JPS58145669A - Method of bonding ceramics to copper - Google Patents

Method of bonding ceramics to copper

Info

Publication number
JPS58145669A
JPS58145669A JP57024758A JP2475882A JPS58145669A JP S58145669 A JPS58145669 A JP S58145669A JP 57024758 A JP57024758 A JP 57024758A JP 2475882 A JP2475882 A JP 2475882A JP S58145669 A JPS58145669 A JP S58145669A
Authority
JP
Japan
Prior art keywords
copper
ceramics
joining
chromium
chromium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57024758A
Other languages
Japanese (ja)
Other versions
JPS6140625B2 (en
Inventor
佳行 柏木
鈴木 傳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP57024758A priority Critical patent/JPS58145669A/en
Priority to US06/465,043 priority patent/US4500383A/en
Priority to DE8383300744T priority patent/DE3361256D1/en
Priority to EP83300744A priority patent/EP0087881B1/en
Priority to KR1019830000619A priority patent/KR870000722B1/en
Priority to IN198/CAL/83A priority patent/IN158447B/en
Publication of JPS58145669A publication Critical patent/JPS58145669A/en
Publication of JPS6140625B2 publication Critical patent/JPS6140625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はセラミックスと銅の接合方法に係り、特にセラ
ミックスと銅とをろう材を用いずに容易に接合するよう
にした接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for joining ceramics and copper, and particularly to a method for joining ceramics and copper easily without using a brazing material.

従来、セラミックスたとえばアルミナセラミックスと銅
との接合は、焼成し几セラミックスの接合面にモリブデ
ン、タングステ等を主成分とするメタライズインクを塗
布してから再焼成してメタライズ層全形成し、しかる後
にメタライズ層にろう材のぬれ性を高めるべくニッケル
メッキ等の表面処理音節し、さらにシンターリング等の
人血処理を施したセラミックスと銅と全ろう打金弁し加
熱して接合する方法がとられている。
Conventionally, when bonding ceramics such as alumina ceramics and copper, a metallizing ink containing molybdenum, tungsten, etc. as the main ingredients is applied to the bonding surface of the fired ceramics, then re-fired to form the entire metallized layer, and then metallized. In order to increase the wettability of the brazing metal, the layers are surface-treated with nickel plating, etc., and then ceramics and copper that have been subjected to human blood treatments such as sintering are bonded together by heating. There is.

したがって、その工程が多岐に亘り長くなるとともに、
その接合強度が塗布したメタライズインクの厚さおよび
焼成界囲気、温度および時間に左右されバラツキの多い
ものとなり、かつろう打金必要とするため高コストにな
る等の問題がある。
Therefore, the process becomes diverse and long, and
The bonding strength varies greatly depending on the thickness of the applied metallizing ink, the firing ambient atmosphere, temperature and time, and there are problems such as high cost since a brazing metal is required.

本発明は、上述した問題に鑑みてなされたもので、その
目的とするところは、セラミックスと銅と全クロム酸化
物または′e量のクロムを含有する銅を両者間に介挿し
、ついで所定の雰囲気、温度および時間で加熱して接合
するようにすることによって、ろう打金不要とするとと
もに、簡単な工程でかつ接合強度全高め得るようにした
セラミックスと銅の接合方法を提供するにある。以下、
図面を参照してこの発明の突施例を詳細に説明する。
The present invention has been made in view of the above-mentioned problems, and its object is to insert ceramics, copper, and total chromium oxide or copper containing an amount of chromium between them, and then To provide a method for joining ceramics and copper, which eliminates the need for a brazing metal by heating in atmosphere, temperature, and time, and which can increase the joining strength in a simple process. below,
A special embodiment of the present invention will be described in detail with reference to the drawings.

本発明に係る接合方法の第1実施例は、まず銅と接合さ
れるアルミナ、ムライト、ジルコン、ステアタイト等の
セラミックスの接合面に、クロム1100A’以上の膜
厚となるように蒸着しまたはクロム全0.1μ以上の膜
厚となるようにメッキし、しかる後に10’−’ To
rr以上の空気雰囲気中で100℃以上かつ10分以上
の加熱による酸化処理を施してクロム酸化物、たとえば
酸化クロム(CrlOB )の被膜を形成する。ついで
セラミックスのクロム酸化物の被膜に所定形状の鋼材金
型ね合せるが如くして10’−’ Torr以下の真空
雰囲気(たとえば真空炉)中または銅?酸化させないヘ
リウム、水素等のガス雰囲気中に両者全載置し、最後に
900℃以上の加熱温度で10分以上継続加熱してセラ
ミックスと鋼材と全接合するとともに、両者′ftX空
ず囲気中において徐冷(真空炉冷)または銅を酸化させ
ないガス雰囲気中において徐冷して鋼材の残留応力をそ
の塑性変形により低減せしめることによって、セラミッ
クスと銅の良好な接合が行なわれる。
In the first embodiment of the joining method according to the present invention, first, chromium is vapor-deposited or chromium is deposited to a thickness of 1100 A' or more on the joining surface of a ceramic such as alumina, mullite, zircon, steatite, etc. to be joined with copper. Plating to a total film thickness of 0.1μ or more, then 10'-' To
Oxidation treatment is performed by heating at 100° C. or higher for 10 minutes or longer in an air atmosphere of rr or higher to form a film of chromium oxide, such as chromium oxide (CrlOB). Next, a steel mold of a predetermined shape is fitted onto the chromium oxide coating of the ceramic in a vacuum atmosphere (for example, a vacuum furnace) of 10'-' Torr or less or in a copper oxide film. Both are placed in a non-oxidizing gas atmosphere such as helium or hydrogen, and finally heated at a heating temperature of 900°C or higher for 10 minutes or more to completely bond the ceramic and steel materials, and both are placed in an airtight environment. Good bonding between ceramics and copper can be achieved by slow cooling (vacuum furnace cooling) or slow cooling in a gas atmosphere that does not oxidize copper to reduce residual stress in the steel material through its plastic deformation.

上述した第1実施例の方法によって、すなわちアルミナ
セラミックスの接合面に約1μのクロム皮膜を真空蒸着
し、10′−1〜10’Torrの空気中において約5
00℃の温度で10分加熱した後、接合用の銅相を載置
してこの鋼材が酸化しないように10’−’ 〜1O−
IITorrの真空雰囲気中において1000℃の温度
で25分継続加熱し、しかる後に真空雰囲気中で徐冷し
て接合されたアルミナセラミックスと銅との接合部は、
第1図、第2図、第3図。
By the method of the first embodiment described above, that is, a chromium film of about 1 μm is vacuum-deposited on the joint surface of alumina ceramics, and the chromium film is vacuum-deposited with a thickness of about 5 μm in air at 10’-1 to 10’ Torr.
After heating for 10 minutes at a temperature of 00°C, a copper phase for bonding is placed and heated at 10'-' to 1O- to prevent the steel material from oxidizing.
The joint between alumina ceramics and copper was heated continuously for 25 minutes at a temperature of 1000°C in a vacuum atmosphere of II Torr, and then gradually cooled in a vacuum atmosphere.
Figures 1, 2, and 3.

第4図および第5図に示す拡大図(粒界図)のようにな
った。すなわち、第1図はX線マイクロアナライザによ
る二次電子像で、右方の黒い部分がアルミナセラミック
ス、左方のやや白い部分が銅で、両者の境界に介在され
る波形の部分がクロム酸化物である。また、第2図はク
ロムの分散状態全示すX線マイクロアナライザーよる特
性X線像で、中央の白い部分がクロムである。さらに、
第3図は酸素の分散状態を示すX線マイクロアナライザ
による特性X線像で、右方に点在する白い部分が酸素で
ある。また、第4図および第5図は、同様にアルミニウ
ムおよび銅の分散状態を示すX線マイクロアナライザに
よる特性X線像で、第4図における右方の白い部分がア
ルミニウム、第6図における左方の白一部分が銅である
The result was an enlarged view (grain boundary diagram) shown in FIGS. 4 and 5. In other words, Figure 1 is a secondary electron image taken with an X-ray microanalyzer. The black part on the right is alumina ceramics, the slightly white part on the left is copper, and the wave-shaped part between the two is chromium oxide. It is. Further, Fig. 2 is a characteristic X-ray image taken by an X-ray microanalyzer showing the entire dispersion state of chromium, and the white part in the center is chromium. moreover,
FIG. 3 is a characteristic X-ray image taken by an X-ray microanalyzer showing the dispersion state of oxygen, and the white parts dotted on the right are oxygen. Additionally, Figures 4 and 5 are characteristic X-ray images taken by an X-ray microanalyzer that similarly show the dispersion state of aluminum and copper.The white part on the right in Figure 4 is aluminum, and the white part on the left in Figure 6 is Part of the white part is copper.

ここで、第1実施例の方法によって接合されたセラミッ
クスと銅との接合強度は55kg/m−以上となった。
Here, the bonding strength between the ceramic and copper bonded by the method of the first example was 55 kg/m- or more.

なお、セラミックスの接合に形成されるクロムの皮膜は
、蒸着によれば最低100A’で均一な皮j摸が形成さ
れ、銅との接合も均一なりロムの拡散(セラミックスお
よび鋼中の両方へ)によって所期の接合強度が得られる
が、メッキの場合最低α1μの皮膜厚さにしないと均ゴ
な拡散層が得られないことが実験により確められた。
In addition, the chromium film formed on the bonding of ceramics is formed by vapor deposition at a minimum of 100A', and the bonding with copper is also uniform, resulting in diffusion of chromium (both into the ceramics and steel). However, in the case of plating, it has been confirmed through experiments that a uniform diffusion layer cannot be obtained unless the film thickness is at least α1μ.

また、適宜の溶剤でペースト状とした一100メツシュ
のクロム金属粉末全塗布してクロムの皮膜を形成する場
合にも0.1μ以上の皮膜厚さに塗布しなければならな
いことが同様に実験によシ確められた。
Furthermore, when forming a chromium film by applying 1,100 mesh of chromium metal powder in paste form with an appropriate solvent, experiments have similarly shown that the film must be applied to a thickness of 0.1μ or more. It was confirmed.

さらに、クロム皮膜の酸化処理条件は、皮膜厚さによる
が上記最低限の膜厚(約01μ)で、上述した条件(1
0s Torr、 100 ’C11o分)を最低必要
とした。これは、クロムは酸素との親和力が大きいので
、空気中の微量の酸素で容易に酸化クロムになるためと
思われる。
Furthermore, the oxidation treatment conditions for the chromium film depend on the film thickness, but the above-mentioned minimum film thickness (approximately 0.01μ) and the above-mentioned conditions (1
0 s Torr, 100' C11 o min) was required as a minimum. This is thought to be because chromium has a high affinity for oxygen, so it easily becomes chromium oxide with a trace amount of oxygen in the air.

次に、本発明に係る接合方法の第2実施例は、まず銅と
接合されるアルミナ、ムライト等のセラミックスの接合
面に、酸化クロム(crtos)の如きクロム酸化物’
k100A’以上の膜厚となるように蒸着しまたは適宜
の溶剤でペースト状にした酸化クロム(Cr203 )
の如き一100メツシュ程度のクロム酸化物の粉末?0
.1μ以上の膜厚で塗着してクロム酸化物の被膜全形成
する。ついでセラミックスのクロム酸化物の被膜に所定
形状の鋼材を重ね合せるが如くして10’−’ TOr
r以下の真空雰囲気中または銅を酸化させないガス雰囲
気中に両者全載置し、最後に第1実施例の場合と同様に
900’C以上の加熱温度で10分以上継続加熱してセ
ラミック雰囲気中において徐冷して鋼材の残留応力會そ
の塑性変形により低減せしめることによって、セラミッ
クスと銅の良好な接合が行なわれる。
Next, in a second embodiment of the bonding method according to the present invention, first, a chromium oxide such as chromium oxide (crtos) is applied to the bonding surface of a ceramic such as alumina or mullite to be bonded to copper.
Chromium oxide (Cr203) vapor-deposited to a thickness of k100A' or more or made into a paste with an appropriate solvent
Chromium oxide powder of about 1100 mesh? 0
.. Apply with a film thickness of 1μ or more to form a complete chromium oxide film. Next, a steel material of a predetermined shape is superimposed on the chromium oxide coating of the ceramic to form a 10'-' TOr.
Both were placed in a vacuum atmosphere of less than r or in a gas atmosphere that does not oxidize copper, and finally heated for more than 10 minutes at a heating temperature of 900'C or more in the same way as in the first embodiment and placed in a ceramic atmosphere. By slowly cooling the steel material and reducing the residual stress of the steel material through its plastic deformation, a good bond between the ceramic and the copper is achieved.

第3に、本発明に係る接合方法の第8実施例は、まずセ
ラミックスと所足形状の鋼材との接合面間に厚さ約0.
1〜2龍にしてかつ約0.1〜0.6重量%のクロムを
含有する銅箔全介挿する。ついで銅箔全介挿したセラミ
ックスと鋼材とk 10−4 Torrl   以下の
真空雰囲気中またけ銅!岬化させないガス雰囲気中に納
誼し、最後に900℃以上の加熱温度で10分以上継続
加熱してセラミックスと銅材と全接合するとともに、接
合した両者を真空雰囲気中または調音酸化させないガス
雰囲気中において、徐冷して鋼材の残留応力全その塑性
変形によシ低減せしめることによって、セラミックスと
銅の良好な接合が行なわれる。
Thirdly, in the eighth embodiment of the joining method according to the present invention, first, there is a thickness of about 0.0 mm between the joining surfaces of the ceramic and the steel material having a predetermined shape.
A copper foil containing about 0.1 to 0.6% by weight of chromium and about 0.1 to 0.6% by weight is entirely inserted. Next, the ceramics and steel materials with copper foil completely interposed were placed in a vacuum atmosphere of less than k 10-4 Torrl! Deliver in a gas atmosphere that does not cause oxidation, and finally heat for 10 minutes or more at a heating temperature of 900°C or higher to fully bond the ceramic and copper materials, and place the bonded materials in a vacuum atmosphere or in a gas atmosphere that does not cause tone oxidation. In the process, a good bond between the ceramic and the copper is achieved by gradually cooling the steel material to reduce all the residual stress in the steel material through its plastic deformation.

以上の如く本発明は、セラミックスと銅と全クロム酸化
物全弁し加熱して接合するようにしたセラミックスと銅
の接合方法であるから、従来の方法のように高価なモリ
ブデン、タングステン等を用いる必要がなく、再焼成に
よるメタライズ層の形成およびろう材が不要となり、そ
の製作費用を廉価にすることができるとともに、工程の
短縮化および製作の容易化全図ることができる。
As described above, the present invention is a method for joining ceramics and copper, in which ceramics, copper, and all chromium oxides are heated and joined together, so unlike conventional methods, expensive molybdenum, tungsten, etc. are used. This eliminates the need for forming a metallized layer by re-firing and the use of a brazing filler metal, making it possible to reduce the manufacturing cost, and also to shorten the process and facilitate manufacturing.

また、セラミックスと銅と全豹0.1〜0.6重鐘チの
クロムを含有する銅を介し加熱して接合するようにした
セラミックスと銅の接合方法であるから、上述した効果
に加えてさらに一層工程の短縮化および製作の容易化全
図ることができる等の効果全萎する。
In addition, since this is a method of joining ceramics and copper by heating through copper containing 0.1 to 0.6 chromium, in addition to the above-mentioned effects, Effects such as further shortening of the process and facilitation of manufacturing can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図および第5図はそれぞ
れ本発明に係る接合方法によって接合されたセラミック
スと銅との接合部の拡大図(粒界図)である。 第1図 44− 第3図 第2図 4/−/ 第41図 1− 第(51ネ1
FIG. 1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5 are enlarged views (grain boundary diagrams) of the bonded portion of ceramic and copper bonded by the bonding method according to the present invention, respectively. Fig. 1 44- Fig. 3 Fig. 2 Fig. 4/-/ Fig. 41 1- No. 51

Claims (1)

【特許請求の範囲】 (1)  セラミックスと銅と全クロム酸化物全弁し加
熱して接合するようにしたこと全特徴とするセラミック
スと銅の接合方法 (2)  セラミックスの接合面にクロム’zloOA
’以上蒸着し、しかる後に酸化処理を施してクロム酸化
物金得るようにしたことを特徴とする特許請求の範囲第
1項記載のセラミックスと銅の接合方法。 (3)  セラミックスの接合面にクロムをα1μ以上
メッキし、しかる後に酸化処理を施してクロム酸化物金
得るようにしたことを特徴とする特許請求の範囲第1項
記載のセラミックスと銅の接合方法3(4)  セラミ
ックスの接合面に酸化クロム1loOA’以上蒸着して
クロム酸化物全得るようにしたことを特徴とする特許請
求の範囲第1項記載のセラミックスと銅の接合方法。 (5)  セラミックスの接合面に酸化クロムの粉末全
C)、1μ以上塗着してクロム酸化物全得るようにした
こと全特徴とする特許請求の範囲第1項記載のセラミッ
クスと銅の接合方法。 (6)加熱を、1O−4Torr 以下の真空雰囲気中
において900℃以上の温度で10分以上継続し、しか
る後に徐冷するようにしたことを特徴とする特許請求の
範囲第1項から第5項までのいずれか1つに記載のセラ
ミックスと銅の接合方法。 (7)  加熱を、調音酸化させないガス雰囲気中にお
いて900℃以上の温度で10分以上継続し、しかる後
に徐冷するようにしたこと全特徴とする特許請求の範囲
第1項から第5項までのいずれか1つに記載のセラミッ
クスと銅の接合方法。 (8)  セラミックスと銅とを約α1〜α6重量%の
クロム全含有する銅を介し加熱して接合するようにした
こと全特徴とするセラミックスと銅の接合方法。 (9)  加熱k 、10−’ Torr以下の真空雰
囲気中において900℃以上の温度で10分以上継続し
、しかる後に徐冷するようにしたことを特徴とする特許
請求の範囲第8項記載のセラミックスと銅の接合方法。 (7) 加熱金、網金酸化させないガス雰囲気中にお1 いて900℃以上の温度で10分以上継続し、しかる後
に徐冷するようにしたこと全特徴とする特許請求の範囲
第8項記載のセラミックスと銅の接合方法。
[Claims] (1) A method for joining ceramics and copper, which is characterized in that ceramics, copper, and all chromium oxides are bonded together by heating. (2) Chromium'zloOA is applied to the joining surface of the ceramics.
2. A method for joining ceramics and copper according to claim 1, characterized in that chromium oxide gold is obtained by vapor depositing chromium oxide gold and then subjecting it to oxidation treatment. (3) A method for joining ceramics and copper according to claim 1, characterized in that the joining surface of the ceramic is plated with chromium of α1μ or more, and then oxidized to obtain chromium oxide gold. 3(4) A method for joining ceramics and copper according to claim 1, characterized in that chromium oxide of 10OA' or more is deposited on the joining surface of the ceramic to obtain all the chromium oxide. (5) A method for joining ceramics and copper according to claim 1, characterized in that 1μ or more of chromium oxide powder C) is applied to the joining surface of the ceramic to obtain all the chromium oxide. . (6) Heating is continued for 10 minutes or more at a temperature of 900° C. or higher in a vacuum atmosphere of 10-4 Torr or lower, and then slowly cooled. A method for joining ceramics and copper according to any one of the preceding paragraphs. (7) Claims 1 to 5 are characterized in that the heating is continued for 10 minutes or more at a temperature of 900°C or higher in a gas atmosphere that does not cause tone oxidation, and then slowly cooled. The method for joining ceramics and copper according to any one of the above. (8) A method for joining ceramics and copper, characterized in that the ceramics and copper are joined by heating via copper containing chromium in an amount of about α1 to α6% by weight. (9) The heating is continued at a temperature of 900° C. or higher for 10 minutes or more in a vacuum atmosphere of k, 10-' Torr or lower, and then slowly cooled. How to join ceramics and copper. (7) Claim 8, which is characterized in that the heated metal or wire mesh is kept in a gas atmosphere that does not oxidize at a temperature of 900° C. or higher for 10 minutes or more, and then slowly cooled. A method of joining ceramics and copper.
JP57024758A 1982-02-18 1982-02-18 Method of bonding ceramics to copper Granted JPS58145669A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57024758A JPS58145669A (en) 1982-02-18 1982-02-18 Method of bonding ceramics to copper
US06/465,043 US4500383A (en) 1982-02-18 1983-02-08 Process for bonding copper or copper-chromium alloy to ceramics, and bonded articles of ceramics and copper or copper-chromium alloy
DE8383300744T DE3361256D1 (en) 1982-02-18 1983-02-15 Process for bonding, copper or copper-chromium alloy to ceramics, and bonded articles of ceramics and copper or copper-chromium alloy
EP83300744A EP0087881B1 (en) 1982-02-18 1983-02-15 Process for bonding, copper or copper-chromium alloy to ceramics, and bonded articles of ceramics and copper or copper-chromium alloy
KR1019830000619A KR870000722B1 (en) 1982-02-18 1983-02-16 Process for bonding copper or coppoer-chromium alloy to ceramics
IN198/CAL/83A IN158447B (en) 1982-02-18 1983-02-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024758A JPS58145669A (en) 1982-02-18 1982-02-18 Method of bonding ceramics to copper

Publications (2)

Publication Number Publication Date
JPS58145669A true JPS58145669A (en) 1983-08-30
JPS6140625B2 JPS6140625B2 (en) 1986-09-10

Family

ID=12147044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024758A Granted JPS58145669A (en) 1982-02-18 1982-02-18 Method of bonding ceramics to copper

Country Status (2)

Country Link
JP (1) JPS58145669A (en)
KR (1) KR870000722B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593077A (en) * 1982-06-29 1984-01-09 株式会社東芝 Method of bonding ceramic member and metal
JP2015224151A (en) * 2014-05-27 2015-12-14 Ngkエレクトロデバイス株式会社 Cu/CERAMIC SUBSTRATE
JP2019073437A (en) * 2018-12-11 2019-05-16 Ngkエレクトロデバイス株式会社 Cu/CERAMIC SUBSTRATE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593077A (en) * 1982-06-29 1984-01-09 株式会社東芝 Method of bonding ceramic member and metal
JPH0424312B2 (en) * 1982-06-29 1992-04-24 Tokyo Shibaura Electric Co
JP2015224151A (en) * 2014-05-27 2015-12-14 Ngkエレクトロデバイス株式会社 Cu/CERAMIC SUBSTRATE
JP2019073437A (en) * 2018-12-11 2019-05-16 Ngkエレクトロデバイス株式会社 Cu/CERAMIC SUBSTRATE

Also Published As

Publication number Publication date
KR870000722B1 (en) 1987-04-09
JPS6140625B2 (en) 1986-09-10
KR840003594A (en) 1984-09-15

Similar Documents

Publication Publication Date Title
US2798577A (en) Metalized ceramic structure for vacuum tube envelopes and method of making the same
JP3057932B2 (en) Joining method of ceramic sintered body
US4764341A (en) Bonding of pure metal films to ceramics
JPH0367985B2 (en)
JPS58145669A (en) Method of bonding ceramics to copper
US2820534A (en) Hermetic ceramic-metal seal and method of making the same
US2820727A (en) Method of metallizing ceramic bodies
JPS58178903A (en) Conductive paste
JPS6077177A (en) Ceramic bonded body
US3241995A (en) Metallizing sintered alumina ceramic bodies
US3598435A (en) Ceramic-metal bonding composition and composite article of manufacture
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPS6270284A (en) Metallized silicon carbide ceramics body and its production
JPH05194048A (en) Method for joining ceramic sintered compact
JPS5948778B2 (en) Method for manufacturing ceramic-metal composite
JPS59195587A (en) Method of bonding ceramics to copper
JPS61236661A (en) Method of joining ceramic and metal, same kind of ceramics or different kind of ceramics
JPS6077185A (en) Ceramic sintered body and manufacture
JPS60145980A (en) Ceramic sintered body with metallized coating and manufacture
JPS5816583B2 (en) Manufacturing method of electron emitting hot cathode
JPS59128275A (en) Adhesion bonded structure of ceramic member and metal member
JPS632866A (en) Method of soldering ceramic to metal
JPS60131885A (en) Manufacture of ceramic sintered body with metallized surface
JPS6011289A (en) Metallized ceramic sintered body and manufacture
JPS6330379A (en) Ceramic silver-soldering treatment and method of joining ceramic to metal