JPS58148367A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS58148367A
JPS58148367A JP3078782A JP3078782A JPS58148367A JP S58148367 A JPS58148367 A JP S58148367A JP 3078782 A JP3078782 A JP 3078782A JP 3078782 A JP3078782 A JP 3078782A JP S58148367 A JPS58148367 A JP S58148367A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
pressure reducing
cycle
reducing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3078782A
Other languages
Japanese (ja)
Other versions
JPS6343660B2 (en
Inventor
直樹 田中
正毅 池内
浜 宏明
正美 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3078782A priority Critical patent/JPS58148367A/en
Publication of JPS58148367A publication Critical patent/JPS58148367A/en
Publication of JPS6343660B2 publication Critical patent/JPS6343660B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、ヒートポンプ装置による冷暖曙時の冷媒循
環量の差を制御する装置を備えた冷暖房装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating and cooling system equipped with a device for controlling the difference in the amount of refrigerant circulated between cooling and heating by a heat pump device.

通常、冷凍サイクルでは蒸発温度によって適正冷媒流量
が異なり、蒸発温度が高くなるに伴ない大きな冷媒流量
が必要であるが、冷凍サイクルの減圧装置としてキャピ
ラリチューブを用いたものでは、その冷媒流量の調整幅
が小さく、蒸発温度が高いときには冷媒流量が不足し、
rA発器出口冷媒の過熱度が大きくなりすぎて圧縮機の
温度が上昇したり、蒸発温度が低いときには、冷媒流量
が過大(ニなって圧縮機に液もど龜)を生じたりするこ
とがある。従って、これらの問題へを解決するために第
1図に示すような冷凍サイクルが考えられる。すなわち
、第1図において、(l)は圧縮機、(21は凝縮器、
(3)は減圧装置で、第2図に示すように外管(31)
内に軸心部に冷媒通路(32)及び外周に小径のスパイ
ラル状溝(33)を有する内管(34)を嵌挿する。そ
して、スパイラル状溝(A3)及び冷媒流通路(32)
を互い≦:並列になるように入口管(35) (36)
及び出口管(37)を介して凝縮器(2)の出口及び後
述する蒸発器の入口に接続し1人口管(36)に電気式
膨張弁などの流量調整弁(39)を設けることにより構
成したものである。(4)は蒸発器で、これらの機器f
il〜(3)と順次接続され冷凍サイクルを形成してい
る。従って、圧縮機il+及び凝縮器(2)は通常の冷
凍サイクルと同様に作用するが、減圧装置(3)におい
ては凝縮器(2)から供給された液冷媒はスパイラル状
@ (33)を流通し、減圧され、蒸発器(4)で蒸発
して冷却作用をなroまた。凝縮器(2)が供給された
液冷媒の一部は流量調整弁(39)で減圧され、冷媒流
通路(32)内で蒸発してスパイラル状溝(,33)内
を流通する冷媒を冷却するので、スパイラル状溝(33
)内の冷媒流量は増大する。Cなわち。
Normally, in a refrigeration cycle, the appropriate refrigerant flow rate varies depending on the evaporation temperature, and as the evaporation temperature increases, a larger refrigerant flow rate is required.However, in a refrigeration cycle that uses a capillary tube as a pressure reducing device, the refrigerant flow rate can be adjusted. When the width is small and the evaporation temperature is high, the refrigerant flow rate is insufficient,
If the degree of superheating of the refrigerant at the rA generator outlet becomes too large and the compressor temperature rises, or if the evaporation temperature is low, the refrigerant flow rate may become excessive (resulting in liquid buildup in the compressor). . Therefore, in order to solve these problems, a refrigeration cycle as shown in FIG. 1 can be considered. That is, in FIG. 1, (l) is a compressor, (21 is a condenser,
(3) is a pressure reducing device, as shown in Figure 2, the outer tube (31)
An inner tube (34) having a refrigerant passage (32) at its axial center and a small diameter spiral groove (33) at its outer periphery is fitted inside. And a spiral groove (A3) and a refrigerant flow path (32)
Inlet pipes (35) (36) so that they are parallel to each other ≦:
It is connected to the outlet of the condenser (2) and the inlet of the evaporator (to be described later) via the outlet pipe (37), and is configured by providing a flow rate adjustment valve (39) such as an electric expansion valve in the single-portion pipe (36). This is what I did. (4) is an evaporator, and these equipment f
il~(3) are sequentially connected to form a refrigeration cycle. Therefore, the compressor il+ and the condenser (2) function in the same way as in a normal refrigeration cycle, but in the pressure reducing device (3), the liquid refrigerant supplied from the condenser (2) flows in a spiral shape @ (33). Then, the pressure is reduced and evaporation occurs in the evaporator (4) to provide a cooling effect. A part of the liquid refrigerant supplied to the condenser (2) is depressurized by the flow rate adjustment valve (39), evaporates in the refrigerant flow path (32), and cools the refrigerant flowing in the spiral groove (, 33). Therefore, the spiral groove (33
) increases. C that is.

スパイラル状溝(33ン内で発生している冷媒の2相流
中のガス含有量が冷却量が多くなるにしたがって少なく
な各)、流体抵抗が減少するためである。
This is because the gas content in the two-phase flow of refrigerant occurring in the spiral groove decreases as the amount of cooling increases.This is because the fluid resistance decreases.

従って、流量調整弁(39)の開度な調整すれば冷却量
を変えることができる゛ので1例えば蒸発器(4)の出
入口の温度を検出し、蒸発器+41の出口温度がその入
口温度よりも常に少し高くなるように流量調整弁(39
)を制御すると蒸発器(4)出口で冷媒が完全にガス化
してわずかに過熱度がつき、常(二適正な冷媒流量が冷
凍サイクル内を循環させることができる・ ところで、冷房サイクルと暖房サイクルとではその能力
が異なり、冷房サイグル時の冷媒循環量を多くとる必要
がある。つまI]、冷房サイクル時にはスパイラル状溝
(33)を短かく、暖房サイクル時は長くとる必要があ
るため上述した減圧装置(3)を用いてヒートポンプ式
冷暖房サイクルを構成する場合、冷房用及び暖房用減圧
装置を用意し、互いに並列接続して冷房サイクルで使い
分ければよいが、容置の異なる減圧装置を2個製作しな
ければならず、また装置としても大形g二なる。従って
冷房及び暖房兼用の減圧装置にすることが要求されるが
、上述したようにスパイラル状溝(3A)内を流れる冷
媒流量を冷却量によって制御する減圧装置では、冷房サ
イクル時(:おけるスパイラル状溝(33)の長さによ
ってその要量を選定するため暖房サイクル時には冷媒流
量が過大(二なり圧縮機への液ハックが生じてしまう欠
点がある。
Therefore, the amount of cooling can be changed by adjusting the opening of the flow rate regulating valve (39).1 For example, the temperature at the inlet and outlet of the evaporator (4) is detected, and the outlet temperature of the evaporator +41 is higher than the inlet temperature. The flow rate adjustment valve (39
), the refrigerant is completely gasified at the outlet of the evaporator (4) and slightly superheated, allowing the refrigerant to circulate within the refrigeration cycle at a constant (2) appropriate flow rate.By the way, the cooling cycle and heating cycle The capacity is different between the two types, and it is necessary to increase the amount of refrigerant circulation during the cooling cycle.The spiral groove (33) needs to be short during the cooling cycle and long during the heating cycle. When configuring a heat pump air-conditioning cycle using a pressure reducing device (3), it is sufficient to prepare a cooling and a heating pressure reducing device, connect them in parallel, and use them separately in the cooling cycle. It has to be manufactured individually, and the device is also large in size. Therefore, it is required to have a pressure reducing device that can be used for both cooling and heating, but as mentioned above, the flow rate of refrigerant flowing in the spiral groove (3A) In a pressure reducing device that controls the amount of refrigerant by the amount of cooling, the required amount is selected depending on the length of the spiral groove (33) during the cooling cycle. There are drawbacks that arise.

この発明は、上記欠点を除去すべくなされたもので、以
下、この発明の一実施例を1s3図C″−基づき説明す
る。同図において、 (100)ハ圧縮機、(101)
は四方切換弁、 (102)は外気と熱交換する非利用
側熱交換器、  (103)は水と熱交換する利用側熱
交換器、(104)は非利用側及び利用側熱交換器(1
02) (103)の間に設けられた減圧装置で、第1
図に示した減圧装置(3)と同様に構成されているが、
流量調整弁(39)は外気温及び利用側熱交換器(10
3)の出口水温の検出信号に基づき制御される。
This invention has been made to eliminate the above-mentioned drawbacks, and one embodiment of the invention will be described below based on Figure 1s3 C″. In the same figure, (100) C compressor, (101)
is a four-way switching valve, (102) is a non-use side heat exchanger that exchanges heat with outside air, (103) is a use side heat exchanger that exchanges heat with water, (104) is a non-use side heat exchanger and a user side heat exchanger ( 1
02) A pressure reducing device installed between (103) and the first
It has the same structure as the pressure reducing device (3) shown in the figure, but
The flow rate adjustment valve (39) is connected to the outside temperature and the user side heat exchanger (10).
3) It is controlled based on the detection signal of the outlet water temperature.

(105) (106)はそれぞれ非利用側及び利用側
熱交換器(102) (103)から減圧装置(104
)の入口f(35)へのみ流通を許容する第1および第
2の逆止弁、 (107) (108)は減圧装置(1
04)の出口管(37)から利用側及び非利用側熱交換
器(103) (102)へのみ流通を許容する第3及
び第4の逆止弁、(109)は逆止弁(108)の出口
管(40)と非利用側熱交換器(102)の人口とに接
続されるキャピラリチューブである。
(105) (106) are respectively connected to the non-use side and the use side heat exchangers (102) (103) to the pressure reducing device (104).
), the first and second check valves (107) and (108) allow flow only to the inlet f(35) of the pressure reducing device (1
04) third and fourth check valves that allow flow only from the outlet pipe (37) to the use side and non-use side heat exchangers (103) (102), (109) is the check valve (108) It is a capillary tube connected to the outlet pipe (40) of the heat exchanger (102) on the non-use side.

また1図中実線矢印は暖房サイクル、点線矢印は冷房サ
イクル時の冷媒の流通方向を示す。
Further, in FIG. 1, solid line arrows indicate the heating cycle, and dotted line arrows indicate the flow direction of the refrigerant during the cooling cycle.

まず、暖房サイクル時においては、利用側熱交換器(t
03)が凝縮器として作用し水を加熱すると共に冷媒は
凝縮液化する。そして液冷媒は第2の逆止弁(106)
 、スパイラル状溝(33) 、及び第4の逆止弁(1
08)とキャピラリチューブ(109)な経て非利用側
熱交換器(102)に至1】、ここで蒸発して圧縮機(
100)に戻る。一方、利用側熱交換器(103)から
の液冷媒の一部は第1図のものと同様流量調整弁(39
)を経てスパイラル状溝(33)内を流通する冷媒を冷
却して冷媒流量を適正に制御する。このとき流量調整弁
(39)には外気温度及び水温の検出信号に基づき演算
された電圧を印加し、弁開度を決定する。これは外気温
及び水温によって冷暖房能力が決められることによるも
のである。また。
First, during the heating cycle, the user side heat exchanger (t
03) acts as a condenser and heats the water, and the refrigerant is condensed and liquefied. Then, the liquid refrigerant is transferred to the second check valve (106).
, a spiral groove (33), and a fourth check valve (1
08) and the capillary tube (109) to the non-use side heat exchanger (102)1], where it is evaporated and sent to the compressor (1).
Return to 100). On the other hand, a part of the liquid refrigerant from the user side heat exchanger (103) flows through the flow rate adjustment valve (39) similar to that in Fig. 1.
) to appropriately control the refrigerant flow rate by cooling the refrigerant flowing through the spiral groove (33). At this time, a voltage calculated based on the outside air temperature and water temperature detection signals is applied to the flow rate adjustment valve (39) to determine the valve opening degree. This is because the heating and cooling capacity is determined by the outside air temperature and water temperature. Also.

冷房サイクル時においては暖房サイグルとは逆サイクル
になるため非利用熱交換器(102)からの液冷媒は第
1の逆止弁(105)を経て暖房時同様減圧装置(10
4)を流通し、第3の逆止弁(107)を経て利用側熱
交換器(103)に至り水を冷却する。
During the cooling cycle, the cycle is reverse to that of the heating cycle, so the liquid refrigerant from the unused heat exchanger (102) passes through the first check valve (105) and enters the pressure reducing device (10) as in the heating cycle.
4), passes through the third check valve (107), reaches the user-side heat exchanger (103), and cools the water.

上述したように減圧装置(104)は冷房サイクルに合
せて選定しているが、暖房時にはキャピラリチューブ(
109)を通してさらに減圧され、利用側熱交換器(1
02)へ供給されるので冷媒流量は過大になることはな
く、従って圧縮機への液パツクな防止することができる
As mentioned above, the pressure reducing device (104) is selected according to the cooling cycle, but during heating the capillary tube (104) is selected according to the cooling cycle.
The pressure is further reduced through the heat exchanger (109) on the user side (109), and the pressure is further reduced through the heat exchanger (109).
02), the flow rate of the refrigerant will not become excessive, and therefore, liquid leakage to the compressor can be prevented.

なお減圧装置として第4図に示すように外管(31)内
にキャピラリチューブ(33)をコイル巻さして挿入し
てスパイラル状溝の代用とし、キャピラリチューブ(あ
)の周囲に流量調整弁(39)で減圧された冷媒を流通
させるようにしても同様の効果がある。
As a pressure reducing device, as shown in Fig. 4, a capillary tube (33) is coiled and inserted into the outer tube (31) as a substitute for the spiral groove, and a flow rate regulating valve (39) is installed around the capillary tube (A). ) A similar effect can be obtained by circulating refrigerant under reduced pressure.

以上のよう(=この発明では、液冷媒の一部を利用して
減圧部を流通する冷媒の流量を制御するように構成した
減圧装置とキャピラリチューブを直列に設け、冷舅サイ
クル時には減圧装置のみ冷媒流通させ、暖房サイクル時
には減圧装置とキャピラリチューブとを直流に流通させ
ることにより冷暖房共に適正冷媒流量が確保できる。
As described above (= in this invention, a pressure reducing device configured to control the flow rate of refrigerant flowing through a pressure reducing section using a part of the liquid refrigerant and a capillary tube are installed in series, and only the pressure reducing device is used during the cooling cycle). By circulating the refrigerant and direct current flowing through the pressure reducing device and the capillary tube during the heating cycle, an appropriate flow rate of the refrigerant can be ensured for both cooling and heating.

また、減圧装置にキャピラリチューブを追加するだけで
よいためその構成も簡単にな1)、安価で信頼性の高い
冷暖房運転を実現できるヒートポンプ式冷暖51装置を
提供することができる。
In addition, since it is only necessary to add a capillary tube to the decompression device, its configuration is simplified (1), and it is possible to provide a heat pump type cooling/heating device 51 that can realize inexpensive and highly reliable heating and cooling operations.

【図面の簡単な説明】[Brief explanation of the drawing]

is1図は冷凍サイクル図、第2図は第1図の冷凍サイ
クルに用いられる減圧装置の構成図、第3図はこの発明
の一実施例を示すと一トポンプサイクル図、第4図はこ
の発明の他の実施例を示す減圧装置の構成図である。 なお図中同一符号は同一または相当部分を示す。 図中、 (100)は圧縮機、 (101)は四方切換
弁。 (102) (103)は非利用側及び利用側熱交換器
、(104)は減圧装置、 (105)〜(108)は
第1乃至第4の逆止弁、  (109)はキャピラリチ
ューブである。 代理人 葛野信−
is1 is a refrigeration cycle diagram, FIG. 2 is a configuration diagram of a pressure reducing device used in the refrigeration cycle of FIG. 1, FIG. 3 is a pump cycle diagram showing one embodiment of this invention, and FIG. It is a block diagram of the pressure reduction apparatus which shows another Example. Note that the same reference numerals in the figures indicate the same or corresponding parts. In the figure, (100) is a compressor, and (101) is a four-way switching valve. (102) (103) is the non-use side and use side heat exchanger, (104) is the pressure reducing device, (105) to (108) are the first to fourth check valves, and (109) is the capillary tube. . Agent Makoto Kuzuno

Claims (1)

【特許請求の範囲】 液冷媒の一部を利用して減圧部を流通する冷媒の冷却量
を!1liEL、上記減圧部を流通する冷媒流量を制御
する減圧装置の出口と非利用側熱交換器を接続する流路
にキャピラリチューブを挿入し。 暖房サイクル時には、減圧装置とキャピラリチューブを
作用させ、冷房サイクル時には上記減圧装置のみを作用
させるように構成したことを特徴とするヒートポンプ式
冷暖愕装置。
[Claims] A portion of the liquid refrigerant is used to reduce the amount of cooling of the refrigerant flowing through the decompression section! 1liEL, a capillary tube is inserted into the flow path connecting the outlet of the pressure reduction device that controls the flow rate of refrigerant flowing through the pressure reduction section and the non-use side heat exchanger. A heat pump cooling/warming device characterized in that a pressure reducing device and a capillary tube are operated during a heating cycle, and only the pressure reducing device is operated during a cooling cycle.
JP3078782A 1982-02-25 1982-02-25 Heat pump type air conditioner Granted JPS58148367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3078782A JPS58148367A (en) 1982-02-25 1982-02-25 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078782A JPS58148367A (en) 1982-02-25 1982-02-25 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS58148367A true JPS58148367A (en) 1983-09-03
JPS6343660B2 JPS6343660B2 (en) 1988-08-31

Family

ID=12313377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078782A Granted JPS58148367A (en) 1982-02-25 1982-02-25 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS58148367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040541A (en) * 1983-08-12 1985-03-02 Matsushita Electric Ind Co Ltd Molding device of digital signal recording and reproducing disk
WO2020152873A1 (en) * 2019-01-25 2020-07-30 株式会社オガワクリーンシステム Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172257U (en) * 1974-12-02 1976-06-07
US4019337A (en) * 1974-10-23 1977-04-26 Zearfoss Jr Elmer W Refrigeration apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019337A (en) * 1974-10-23 1977-04-26 Zearfoss Jr Elmer W Refrigeration apparatus and method
JPS5172257U (en) * 1974-12-02 1976-06-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040541A (en) * 1983-08-12 1985-03-02 Matsushita Electric Ind Co Ltd Molding device of digital signal recording and reproducing disk
WO2020152873A1 (en) * 2019-01-25 2020-07-30 株式会社オガワクリーンシステム Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger, and refrigeration cycle

Also Published As

Publication number Publication date
JPS6343660B2 (en) 1988-08-31

Similar Documents

Publication Publication Date Title
US4316366A (en) Method and apparatus for integrating components of a refrigeration system
US4621501A (en) Refrigeration system having auxiliary cooling for control of coolant flow
JPH09119749A (en) Air conditioner
JPS58148367A (en) Heat pump type air conditioner
US4357805A (en) Method for integrating components of a refrigeration system
JP2800428B2 (en) Air conditioner
JPS6352304B2 (en)
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPS6340764Y2 (en)
JPS6322464Y2 (en)
JPS6018757Y2 (en) air conditioner
JPS6322463Y2 (en)
JPS5849863A (en) Refrigerating cycle of heat pump type hot-water supply machine
JPS60248972A (en) Heat pump type air conditioner
JPS5969663A (en) Refrigeration cycle
JPS5918349A (en) Heat pump system separation type air conditioner
JP2024087523A (en) Air conditioners
JPS5984052A (en) Method of controlling capability of refrigerator
JPS63187058A (en) Refrigerator
JPS5848823B2 (en) Heat recovery air conditioner
JPS6015084Y2 (en) Refrigeration equipment
JPH0113972Y2 (en)
JPS61259064A (en) Heat pump air conditioner
JPS6157978B2 (en)
JPH0246862B2 (en)