JPH0246862B2 - - Google Patents

Info

Publication number
JPH0246862B2
JPH0246862B2 JP57030786A JP3078682A JPH0246862B2 JP H0246862 B2 JPH0246862 B2 JP H0246862B2 JP 57030786 A JP57030786 A JP 57030786A JP 3078682 A JP3078682 A JP 3078682A JP H0246862 B2 JPH0246862 B2 JP H0246862B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
pressure reducing
reducing device
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57030786A
Other languages
Japanese (ja)
Other versions
JPS58148359A (en
Inventor
Naoki Tanaka
Masaki Ikeda
Hiroaki Hama
Masami Imanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57030786A priority Critical patent/JPS58148359A/en
Publication of JPS58148359A publication Critical patent/JPS58148359A/en
Publication of JPH0246862B2 publication Critical patent/JPH0246862B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は冷媒循環量を制御する装置を備えた
冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system equipped with a device for controlling the amount of refrigerant circulated.

通常、冷凍サイクルでは蒸発温度によつて適正
冷媒流量が異なり、蒸発温度が高くなるに伴い大
きな冷媒流量が必要であるが、冷凍サイクルの減
圧装置としてキヤピラリチユーブを用いたもので
は、その冷媒流量の調整幅が小さく蒸発温度が高
いときには冷媒流量が不足し、蒸発器出口冷媒の
過熱度が大きくなりすぎて圧縮機の温度が上昇し
たり、蒸発温度が低いときには、冷媒流量が過大
になつて圧縮機に液もどりを生じたりすることが
ある。従つて、これらの問題点を解決するために
第1図に示すような冷凍サイクルが考えられる。
すなわち、第1図において、1は圧縮機、2は凝
縮器、3は減圧装置で、第2図に示すように外管
31内に軸心部に冷媒流通路32及び外周に外径
のスパイラル状溝33を有する内管34を嵌挿す
る。そして、スパイラル状溝33及び冷媒流通路
32を互いに並列になるように入口管35,36
及び出口管37を介して凝縮器2の出口及び後述
する蒸発器4の入口に接続し、入口管36に電気
式膨脹弁などの流量調整弁39を設けることによ
り構成したものである。4は蒸発器で、これらの
機器1〜3を順次接続され冷凍サイクルを形成し
ている。従つて、圧縮機1及び凝縮器2は通常の
冷凍サイクルと同様に作用するが、減圧装置3に
おいては凝縮器2から供給された液冷媒はスパイ
ラル状溝33を流通し、減圧され、蒸発器4で蒸
発して冷却作用をなす。また、凝縮器2から供給
された液冷媒の一部は流量調整弁39で減圧さ
れ、冷媒流通路32内で蒸発してスパイラル状溝
33内を流通する冷媒を冷却するので、スパイラ
ル状溝33内の冷媒流量は増大する。すなわち、
スパイラル状溝33内で発生している冷媒の2相
流中のガス含有量が冷却量が多くなるにしたがつ
て少なくなり、流体抵抗が減少するためである。
従つて、流量調整弁39の開度を調整すれば冷却
量を変えることができるので、例えば蒸発器4の
出入口の温度を検出し、蒸発器4の出口温度がそ
の入口温度よりも常に少し高くなるように流量調
整弁39を制御すると蒸発器4出口で冷媒が完全
にガス化してわずかに過熱度がつき、常に適正な
冷媒流量が冷凍サイクル内を循環させることがで
きる。
Normally, in a refrigeration cycle, the appropriate refrigerant flow rate varies depending on the evaporation temperature, and as the evaporation temperature increases, a larger refrigerant flow rate is required. When the adjustment width is small and the evaporation temperature is high, the refrigerant flow rate is insufficient, and the degree of superheating of the refrigerant at the evaporator outlet becomes too large, causing the compressor temperature to rise, and when the evaporation temperature is low, the refrigerant flow rate becomes excessive. This may cause liquid backlog in the compressor. Therefore, in order to solve these problems, a refrigeration cycle as shown in FIG. 1 can be considered.
That is, in FIG. 1, 1 is a compressor, 2 is a condenser, and 3 is a pressure reducing device, and as shown in FIG. An inner tube 34 having a shaped groove 33 is inserted thereinto. Then, the inlet pipes 35 and 36 are arranged so that the spiral groove 33 and the refrigerant flow passage 32 are parallel to each other.
The inlet pipe 36 is connected to the outlet of the condenser 2 and the inlet of the evaporator 4 (described later) via an outlet pipe 37, and the inlet pipe 36 is provided with a flow rate regulating valve 39 such as an electric expansion valve. 4 is an evaporator, and these devices 1 to 3 are sequentially connected to form a refrigeration cycle. Therefore, the compressor 1 and the condenser 2 function in the same manner as in a normal refrigeration cycle, but in the pressure reducing device 3, the liquid refrigerant supplied from the condenser 2 flows through the spiral groove 33, is depressurized, and then passes through the evaporator. 4, it evaporates and has a cooling effect. Further, a part of the liquid refrigerant supplied from the condenser 2 is depressurized by the flow rate adjustment valve 39 and evaporates in the refrigerant flow path 32 to cool the refrigerant flowing in the spiral groove 33. The flow rate of refrigerant within increases. That is,
This is because the gas content in the two-phase flow of refrigerant generated within the spiral groove 33 decreases as the amount of cooling increases, and fluid resistance decreases.
Therefore, the amount of cooling can be changed by adjusting the opening degree of the flow rate regulating valve 39. For example, by detecting the temperature at the inlet and outlet of the evaporator 4, the outlet temperature of the evaporator 4 is always slightly higher than the inlet temperature. If the flow rate adjustment valve 39 is controlled so that the refrigerant is completely gasified at the outlet of the evaporator 4 and slightly superheated, an appropriate refrigerant flow rate can always be circulated within the refrigeration cycle.

ところでこのような装置を大形の冷凍装置に用
いる場合には、冷媒流量が大きくなるために大形
の減圧装置及び流量調整弁を必要とし、製造コス
トが高くなつたり、設置スペースが大きくなるな
どの欠点があつた。
By the way, when such a device is used in a large refrigeration system, the refrigerant flow rate becomes large, so a large pressure reducing device and flow rate adjustment valve are required, which increases manufacturing costs and requires a large installation space. There were some shortcomings.

この発明は、上記欠点を除去すべくなされたも
ので、凝縮器出口管と蒸発器入口管とを接続する
キヤピラリーチユーブを流量調整弁の入口側と減
圧装置の出口側に接続することにより、小形で安
価な冷凍装置を得ることを目的としている。
This invention was made to eliminate the above-mentioned drawbacks, and by connecting the capillary reach tube that connects the condenser outlet pipe and the evaporator inlet pipe to the inlet side of the flow rate regulating valve and the outlet side of the pressure reducing device, The aim is to obtain a small and inexpensive refrigeration device.

以下、この発明の実施例を図面に基づいて説明
する。第3図において、1は圧縮機、2は凝縮
器、3は減圧装置、4は蒸発器、35,36,3
7は配管、39は流量調整弁で以上は第1図の従
来装置と同一である。40は本発明にかかるキヤ
ピラリチユーブである。このキヤピラリチユーブ
40は、流量調整弁39の入口側および減圧装置
3の出口側に接続されている。
Embodiments of the present invention will be described below based on the drawings. In Fig. 3, 1 is a compressor, 2 is a condenser, 3 is a pressure reducing device, 4 is an evaporator, 35, 36, 3
7 is a pipe, and 39 is a flow rate regulating valve, which are the same as the conventional device shown in FIG. 40 is a capillary tube according to the present invention. This capillary tube 40 is connected to the inlet side of the flow rate regulating valve 39 and the outlet side of the pressure reducing device 3.

以上のように構成された冷凍装置においては、
冷媒流量の一部がキヤピラリーチユーブ40で制
御され、残りの冷媒が流量調整弁39と減圧装置
3で制御されるため、大形の冷凍装置においても
小容量の流量調整弁39と小形の減圧装置3とで
冷媒流量を適正に制御できる。
In the refrigeration system configured as above,
A part of the refrigerant flow rate is controlled by the capillary reach tube 40, and the remaining refrigerant is controlled by the flow rate adjustment valve 39 and the pressure reducing device 3. Therefore, even in a large refrigeration system, a small capacity flow rate adjustment valve 39 and a small pressure reducing device are used. With the device 3, the refrigerant flow rate can be appropriately controlled.

また、冷凍装置の容量が異なるものに対して
も、キヤピラリチユーブ40の抵抗を変えるだけ
で適用することができる。
Furthermore, the present invention can be applied to refrigeration systems with different capacities by simply changing the resistance of the capillary tube 40.

さらに、第4図のように毛細管の入口に電磁弁
41を設けて、冷凍装置の必要冷媒流量が少ない
ときには、この電磁弁41を閉じ、流量調整弁3
9と減圧装置3のみで冷媒流量を制御する。
Furthermore, as shown in FIG. 4, a solenoid valve 41 is provided at the inlet of the capillary tube, and when the required refrigerant flow rate of the refrigeration system is small, this solenoid valve 41 is closed and the flow rate regulating valve 3 is closed.
9 and the pressure reducing device 3 alone control the refrigerant flow rate.

また必要冷媒流量が多いときには、電磁弁41
を開放し、キヤピラリチユーブ40と流量調整弁
39、減圧装置3の両方に冷媒を流して流量を制
御すれば大形冷凍装置のなめらかな流量制御が実
現できる。
Also, when the required refrigerant flow rate is large, the solenoid valve 41
By opening the refrigerant and controlling the flow rate by flowing the refrigerant through both the capillary tube 40, the flow rate adjustment valve 39, and the pressure reducing device 3, smooth flow control of a large refrigeration system can be realized.

またこの電磁弁41とキヤピラリチユーブ40
の組は1ケに限ることなく複数個にすればさらに
なめらかな制御が実現できる。
Also, this solenoid valve 41 and capillary tube 40
The number of sets is not limited to one, but more smooth control can be achieved by using a plurality of sets.

なお、減圧装置を第5図に示すように外管31
内に、キヤピラリチユーブ33をコイル巻きして
挿入して、スパイラル状溝の代用とし、キヤピラ
リチユーブ33の周囲に流量調整弁39で減圧さ
れた冷媒を流通させるようにしても同様の効果が
ある。
Note that the pressure reducing device is connected to the outer tube 31 as shown in FIG.
The same effect can be obtained by inserting a capillary tube 33 in a coiled manner as a substitute for the spiral groove, and allowing the refrigerant depressurized by the flow rate adjustment valve 39 to flow around the capillary tube 33. be.

又上記実施例は、簡単な冷凍装置について示し
たが、このような冷凍装置以外に、第6図又は第
7図に示すように、室内、外熱交換器8,9逆止
弁10、四方切換弁11などを備えたヒートポン
プサイクルや多段冷凍サイクル、多段カスケード
冷媒サイクルなど、他の冷凍サイクルなどにも適
用でき、しかも油分離器、乾燥器、アキユムレー
タなどの補機を備えたものについても同様の効果
を奏する。
Further, although the above embodiments have been described with respect to a simple refrigeration system, in addition to such a refrigeration system, as shown in FIG. 6 or FIG. It can be applied to other refrigeration cycles such as heat pump cycles, multistage refrigeration cycles, and multistage cascade refrigerant cycles equipped with switching valves 11, etc., and can also be applied to those equipped with auxiliary equipment such as oil separators, dryers, and accumulators. It has the effect of

以上のようにこの発明では各々が互いに接続さ
れた冷媒流通路とスパイラル状通路を有する減圧
装置と、この減圧装置に接続され冷媒流通路内の
冷媒を減圧してスパイラル状通路内の冷媒を冷却
する流量調整弁とを備え、この流量調整弁の入口
側および減圧装置の出口側にキヤピラリチユーブ
を接続したことにより、冷媒の流量制御範囲を拡
大することができ、安価な流量調整弁および減圧
装置で大形の冷凍装置のなめらかな流量制御が得
られる効果がある。
As described above, the present invention includes a pressure reducing device having a refrigerant flow passage and a spiral passage, each of which is connected to the other, and a pressure reduction device connected to the pressure reduction device to reduce the pressure of the refrigerant in the refrigerant flow passage to cool the refrigerant in the spiral passage. By connecting a capillary tube to the inlet side of this flow rate adjustment valve and the outlet side of the pressure reducing device, the refrigerant flow control range can be expanded, making it possible to use an inexpensive flow rate adjustment valve and pressure reduction device. This device has the effect of providing smooth flow control for large refrigeration equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍サイクル図、第2図は第1
図の冷凍サイクルに用いられる減圧装置の構成
図、第3図はこの発明の一実施例を示す冷凍サイ
クル図、第4図〜第7図はこの発明の他の実施例
を示す図である。 図中、1は圧縮機、2は凝縮器、3は減圧装
置、39は流量調整弁、40はキヤピラリチユー
ブ、41は電磁弁である。なお、図中同一符号は
同一又は相当部分を示す。
Figure 1 is a conventional refrigeration cycle diagram, Figure 2 is a diagram of a conventional refrigeration cycle.
FIG. 3 is a refrigeration cycle diagram showing one embodiment of the present invention, and FIGS. 4 to 7 are diagrams showing other embodiments of the present invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is a pressure reducing device, 39 is a flow rate adjustment valve, 40 is a capillary tube, and 41 is a solenoid valve. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 各々が互いに並列に接続された冷媒流通路と
この冷媒流通路の外周を囲むスパイラル状通路と
を有する減圧装置と、 上記冷媒流通路に接続され上記冷媒流通路内の
冷媒を減圧して蒸発させ上記スパイラル状通路内
の冷媒と熱交換させて冷却する流量調整弁とを備
え、上記流量調整弁の入口側と上記減圧装置の出
口側との間にキヤピラリーチユーブを接続したこ
とを特徴とする冷凍装置。
[Scope of Claims] 1. A pressure reducing device having a refrigerant flow passage connected in parallel to each other and a spiral passage surrounding the outer periphery of the refrigerant flow passage; A flow rate regulating valve is provided for cooling the refrigerant by reducing the pressure and evaporating the refrigerant and exchanging heat with the refrigerant in the spiral passage, and a capillary reach tube is provided between the inlet side of the flow rate regulating valve and the outlet side of the pressure reducing device. A refrigeration device characterized in that:
JP57030786A 1982-02-25 1982-02-25 Refrigerator Granted JPS58148359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030786A JPS58148359A (en) 1982-02-25 1982-02-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030786A JPS58148359A (en) 1982-02-25 1982-02-25 Refrigerator

Publications (2)

Publication Number Publication Date
JPS58148359A JPS58148359A (en) 1983-09-03
JPH0246862B2 true JPH0246862B2 (en) 1990-10-17

Family

ID=12313347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030786A Granted JPS58148359A (en) 1982-02-25 1982-02-25 Refrigerator

Country Status (1)

Country Link
JP (1) JPS58148359A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817981B2 (en) * 1999-08-06 2006-09-06 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345874U (en) * 1976-09-22 1978-04-19
JPS5523153U (en) * 1978-08-01 1980-02-14

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361758U (en) * 1976-10-27 1978-05-25
JPS5365053U (en) * 1976-11-05 1978-06-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345874U (en) * 1976-09-22 1978-04-19
JPS5523153U (en) * 1978-08-01 1980-02-14

Also Published As

Publication number Publication date
JPS58148359A (en) 1983-09-03

Similar Documents

Publication Publication Date Title
US8136364B2 (en) Refrigerant system with expansion device bypass
US4316366A (en) Method and apparatus for integrating components of a refrigeration system
US4563879A (en) Heat pump with capillary tube-type expansion device
US4621501A (en) Refrigeration system having auxiliary cooling for control of coolant flow
JPH086986B2 (en) Refrigerant expansion device
WO2005019737A2 (en) Multizone air-conditioning system with a single frequency compressor
JPH0224220A (en) Air conditioner for automobile
JPH0246862B2 (en)
US4357805A (en) Method for integrating components of a refrigeration system
JPH0420749A (en) Air conditioner
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JPS6343660B2 (en)
JPS63251760A (en) Refrigerator
JP7450772B2 (en) Refrigeration cycle equipment
JPS6352304B2 (en)
JPS6322463Y2 (en)
JPS6322464Y2 (en)
JPS604039Y2 (en) air conditioner
JPS6058382B2 (en) Refrigeration equipment
JPS6058381B2 (en) flow control device
JPS6340764Y2 (en)
JPS6257905B2 (en)
JPS5969663A (en) Refrigeration cycle
JPS6222391B2 (en)
JPS63290368A (en) Heat pump type air conditioner