JPS6058382B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS6058382B2
JPS6058382B2 JP12748581A JP12748581A JPS6058382B2 JP S6058382 B2 JPS6058382 B2 JP S6058382B2 JP 12748581 A JP12748581 A JP 12748581A JP 12748581 A JP12748581 A JP 12748581A JP S6058382 B2 JPS6058382 B2 JP S6058382B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure reducing
reducing device
flow rate
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12748581A
Other languages
Japanese (ja)
Other versions
JPS5828961A (en
Inventor
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12748581A priority Critical patent/JPS6058382B2/en
Priority to KR1019820003425A priority patent/KR840000779A/en
Priority to DE19823229779 priority patent/DE3229779A1/en
Priority to AU87108/82A priority patent/AU556283B2/en
Publication of JPS5828961A publication Critical patent/JPS5828961A/en
Priority to US06/604,416 priority patent/US4621501A/en
Publication of JPS6058382B2 publication Critical patent/JPS6058382B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 この発明は、冷媒の潜熱を利用する蒸気圧縮式の冷凍装
置に係り、特にその冷媒の流量制御装置−の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor compression type refrigeration system that utilizes the latent heat of a refrigerant, and particularly relates to an improvement of a refrigerant flow rate control device.

第1図は従来の冷凍装置の冷媒サイクルの一例を示す図
てあり、また第2図は減圧装置の構造を示している。
FIG. 1 shows an example of a refrigerant cycle of a conventional refrigeration system, and FIG. 2 shows the structure of a pressure reducing device.

第1図において、1は圧縮機、2は凝縮器、3は毛細管
、4は蒸発器であり、これら。は順次連通して、冷凍装
置を構成している。また5は流量調整弁、6は弁リフト
調整装置、7は熱交換部である。第2図において、3は
毛細管、8はパイプ、9は断熱材である。このような従
来の冷凍装置においては、圧縮機1で高温高圧となつた
冷媒ガスは凝縮器2で冷却されて液化し、毛細管による
減圧装置3で低温低圧になつて蒸発器4に導かれる。
In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a capillary tube, and 4 is an evaporator. are connected sequentially to form a refrigeration system. Further, 5 is a flow rate adjustment valve, 6 is a valve lift adjustment device, and 7 is a heat exchange section. In FIG. 2, 3 is a capillary tube, 8 is a pipe, and 9 is a heat insulating material. In such a conventional refrigeration system, refrigerant gas that has become high temperature and high pressure in the compressor 1 is cooled and liquefied in the condenser 2, becomes low temperature and low pressure in the capillary pressure reducing device 3, and is guided to the evaporator 4.

そして、蒸発器4内では冷媒液がガス化する際に、周囲
から吸熱して冷凍を行う。この後、冷媒ガスは圧縮機1
に吸入される。このような冷凍装置では、蒸発温度によ
つて適”正冷媒流量が異なり、通常は蒸発温度が高くな
るにつれて大きな冷媒流量が必要であることが知られて
いる。
When the refrigerant liquid is gasified in the evaporator 4, it absorbs heat from the surroundings and performs freezing. After this, the refrigerant gas is transferred to the compressor 1
is inhaled. It is known that in such a refrigeration system, the appropriate flow rate of refrigerant varies depending on the evaporation temperature, and normally, as the evaporation temperature increases, a larger flow rate of refrigerant is required.

そこでたとえば、蒸発器出入口の温度を測定して、蒸発
器の出口温度が入口の温度より少し高くなるように、つ
まり蒸発器出口で冷媒が完全にガス化してわずかに過熱
度がつくように毛細管の冷却量を調整すれば、常に適正
な冷媒流量が維持される。ところでこの冷却量と冷媒流
量の関係は第3図に示すように、冷却量が大きくなるに
従つて冷媒流量が増大する。
For example, the temperature at the evaporator inlet and outlet is measured, and the capillary tube is adjusted so that the evaporator outlet temperature is slightly higher than the inlet temperature, that is, the refrigerant is completely gasified at the evaporator outlet and slightly superheated. By adjusting the amount of cooling, an appropriate refrigerant flow rate can be maintained at all times. By the way, as shown in FIG. 3, the relationship between the cooling amount and the refrigerant flow rate is such that as the cooling amount increases, the refrigerant flow rate increases.

これは、毛細管の中て発生している冷媒の2相流中のガ
ス含有量が、冷却量が多くなるに従つて少なくなるため
流体抵抗が減少して冷媒流量が増加するためである。こ
の特性を利用して、従来の装置では、たとえば蒸発器4
出入口の温度をもとに弁リフト制御装置6により流量調
整弁5の弁リフトを制御して凝縮器からの冷媒の流量を
調整し、低温となつた冷媒が熱交換器部7で毛細管3内
の冷媒を冷却するその冷却量を増減することで、毛細管
を通る冷媒の流量を制御していた。従来の冷凍装置は以
上のように構成されていたが、毛細管3をコイル状に巻
いてバイブ8に装着し、さらに凝縮器出口バイブ、蒸発
器入口バイブへは異径管で接続するため、バイブを絞る
などの手間もかかり製作が面倒であつた。
This is because the gas content in the two-phase flow of refrigerant generated in the capillary tube decreases as the amount of cooling increases, so fluid resistance decreases and the refrigerant flow rate increases. Utilizing this characteristic, in conventional equipment, for example, the evaporator 4
Based on the temperature at the inlet and outlet, the valve lift control device 6 controls the valve lift of the flow rate adjustment valve 5 to adjust the flow rate of the refrigerant from the condenser, and the cooled refrigerant is passed through the heat exchanger section 7 into the capillary tube 3. The flow rate of the refrigerant through the capillary was controlled by increasing or decreasing the amount of cooling the refrigerant. Conventional refrigeration equipment was constructed as described above, but the capillary tube 3 is coiled and attached to the vibrator 8, and the condenser outlet vibrator and evaporator inlet vibrator are connected to the condenser outlet vibrator and evaporator inlet vibrator with different diameter tubes. The production was troublesome as it took a lot of time and effort to narrow down the parts.

しかも毛細管3とバイブ8との接触が不十分となつて、
十分な性能がでない場合もあつた。また、毛細管の巻き
径があまり小さくできないことや、毛細管が長いことか
ら減圧装置が大きくなつてしまうなどの欠点があつた。
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、スパイラル状の溝を有するインサ
ートを管内壁と密着するように挿入した減圧装置を用い
、その溝内を流れる冷媒を外部から冷却して流量の制御
が行なえる冷凍装置を提供することを目的としている。
Moreover, the contact between the capillary tube 3 and the vibe 8 is insufficient,
In some cases, the performance was not sufficient. Further, there were drawbacks such as the capillary tube's winding diameter cannot be made too small and the capillary tube being long, the pressure reducing device becomes large.
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and uses a pressure reducing device in which an insert with a spiral groove is inserted so as to be in close contact with the inner wall of the pipe, and the refrigerant flowing inside the groove is reduced. The object of the present invention is to provide a refrigeration device that can cool from the outside and control the flow rate.

以下この発明の実施例を図について説明する。第4図は
その一実施例の構成図、第5図はその減圧装置の構造を
示す図であり、これらの図において、第1図、第2図と
同一部分には同一符号を付してその説明を省略する。第
4図において、10は第5図に示す構造をもつ減圧装置
、11は熱交換部である。
Embodiments of the present invention will be described below with reference to the drawings. Fig. 4 is a block diagram of one embodiment of the same, and Fig. 5 is a diagram showing the structure of the decompression device. In these figures, the same parts as in Figs. 1 and 2 are given the same reference numerals. The explanation will be omitted. In FIG. 4, 10 is a pressure reducing device having the structure shown in FIG. 5, and 11 is a heat exchange section.

また第5図において、12は外周にスパイラル状の溝1
3を有するインサートで、バイブ8の内壁に密着して挿
入されている。以上のように構成された冷凍装置におい
ては、凝縮器2の出口からの液冷媒を流量調整弁5で低
温低圧にし、それを熱交換部11に導びき、減圧装置1
0の溝13を流れる冷媒を冷却することかてきる。
Further, in FIG. 5, 12 is a spiral groove 1 on the outer periphery.
3, and is inserted in close contact with the inner wall of the vibrator 8. In the refrigeration system configured as described above, the liquid refrigerant from the outlet of the condenser 2 is made low temperature and low pressure by the flow rate regulating valve 5, and is led to the heat exchange section 11, and then the liquid refrigerant is brought to the pressure reducing device 1.
It is possible to cool the refrigerant flowing through the groove 13 of 0.

従つて弁リフト制御装置6で流量制御弁5の弁リフトを
増減して熱交換部11に流れる低温冷媒の量を制御すれ
は、減圧装置10内の冷媒の冷却量が調整でき、従つて
減圧装置10を流れる冷媒の流量を制御することができ
る。これらの機能は従来の装置と同様であるが、本発明
の装置では、第5図に示す減圧装置で、溝13内を流れ
る冷媒が直接バイブ8に接触しているため熱交換部11
での熱交換効率が良く、しかもバイブ8を凝出器出口管
、蒸発器入口管と同径にできるため接続が容易であり、
さらに小形化できる。
Therefore, by controlling the amount of low-temperature refrigerant flowing into the heat exchanger 11 by increasing or decreasing the valve lift of the flow rate control valve 5 with the valve lift control device 6, the amount of cooling of the refrigerant in the pressure reduction device 10 can be adjusted, and therefore the pressure reduction The flow rate of refrigerant through device 10 can be controlled. These functions are similar to conventional devices, but in the device of the present invention, in the pressure reducing device shown in FIG.
The heat exchange efficiency is good, and the connection is easy because the vibe 8 can be made to have the same diameter as the condenser outlet pipe and the evaporator inlet pipe.
It can be further downsized.

なお上記実施例ては、流量制御弁の入口を凝縮器出口に
、また出口を蒸発器入口に接続していたが、低温冷媒の
取出口は、凝縮器の中間や、減圧装置中間、減圧装置出
口、さらには吸入管の一部をバイパスするなど、低温の
冷媒が得られるところならどこでも良い。
In the above embodiment, the inlet of the flow control valve was connected to the condenser outlet, and the outlet was connected to the evaporator inlet. This can be done anywhere that low temperature refrigerant can be obtained, such as bypassing the outlet or even part of the suction pipe.

またこの冷媒の出口は、必ずしも蒸発器入口である必要
はなく、圧縮機吸入、蒸発器中間、減圧弁中間など、流
量調整弁入口より圧力が低い部分ならどこでも良い。ま
た上記実施例では、挿入したインサートに溝を有する場
合を示したが第6図のように管内壁にスパイラル状の溝
13を有する減圧装置を用いても同じ効果を奏する。
Further, the outlet of this refrigerant does not necessarily have to be the evaporator inlet, but may be any part where the pressure is lower than the flow rate regulating valve inlet, such as the compressor suction, the evaporator middle, the pressure reducing valve middle, etc. Further, in the above embodiment, the case where the inserted insert has a groove is shown, but the same effect can be obtained by using a pressure reducing device having a spiral groove 13 in the inner wall of the pipe as shown in FIG.

またインサート12内部に袋状の空洞14をあけ、内部
に熱容量の小さい断熱材を挿入すれば、減圧装置10の
熱容量が減少して応答性の良い流量制御ができる。これ
はM5図に示すスパイラル状の溝13を有するインサー
ト12の場合にも同様である。また第7図に示すように
、スパイラル溝13を有する減圧装置10を包むように
2重管形の流路15を設け、さらに2重管と減圧装置1
0の出口とを連通する小孔16を設けて一体化した装置
においても、バイブ17から導かれた低温冷媒と減圧装
置10のスパイラル溝13中の冷媒を2重管部15で熱
交換することにより、同様の効果を奏する。
Furthermore, by making a bag-shaped cavity 14 inside the insert 12 and inserting a heat insulating material with a small heat capacity therein, the heat capacity of the pressure reducing device 10 is reduced, and the flow rate can be controlled with good responsiveness. This also applies to the insert 12 having the spiral groove 13 shown in Figure M5. Further, as shown in FIG. 7, a double pipe-shaped flow path 15 is provided so as to surround the pressure reducing device 10 having the spiral groove 13, and the double pipe and the pressure reducing device 10 are further provided.
Even in an integrated device with a small hole 16 that communicates with the outlet of 0, the low temperature refrigerant guided from the vibrator 17 and the refrigerant in the spiral groove 13 of the pressure reducing device 10 can exchange heat in the double pipe section 15. The same effect can be achieved.

なおこの装置で2重管部は必ずしもスパイラル溝全部を
包む必要はなく、一部でもよい。また小孔16も減圧装
置出口ではなくインサート溝13の一部に開口しても良
く、また複数個ても良い。さらに第8図に示すように、
インサート内部に出入口を貫通する貫通孔18をあけ、
低温冷媒の流れるバイブ17を減圧装置入口側から接続
して低温冷媒を貫通孔18に導き、スパイラル溝13、
中の冷媒を冷却してもよい。
In addition, in this device, the double tube part does not necessarily have to cover the whole spiral groove, but may cover only a part of it. Further, the small holes 16 may be opened not at the outlet of the pressure reducing device but at a part of the insert groove 13, or may be plural. Furthermore, as shown in Figure 8,
A through hole 18 is made inside the insert to pass through the entrance and exit,
A vibrator 17 through which low-temperature refrigerant flows is connected from the pressure reducing device inlet side to guide the low-temperature refrigerant into the through hole 18, and the spiral groove 13,
The refrigerant inside may be cooled.

なおこの装置では、貫通孔18の形状はどのようなもの
でも良く、また一様な断面形状でなくとも良い。またこ
の貫通孔に第9図のようにフィン加工を施すかスパイラ
ルテープを装入するなどして熱伝達を促進すればlさら
に性能が改善される。またこのようにインサート内部に
貫通孔18を設けなくとも、減圧装置入口側からインサ
ート内部に袋状の空洞を設け、この空洞と溝の一部を連
通して、ここに低温冷媒を流出させるように構成しても
良い。
Note that in this device, the through hole 18 may have any shape, and does not need to have a uniform cross-sectional shape. Furthermore, performance can be further improved if heat transfer is promoted by fin-processing the through-hole as shown in FIG. 9 or by inserting a spiral tape. Moreover, even if the through hole 18 is not provided inside the insert, a bag-shaped cavity is provided inside the insert from the pressure reducing device inlet side, and this cavity communicates with a part of the groove to allow the low-temperature refrigerant to flow out there. It may be configured as follows.

なお以上の例では簡単な冷凍装置について示したが、こ
の単純な冷凍装置以外に、ヒートポンプ装置に適用して
も有効である。
Although the above example shows a simple refrigeration system, it is also effective to apply the present invention to a heat pump system in addition to this simple refrigeration system.

即ち第10図に示すように、四方切換弁20、室内・室
外熱交換器21,22、逆止弁23などを備えた従来の
ヒートポンプの複雑な回路が、第7図の減圧装置を用い
た場合には、第11図〜第13図のように、また第8図
の減圧装置を用いた場合には、第14図〜第16図のよ
うな回路にて逆止弁23との組合せなどでより簡単に実
現できるようになる。なお図中実線矢印は暖房回路、点
線矢印は冷房回路を示す。尚この他、多段冷凍サイクル
、多段カスケードサイクルなど他の冷凍装置でも適用で
き、しかも油分離器、乾燥器などの補機を備えたものに
ついても同様の効果を奏することはいうまでもない。ま
たこれらの減圧装置は必ずしも単独で用いる必要はなく
、他の減圧装置と併用してさらに精度の良い制御とする
ことができる。また低温冷媒の流量は、弁リフトを変え
る方式の流量調整弁のみではなく、第17図に示すよう
な構成で、第18図のような構造をもち、電気ヒータの
入力を調整することにより、流量又は液量を調整する装
置など、流量が制御できるものなら何でも良い。
That is, as shown in FIG. 10, the complicated circuit of a conventional heat pump equipped with a four-way switching valve 20, indoor/outdoor heat exchangers 21, 22, check valves 23, etc., is replaced by the pressure reducing device shown in FIG. In this case, the pressure reducing device shown in FIG. 11 to 13 is used, and in the case of using the pressure reducing device shown in FIG. This can be accomplished more easily. In addition, the solid line arrow in the figure indicates the heating circuit, and the dotted line arrow indicates the cooling circuit. It goes without saying that the present invention can also be applied to other refrigeration systems such as a multistage refrigeration cycle and a multistage cascade cycle, and the same effects can be achieved even when the present invention is equipped with auxiliary equipment such as an oil separator and a dryer. Further, these pressure reducing devices do not necessarily need to be used alone, and can be used in combination with other pressure reducing devices to achieve even more accurate control. In addition, the flow rate of the low-temperature refrigerant can be controlled not only by a flow rate adjustment valve that changes the valve lift, but also by adjusting the input of the electric heater with the configuration shown in Figure 17 and the structure shown in Figure 18. Any device that can control the flow rate, such as a device that adjusts the flow rate or liquid volume, may be used.

なお第17図、第18図において、24は流量調整装置
、25は電気入力制御装置、26は電源、27は電気ヒ
ータを示す。以上のようにこの発明によれば、スパイラ
ル状の溝を有するインサートを管内壁と密着するように
挿入するか、内壁にスパイラル状の溝を有する管に管内
壁と密着するようなインサートを挿入した減圧装置を外
部から低温冷媒にて冷却せしめ、その冷却量を調整する
ことで、冷媒の流量を制御するように構成したので、製
作が容易で安価になりしかも小形の冷凍装置が得られる
効果がある。
In FIGS. 17 and 18, 24 is a flow rate adjustment device, 25 is an electric input control device, 26 is a power source, and 27 is an electric heater. As described above, according to the present invention, an insert having a spiral groove is inserted so as to come into close contact with the inner wall of the pipe, or an insert having a spiral groove on the inner wall is inserted into a pipe so as to come into close contact with the inner wall of the pipe. The decompression device is cooled from the outside with a low-temperature refrigerant, and the flow rate of the refrigerant is controlled by adjusting the amount of cooling, which makes it easy to manufacture and inexpensive, and also allows for a compact refrigeration device. be.

図面の簡単な説明第1図は従来の減圧装置を用いた冷凍
装置のサイクル図、第2図は、その減圧装置を示す断面
図、第3図は減圧装置を冷却した場合の冷却量に対する
冷媒流量の特性を示す図、第4図はこの発明の一実施例
を示す構成図、第5図はこの発明による減圧装置の断面
図、第6図〜第9図はこの発明の他の実施例を示す図、
第10図は従来のヒートポンプ装置の構成を示す図であ
り、第11図〜第16図は本発明にかかるヒートポンプ
装置の構成を示す図、第17図、第18図は、本発明の
他の実施例を示す図である。
Brief explanation of the drawings Fig. 1 is a cycle diagram of a refrigeration system using a conventional pressure reducing device, Fig. 2 is a cross-sectional view showing the pressure reducing device, and Fig. 3 is a diagram showing the amount of refrigerant cooled when cooling the pressure reducing device. 4 is a block diagram showing an embodiment of the present invention, FIG. 5 is a sectional view of a pressure reducing device according to the present invention, and FIGS. 6 to 9 are other embodiments of the present invention. A diagram showing
FIG. 10 is a diagram showing the configuration of a conventional heat pump device, FIGS. 11 to 16 are diagrams showing the configuration of a heat pump device according to the present invention, and FIG. 17 and FIG. It is a figure showing an example.

図中、1は圧縮機、2は凝縮器、4は蒸発器、”5は流
量調整弁、6は弁リフト制御装置、7は熱交換部、8は
バイブ、9は断熱材、10は減圧装置、11は熱交換部
、12はインサート、13は溝、14は空洞、15は2
重管部、16は小孔、17はバイブ、18は貫通孔、1
9はフィン、20は四方切換弁、21は室内熱交換器、
22は室外熱交換器、23は逆止弁、24は流量調整装
置、25は電気入力制御装置、26は電源、27は電気
ヒータてある。
In the figure, 1 is a compressor, 2 is a condenser, 4 is an evaporator, 5 is a flow rate adjustment valve, 6 is a valve lift control device, 7 is a heat exchange section, 8 is a vibrator, 9 is a heat insulator, 10 is a pressure reduction device, 11 is a heat exchange part, 12 is an insert, 13 is a groove, 14 is a cavity, 15 is 2
Heavy pipe part, 16 is a small hole, 17 is a vibrator, 18 is a through hole, 1
9 is a fin, 20 is a four-way switching valve, 21 is an indoor heat exchanger,
22 is an outdoor heat exchanger, 23 is a check valve, 24 is a flow rate adjustment device, 25 is an electric input control device, 26 is a power source, and 27 is an electric heater.

Claims (1)

【特許請求の範囲】 1 圧縮機、凝縮器、減圧装置、凝縮器を順次環状に接
続した冷凍装置において、上記減圧装置として、管の内
壁面との間にスパイラル状の溝を形成するインサートを
管内壁に密着して挿入したものを用い、かつ上記溝中を
流れる冷媒を外部の低温冷媒によつて冷却せしるように
構成してこの低温冷媒の流量を制御するようにしたこと
を特徴とする冷凍装置。 2 減圧装置の出口に小孔を設け、かつこれを包むよう
に2重管形の流路を設け、その内部に低温冷媒を導くよ
うに構成したことを特徴とする特許請求の範囲第1項記
載の冷凍装置。 3 インサート内部に貫通孔をあけ、減圧装置入口側か
ら貫通孔に低温冷媒を導くように構成したことを特徴と
する特許請求の範囲第1項又は第2項記載の冷凍装置。
[Claims] 1. A refrigeration system in which a compressor, a condenser, a pressure reducing device, and a condenser are sequentially connected in an annular manner, wherein the pressure reducing device includes an insert that forms a spiral groove between the inner wall surface of the pipe and The refrigerant flowing through the groove is cooled by an external low-temperature refrigerant, and the flow rate of the low-temperature refrigerant is controlled by using a refrigerant inserted closely into the inner wall of the pipe. refrigeration equipment. 2. Claim 1, characterized in that a small hole is provided at the outlet of the pressure reducing device, and a double pipe-shaped flow path is provided so as to surround the small hole, and a low-temperature refrigerant is introduced into the inside of the small hole. Refrigeration equipment. 3. The refrigeration system according to claim 1 or 2, characterized in that a through hole is formed inside the insert, and the low temperature refrigerant is introduced into the through hole from the pressure reducing device inlet side.
JP12748581A 1981-08-12 1981-08-12 Refrigeration equipment Expired JPS6058382B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12748581A JPS6058382B2 (en) 1981-08-12 1981-08-12 Refrigeration equipment
KR1019820003425A KR840000779A (en) 1981-08-12 1982-07-30 Refrigeration system having a function of controlling refrigerant flow rate
DE19823229779 DE3229779A1 (en) 1981-08-12 1982-08-10 COOLING SYSTEM WITH SUB-COOLING TO CONTROL THE REFRIGERANT FLOW
AU87108/82A AU556283B2 (en) 1981-08-12 1982-08-12 Refrigeration system having auxiliary cooling for control of coolant flow
US06/604,416 US4621501A (en) 1981-08-12 1984-04-30 Refrigeration system having auxiliary cooling for control of coolant flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12748581A JPS6058382B2 (en) 1981-08-12 1981-08-12 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5828961A JPS5828961A (en) 1983-02-21
JPS6058382B2 true JPS6058382B2 (en) 1985-12-19

Family

ID=14961101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12748581A Expired JPS6058382B2 (en) 1981-08-12 1981-08-12 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS6058382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101678U (en) * 1990-02-06 1991-10-23

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001896B1 (en) * 1984-05-23 1990-03-26 미쓰비시전기주식회사 Heat pump with capillary tube-type expansion device
JP6907427B2 (en) * 2019-01-25 2021-07-21 株式会社 オガワクリーンシステム Heat exchanger and refrigeration cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101678U (en) * 1990-02-06 1991-10-23

Also Published As

Publication number Publication date
JPS5828961A (en) 1983-02-21

Similar Documents

Publication Publication Date Title
US20030196445A1 (en) Variable capacity refrigeration system with a single-frequency compressor
JPH10510906A (en) Cooling system and cooling capacity control method for cooling system
JPS645227B2 (en)
US4563879A (en) Heat pump with capillary tube-type expansion device
US5706665A (en) Refrigeration system
US20190041069A1 (en) An air conditioner
US2059992A (en) Refrigerating apparatus
US4621501A (en) Refrigeration system having auxiliary cooling for control of coolant flow
US4381798A (en) Combination reversing valve and expansion device for a reversible refrigeration circuit
JPS6058382B2 (en) Refrigeration equipment
US5099655A (en) Refrigeration system for flooded shell evaporator
JPH05187724A (en) Electric component box cooling device for air conditioner
US2959937A (en) Refrigeration system for air conditioning units
US3444699A (en) Refrigeration system with accumulator means
JPS6058381B2 (en) flow control device
US2188350A (en) Refrigerating apparatus
JP3716378B2 (en) Hunting prevention method for temperature expansion valve
JPS6343660B2 (en)
JPH0246862B2 (en)
JPS5828959A (en) Controller for flow rate
JPS5828955A (en) Heat pump device
KR100212667B1 (en) Cooling cycle device
JPS6340764Y2 (en)
JPS58120066A (en) Controller for flow rate
JPS58120067A (en) Controller for flow rate