
、i型、n型の順に堆積させる(第3図C)。なお図を
簡単にするために図では一体に表わしている。前述した
とおりa−8t薄膜12の堆積中に予め蒸着されている
AM金属層11は拡散し、a−8i薄膜12表面まで達
する。13はa−8i薄膜12表面まで達する。13は
a−8i薄膜12表面まで達する。13はa−8t薄膜
12中にA℃金属層11が拡散し低抵抗化した領域であ
る0第3図dに示したように表面までA211が拡散し
た部分13と接するようにさらにA2よりなる金属層1
4を蒸着する。このA!金属層14は素子間の直列接続
と同時に隣の素子の裏面電極ともなっている。両端の素
子に電極リード16.16を取り付けて直列接続素子と
する。
This applies to the case where a plurality of photovoltaic elements are connected in series on the same glass substrate. FIGS. 3a to 3d are diagrams illustrating a procedure for manufacturing a photovoltaic device according to an embodiment of the present invention. A transparent electrode 10 is deposited on almost the entire surface of the glass substrate 9 (FIG. 3a). Electrode layers 10 are formed by etching the transparent electrodes 1o in an appropriate pattern and disposing them in parallel at a constant interval.
After forming ', a metal layer 11 called Aρ is deposited on a part thereof. Note that an A4 metal layer may be deposited on the entire surface and then formed into a suitable pattern by etching (FIG. 3b). Using this as a substrate, a-8i thin films 12 are deposited, for example, in the order of p-type, i-type, and n-type (FIG. 3C). Note that in order to simplify the drawing, they are shown as one unit in the figure. As described above, during the deposition of the A-8T thin film 12, the previously deposited AM metal layer 11 diffuses and reaches the surface of the A-8I thin film 12. 13 reaches the surface of the a-8i thin film 12. 13 reaches the surface of the a-8i thin film 12. 13 is a region where the A°C metal layer 11 is diffused into the A-8T thin film 12 and has a low resistance. As shown in FIG. metal layer 1
4 is deposited. This A! The metal layer 14 serves as a series connection between elements and also serves as a back electrode of an adjacent element. Electrode leads 16, 16 are attached to the elements at both ends to form series connected elements.

以上の工程によって、本発明の実施例の基板を用いたa
−8i太陽電池が得られる。すなわち、この薄膜太陽電
池は、a−8i薄膜12よりなる光電変換薄膜層と、こ
の光電変換薄膜層の一方の主面上に一定間隔だけ離して
並設された透明電極層10’と、前記光電変換薄膜層の
他方の主面側に前記透明電極層10’と対向配列されだ
A2電極層14とを基板9上に具備し、前記透明電極層
1σとAIt電極層14とを前記光電変換膜層中に拡散
されて形成された導電層を介して電気的に接続したもの
である。
Through the above steps, a
-8i solar cells are obtained. That is, this thin film solar cell includes a photoelectric conversion thin film layer made of the a-8i thin film 12, a transparent electrode layer 10' arranged in parallel on one principal surface of the photoelectric conversion thin film layer at a constant interval, and the above-mentioned A2 electrode layer 14 arranged opposite to the transparent electrode layer 10' is provided on the substrate 9 on the other main surface side of the photoelectric conversion thin film layer, and the transparent electrode layer 1σ and the AIt electrode layer 14 are used for the photoelectric conversion. Electrical connection is made through a conductive layer formed by diffusion into a membrane layer.

以上述べた実施例のa−8i太陽電池において対向する
電極を接続する導電層としてA1を用いているが、透明
電極10’上に形成する導電層11はa−8i導電膜1
2の堆積中に拡散し、表面に達し、しかも低抵抗になる
ものであれば例でも良い。例えば、八2の他にAu 、
 In +P4 +Pt等の金属層が使用可能である。
In the a-8i solar cell of the embodiment described above, A1 is used as the conductive layer connecting the opposing electrodes, but the conductive layer 11 formed on the transparent electrode 10' is the a-8i conductive film 1.
Any example may be used as long as it diffuses during the deposition of step 2, reaches the surface, and has a low resistance. For example, in addition to 82, Au,
Metal layers such as In + P4 + Pt can be used.

本発明による基板(第3図b)を用いると太陽電池完成
後の平面図は第4図aのようになる。第4図の基板9全
面にa−8iが堆積されている。なお第4図aは、本発
明による基板と反対側の方向から見たものであり、第4
図すはその断面図である。図からもわかるようにa−8
t太陽電池は2素子面列につながっている。実装される
装置の消費電力に見合った電流が得られるように太陽電
池金弟4図aの左右方向に適酉な寸法で切断する。切断
後、切り口が短絡しやすいので、電極14の材料を蒸着
時に切断線にあわせて金属等の線を用いてマスキングし
、電極34を分離しても良いし、また切り口を適当な保
護材でおおった方が良い。
When the substrate according to the present invention (FIG. 3b) is used, the plan view of the completed solar cell will be as shown in FIG. 4a. A-8i is deposited on the entire surface of the substrate 9 in FIG. Note that FIG. 4a is a view from the opposite side of the substrate according to the present invention;
The figure is a cross-sectional view. As you can see from the diagram, a-8
The solar cells are connected in a two-element array. In order to obtain a current commensurate with the power consumption of the device to be mounted, cut the solar cell to an appropriate size in the horizontal direction of Figure 4a. After cutting, the cut ends are likely to short-circuit, so the material for the electrode 14 may be masked with a metal wire or the like along the cut line during vapor deposition to separate the electrodes 34, or the cut ends may be covered with a suitable protective material. It's better to cover it.

従来例第1図すの構造をもつものでも、この場合、本発
明に示すように絶縁基板の一端から他端壕で導電膜は存
在せず、しかも、本発明のように電力を自由に選定でき
るという思想もないが、この場合でも、本発明による基
板を用いれば、消費電力に対応して太陽電池が容易に製
造できる。本発明と従来例第1図すと根本的な相違は上
述したとおり、絶縁基板端まで導電膜が存在するかであ
るO なお、上記実施例ではガラス基板上に透明電極を帯状に
堆積させた場合を述べだが、不透明な絶縁基板例えばセ
ラミックス等の上に、ステンレス等a−8iを堆積して
もa−8i膜中に著しく瓜散しないたとえばS n 0
2 r I TO+ T i+ N i# Cr * 
N I Crある唯W等の物質を複数本帯状に蒸着まだ
は塗布して用いても良く、この場合は基板側から光入射
が不可能であるため最後に各素子を直列に接続する電極
を用いるべきである。
Even in the conventional example having the structure shown in Fig. 1, in this case, as shown in the present invention, there is no conductive film between one end of the insulating substrate and the other end, and moreover, as shown in the present invention, the electric power can be freely selected. Even in this case, if the substrate according to the present invention is used, a solar cell can be easily manufactured in accordance with the power consumption. As mentioned above, the fundamental difference between the present invention and the conventional example shown in Fig. 1 is whether the conductive film is present up to the edge of the insulating substrate. As a case in point, even if a-8i such as stainless steel is deposited on an opaque insulating substrate such as ceramics, it does not dissipate significantly into the a-8i film, for example, S n 0
2 r I TO+ T i+ N i# Cr *
It is also possible to evaporate or apply a plurality of substances such as N, I, Cr, W, etc. in the form of strips, but in this case, since it is impossible to enter light from the substrate side, the electrodes that connect each element in series are installed at the end. should be used.

以上のように本発明による基板を用いた薄膜太陽電池は
個々の独立した単一太陽電池をアモルファス層堆積領域
外で直列接続した特性とほぼ同じであり、基板全体に薄
膜を堆積できるだめ、マスク開口部付近に発生する確率
の高いピンホール等による特性劣化の確立も少なくなる
。また従来例のようにa−8i薄膜を分離させようとす
る場合、堆積真空度がI Torr程度であるためマス
クによる薄膜のだれが大きく、分離に要するスペースが
大きくなるが本発明では分離領域に上述の金属等の膜を
高真空で堆積させるため分離に要するスペースは小さく
なる。このため基板の利用効率は大幅に改善される。さ
らに半導体集積回路技術の進歩により種々の消費電力に
対応して大きさの異なる太陽電池を簡単に製造できる。
As described above, the thin film solar cell using the substrate according to the present invention has almost the same characteristics as individual single solar cells connected in series outside the amorphous layer deposition area, and since the thin film can be deposited over the entire substrate, the mask The likelihood of characteristic deterioration due to pinholes, etc., which are likely to occur near the opening, is also reduced. Furthermore, when attempting to separate the A-8I thin film as in the conventional example, the deposition vacuum level is approximately I Torr, so the thin film sag due to the mask is large, and the space required for separation becomes large. Since the above-mentioned metal films are deposited in a high vacuum, the space required for separation is reduced. Therefore, the utilization efficiency of the substrate is greatly improved. Furthermore, advances in semiconductor integrated circuit technology have made it possible to easily manufacture solar cells of different sizes to accommodate various power consumptions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはそれぞれ従来の基板を用いた薄膜の太陽
電池の一部切欠斜視図、第2図a−Cは本発明の基板を
有効に利用するだめに用いられる原理を説明するだめの
電気装置の斜視図、第3図a−dは本発明の一実施例の
基板を用いた薄膜太陽電池の製造工程を説明するだめの
太陽電池の要。 部断面図、第4図a、bは本発明の一実施例の基板を用
いた薄膜太陽電池の完成平面図とその断面図である。 6.9・…・Φガラス基板、6,81,11・−働・・
・金属層、7,12・・・・・・a−8t薄膜、10′
・・・・・・透明電極、14・・・・・・裏面電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 412図 3図 n
Figures 1a and 1b are partially cutaway perspective views of thin film solar cells using conventional substrates, and Figures 2a to 2c illustrate the principles used to effectively utilize the substrate of the present invention. FIGS. 3a to 3d are perspective views of the electric device of FIG. 4A and 4B are a completed plan view and a sectional view of a thin film solar cell using a substrate according to an embodiment of the present invention. 6.9...Φ glass substrate, 6,81,11...-working...
・Metal layer, 7, 12...a-8t thin film, 10'
...Transparent electrode, 14... Back electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 412 Figure 3 Figure n

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に、その一端から他端に連続した複数本の帯
状の導電層と、前記導電層の幅方向において一部を除い
て重畳され、かつ前記導電層と異なる材質の導電層を前
記各導電層の長さ方向全域に設けたことを特徴とするア
モルファスシリコン太陽電池用基板。
A plurality of strip-shaped conductive layers continuous from one end to the other on an insulating substrate, and a conductive layer that overlaps with the conductive layer except for a part in the width direction of the conductive layer and is made of a different material from the conductive layer. An amorphous silicon solar cell substrate characterized in that a conductive layer is provided over the entire length direction.
JP57038462A 1982-03-10 1982-03-10 Substrate for amorphous silicon solar cell Granted JPS58155770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038462A JPS58155770A (en) 1982-03-10 1982-03-10 Substrate for amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038462A JPS58155770A (en) 1982-03-10 1982-03-10 Substrate for amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
JPS58155770A true JPS58155770A (en) 1983-09-16
JPH0125234B2 JPH0125234B2 (en) 1989-05-16

Family

ID=12525917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038462A Granted JPS58155770A (en) 1982-03-10 1982-03-10 Substrate for amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS58155770A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153553U (en) * 1984-03-21 1985-10-12 太陽誘電株式会社 Tape-shaped amorphous silicon solar cell
JPS60153554U (en) * 1984-03-21 1985-10-12 太陽誘電株式会社 Tape-shaped amorphous silicon solar cell
JPS61234574A (en) * 1985-04-05 1986-10-18 シーメンス・ソラー・インダストリエス・リミテッド・パートナーシップ Photocell unit and manufacture thereof
US4987297A (en) * 1988-03-14 1991-01-22 Gaz De France Method and apparatus for automatically reading a mechanical fluid meter
FR2713018A1 (en) * 1993-11-26 1995-06-02 Siemens Solar Gmbh Method for contacting thin-film solar cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524994A (en) * 1975-07-01 1977-01-14 Shinku Yakin Kk High temperature structure and high temperature heater composed of ta, nb,and their metals bearing alloy
JPS55120181A (en) * 1979-03-09 1980-09-16 Sanyo Electric Co Ltd Fabricating method of photovoltaic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524994A (en) * 1975-07-01 1977-01-14 Shinku Yakin Kk High temperature structure and high temperature heater composed of ta, nb,and their metals bearing alloy
JPS55120181A (en) * 1979-03-09 1980-09-16 Sanyo Electric Co Ltd Fabricating method of photovoltaic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153553U (en) * 1984-03-21 1985-10-12 太陽誘電株式会社 Tape-shaped amorphous silicon solar cell
JPS60153554U (en) * 1984-03-21 1985-10-12 太陽誘電株式会社 Tape-shaped amorphous silicon solar cell
JPS61234574A (en) * 1985-04-05 1986-10-18 シーメンス・ソラー・インダストリエス・リミテッド・パートナーシップ Photocell unit and manufacture thereof
US4987297A (en) * 1988-03-14 1991-01-22 Gaz De France Method and apparatus for automatically reading a mechanical fluid meter
FR2713018A1 (en) * 1993-11-26 1995-06-02 Siemens Solar Gmbh Method for contacting thin-film solar cells

Also Published As

Publication number Publication date
JPH0125234B2 (en) 1989-05-16

Similar Documents

Publication Publication Date Title
JPS5853870A (en) Thin film solar battery
US4849029A (en) Energy conversion structures
US4191794A (en) Integrated solar cell array
TW221525B (en)
US6211455B1 (en) Silicon thin-film, integrated solar cell, module, and methods of manufacturing the same
US5091018A (en) Tandem photovoltaic solar cell with III-V diffused junction booster cell
US4532371A (en) Series-connected photovoltaic array and method of making same
GB2023929A (en) Solar cell batteries
JPS61222181A (en) Manufacture of current collector grid and material therefor
US3493822A (en) Solid state solar cell with large surface for receiving radiation
US4252573A (en) Collector grid for CdS/CuS photovoltaic cells
JPS58155770A (en) Substrate for amorphous silicon solar cell
JP2000133828A (en) Thin-film solar cell and manufacture thereof
GB2108755A (en) Thin film devices having diffused interconnections
US5035753A (en) Photoelectric conversion device
JPH0456351U (en)
JP2002353478A (en) Solar battery cell and solar battery module using the same
JPS58196060A (en) Thin film semiconductor device
JPS5651880A (en) Amorphous semiconductor photocell
JPS61163671A (en) Thin-film solar cell
JPS62113483A (en) Thin-film solar cell
JPS58155771A (en) Substrate for thin-film solar cell
JPH06120533A (en) Thin film solar cell and manufacture thereof
JPS6322633B2 (en)
JPS639756B2 (en)