JPS58145157A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58145157A
JPS58145157A JP2963082A JP2963082A JPS58145157A JP S58145157 A JPS58145157 A JP S58145157A JP 2963082 A JP2963082 A JP 2963082A JP 2963082 A JP2963082 A JP 2963082A JP S58145157 A JPS58145157 A JP S58145157A
Authority
JP
Japan
Prior art keywords
type
film
substrate
regions
type regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2963082A
Other languages
Japanese (ja)
Inventor
Toshiro Yamamoto
俊郎 山本
Yuichiro Ito
雄一郎 伊藤
Kunihiro Tanigawa
谷川 邦広
Toru Maekawa
前川 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2963082A priority Critical patent/JPS58145157A/en
Publication of JPS58145157A publication Critical patent/JPS58145157A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To form both depletion type and enhancement type elements onto a HgCdTe compound semiconductor substrate by selectively forming an anodic oxidatiok film to a desired section. CONSTITUTION:Indium (In) layers 2 are formed to predetermined sections of the surface of the P type HgCdTe substrate 1, and said In is diffused into the substrate 1 through heat treatment, and N<+> type regions 3, 4, 5 are formed. The anodic oxidation film 8 is removed selectively while using a photo-resist film 9 formed according to a prescribed pattern as a mask, and the anodic oxidation film 8 is left on a zone 10 held by the N<+> type regions 3, 4. An insulating film 13 made of zinc sulfide (ZnS), etc. with openings (electrode windows) 12 on the N<+> type regions 3, 4, 5 is formed. Aluminum (Al) electrodes 14, 15, 16 ohmic- contacting with the N<+> regions 3, 4, 5 in the openings 12 sections are formed while the Al electrode 17 is formed where corresponding to a zone 11 held by the N<+> type regions 4, 5 under the insulating film 13.

Description

【発明の詳細な説明】 +a+  発明の技術分野 本発明は半導体装置の製造方法に係り、特に水銀・カド
ミウム・テルル化合物半導体を用いて集積回路装置を製
造する方法に関する。
Detailed Description of the Invention +a+ Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing an integrated circuit device using a mercury-cadmium-tellurium compound semiconductor.

tb+  従来技術と問題点 かねてより水銀・カドミウム・テルル(以下これをHg
CdTeと略記する)化合物半導体は、高い移動度(7
7にで敵方crd / V sec )を示す半導体と
して知られている。このtLgcdTe基板上にMis
型のF’ K ′l’素子を形成すれば、高速の集積回
路を実現することが出来る。更に高速の集積回路装置を
構成jるには、同一基板上にエンハンスメン1!iν及
びディブレジョン型双方のM I S  ト’ IE 
’I”素子を形成することが望ましく、従って同一基板
内に選択的に所望濃度のp型領域とr1型領域を形成し
、しきい値を制御−1ねばならない。そI′1にLL 
II It Cd ’l’ L+基板にイオン注入法を
用いてデー1電極lI!!、’F“にポl」ン・イオン
(B+)等を所望濃度に注入−4る方法かあるが、ごの
方法は高価なイAンt]<人装置を要し、M造コストが
商くなる。
tb+ Conventional technology and problems It has been known for some time that mercury, cadmium, tellurium
Compound semiconductors (abbreviated as CdTe) have high mobility (7
It is known as a semiconductor exhibiting an adversary crd/V sec) of 7. Mis on this tLgcdTe substrate
By forming F' K 'l' type elements, high-speed integrated circuits can be realized. In order to construct an even faster integrated circuit device, an enhancer 1! M I S to 'IE of both iν and diversion type
It is desirable to form an 'I' element, therefore, it is necessary to selectively form a p-type region and an r1-type region with a desired concentration in the same substrate, and to control the threshold value by -1.
II It Cd 'l' De 1 electrode lI! using ion implantation method on L+ substrate. ! There is a method of injecting pol ions (B+) etc. into 'F' to a desired concentration, but this method requires expensive equipment and requires high manufacturing costs. Become a business.

(CI  発明の目的 本発明の1」的は」二記問題点を解消し、+1 [C旧
゛e基板1−にティプレジョン型及ヒエンハンスメント
1B′l双方のMis  Flシ′F素子を容易に形成
し得る実用的な半導体装置の製造方法を提供するごとに
ある。
(CI OBJECTS OF THE INVENTION The object of the present invention is to solve the problems mentioned above and to solve the problems mentioned above and to solve the problems mentioned above. The object of the present invention is to provide a practical method for manufacturing a semiconductor device that can be easily formed.

((1)発明の構成 本発明は、IIgCdTeM h J−に構成したIv
i l Sダイオードか絶縁膜とし゛(陽極酸化膜を含
む場合には負のフラットバンド電圧を呈し、陽極酸化膜
を含まない場合には正のフラットバンド電圧を呈すると
いう現象を利用するもので、その特徴は、−導電型を有
するHgCdTe基板表面の所定領域に逆導電型不純物
を導入して複数個の逆導電型領域を形成した後、前記複
数個の逆導電型領域の内から選ばれた所定の逆導電型領
域対に挾まれた区域表面に選択的に陽極酸化膜を形成す
る工程を含むことにある。
((1) Structure of the Invention The present invention provides an Iv configured in IIgCdTeM h J-.
i l S diode or insulating film (it takes advantage of the phenomenon that if it contains an anodic oxide film, it exhibits a negative flat band voltage, and if it does not contain an anodic oxide film, it exhibits a positive flat band voltage; The feature is that - after introducing an opposite conductivity type impurity into a predetermined region on the surface of a HgCdTe substrate having a conductivity type to form a plurality of opposite conductivity type regions, a predetermined region selected from among the plurality of opposite conductivity type regions is introduced. The method includes the step of selectively forming an anodic oxide film on the surface of the area sandwiched between the pair of regions of opposite conductivity type.

(el  発明の実施例 以下本発明の一実施例として、p型1(gCdTe基板
上にディブレシロン型及びエンハンスメント型のMIS
  FETを形成する例を、第1図〜第6図の要部断面
図により製造工程の順に説明する。
Embodiment of the Invention Below, as an embodiment of the present invention, a p-type 1 (dibresilon type and enhancement type MIS on a gCdTe substrate) will be described.
An example of forming an FET will be explained in the order of manufacturing steps with reference to main part sectional views of FIGS. 1 to 6.

まず第1図に示す如(、p型11gcdTe基板1表面
にリフトオフ法等により、前記基板1表面の所定部分に
インジュウム(In)層2を形成し、次いで加熱処理を
施して上記Inを基板l内に拡散せしめ、n1型領域3
,4.5を形成する。このあと前記基板1表面に被着せ
るInを除去する。ここまでの工程は通常の製造工程に
従って進めて良い。
First, as shown in FIG. 1, an indium (In) layer 2 is formed on a predetermined portion of the surface of a p-type 11gcdTe substrate 1 by a lift-off method or the like. n1 type region 3
, 4.5. Thereafter, the In deposited on the surface of the substrate 1 is removed. The steps up to this point may be carried out according to normal manufacturing steps.

次いで第2図に示す如く、上記基板lを苛性カリ溶液6
中に炭素(C)等からなる電極7と対向させて浸漬し、
基板1に対し電極7に1−の電圧を印加する等の方法に
より、基板l全面に陽極酸化法を施し、w43図に見ら
れる如く陽極酸化膜8を例えば凡そ700〔人〕の厚さ
に形成する。なおこの厚さは特に限定する必要はない。
Next, as shown in FIG.
immersed in it facing an electrode 7 made of carbon (C) or the like,
The entire surface of the substrate 1 is anodized by applying a voltage of 1- to the electrode 7 of the substrate 1, and the anodic oxide film 8 is formed to a thickness of, for example, about 700 mm, as shown in Figure W43. Form. Note that this thickness does not need to be particularly limited.

次いで第4図に示ず如く、所定のパターンに従って形成
されたフォトレジスト膜9をマスクとして前記陽極酸化
膜8を選択的に除去し、n1型領域3.4に挾まれた区
域10上に陽極酸化膜8を残留せしめる。この陽極酸化
膜8のエツチングは、例えば希塩@(HO2り溶液に浸
漬する等の方法により実施し得る。なお本工程において
、n+型領領域45に挾まれた区域11上には陽極酸化
膜8を残留せしめない。
Next, as shown in FIG. 4, the anodic oxide film 8 is selectively removed using a photoresist film 9 formed according to a predetermined pattern as a mask, and an anode is formed on the area 10 sandwiched between the n1 type regions 3.4. The oxide film 8 is left behind. This etching of the anodic oxide film 8 can be carried out, for example, by immersion in a dilute salt@(HO2) solution.In this step, the anodic oxide film 8 is Do not allow 8 to remain.

このあと上記フォトレジスト膜9を除去したのち、通常
の製造工程に従って第5図に示ずようにn+型領領域3
4.5上、に開口(電極窓) 12を有する硫化亜鉛(
ZnS)等よりなる絶縁膜13を、例えばリフトオフ法
を用いて厚さ凡そ3000 (人〕に形成する。この厚
さも特に限定する必要はないが、設計上或いは製造工程
上の要請を考慮すると凡そ2000〜6000 (人〕
程度が望ましいようである。
Thereafter, after removing the photoresist film 9, the n+ type region 3 is removed according to the normal manufacturing process as shown in FIG.
4.5 Zinc sulfide (with opening (electrode window) 12 on top)
An insulating film 13 made of ZnS or the like is formed to a thickness of approximately 3000 mm by using, for example, a lift-off method.This thickness also does not need to be particularly limited, but it can be approximately 2000-6000 (people)
It seems that a certain degree is desirable.

次いで上記開口12部においてn++域3,4.5とオ
ーミック接触せるアルミニウム(AA)電極14.15
.16を形成すると共に、前記絶縁膜12上の前記n+
型領領域、5に挾まれた区域11に対応する位置にAl
l電極17を形成することにより、第6図に示ず如きl
IgcdTe化合物半導体を用いた集積回路装置が完成
する。
Next, an aluminum (AA) electrode 14.15 is placed in ohmic contact with the n++ region 3, 4.5 at the opening 12.
.. 16 and the n+ on the insulating film 12.
Al is placed at the position corresponding to the area 11 sandwiched between the mold area and 5.
By forming the l electrode 17, the l electrode as shown in FIG.
An integrated circuit device using an IgcdTe compound semiconductor is completed.

上記第6図に示す集積回路装置において、チャネル部(
図の区域10)に陽極酸化M8を具備する素子Aはしき
い値が負となり、チャネル部(図の区域11)に陽極酸
化膜を有しない素子Bのしきい値は正となるため、素子
A及びBはそれぞれディブレシロン型及びエンハンスメ
ント型のMISFETを構成する。
In the integrated circuit device shown in FIG. 6 above, the channel portion (
Device A, which has anodized M8 in area 10 in the figure, has a negative threshold, and element B, which does not have an anodic oxide film in the channel part (area 11 in the figure), has a positive threshold. A and B constitute a dibresilon type MISFET and an enhancement type MISFET, respectively.

本発明に係る半導体装置の製造方法によれば、前述の如
(陽極酸化膜を所望部分に選択的に形成することによっ
て、l1gcdTe化合物半導体基板上にディブレジョ
ン型及びエンハンスメント型の双方の素子を容易に形成
することが出来、従来の製造方法の如く不純物濃度の微
妙な制御を必要としない。従って高速の集積回路装置を
容易に実現することが出来る。
According to the method of manufacturing a semiconductor device according to the present invention, as described above (by selectively forming an anodic oxide film on a desired portion, both deresion type and enhancement type elements can be formed on a l1gcdTe compound semiconductor substrate). It can be easily formed and does not require delicate control of impurity concentration as in conventional manufacturing methods.Therefore, a high-speed integrated circuit device can be easily realized.

なお本発明は前記一実施例に限定されることなく、更に
種々変形して実施し得る。
Note that the present invention is not limited to the one embodiment described above, and can be further modified and implemented in various ways.

例えば陽極酸化膜を選択的に形成するために上記一実施
例に示した方法は一つの例であって、通常用いられる如
何なる方法を用いても良い。
For example, the method shown in the above embodiment for selectively forming an anodic oxide film is just one example, and any commonly used method may be used.

また使用するHgCdTe化合物半導体基板はp型に限
定されるものではなく、n型であっても良い。
Further, the HgCdTe compound semiconductor substrate used is not limited to p-type, but may be n-type.

但しn型基板を用いた場合には前述の説明中のn型とp
型を総て反対にすることと、前記一実施例とは反対にチ
ャネル部に陽極酸化膜を設けた素子がエンハンスメント
型となることに留意する。
However, when using an n-type substrate, the n-type and p-type in the above explanation
It should be noted that all the types are reversed, and that the element in which an anodic oxide film is provided in the channel portion, contrary to the one embodiment described above, becomes an enhancement type.

更に陽極酸化膜8或いは絶縁11!l113等の厚さ、
絶縁1013や電極14〜17の材質等も種々選択し得
るものである。
Furthermore, an anodic oxide film 8 or insulation 11! Thickness of l113 etc.
Various materials can be selected for the insulation 1013 and the electrodes 14 to 17.

(fl  発明の詳細 な説明した如く本発明によれば、ディブレジョン型及び
エンハンスメンI・型の双方の半導体素子を、lIgc
dTe化合物半導体基板上に容易に形成することが出来
るので、IIgCdTeよりなる集積回路装置の製作が
容易となり、しかも高価な製造装置を必要としない。
(fl As described in detail, according to the present invention, both deregression type and enhancement type I type semiconductor devices can be manufactured by lIgc
Since it can be easily formed on a dTe compound semiconductor substrate, it becomes easy to manufacture an integrated circuit device made of IIgCdTe and does not require expensive manufacturing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明に係る半導体装置の製造方法の
一実施例を、その製造工程の順に示す要部断面図である
。 図において、■はHgCdTe化合物半導体基板、2は
In層、3〜5はn+型領領域8は陽極酸化膜、9はフ
ォトレシスI・膜、IO及びIIはチャネル部、13は
絶縁膜、14〜17は電極を示す。 代理人 弁理士  井桁貞− 第1 図 第3図 41  p
FIGS. 1 to 6 are sectional views of essential parts of an embodiment of the method for manufacturing a semiconductor device according to the present invention, showing the manufacturing steps in order. In the figure, ■ is a HgCdTe compound semiconductor substrate, 2 is an In layer, 3 to 5 is an anodized film in the n+ type region 8, 9 is a photoresis I film, IO and II are a channel part, 13 is an insulating film, 14 to 5 17 indicates an electrode. Agent Patent Attorney Sada Igeta - Figure 1 Figure 3 41 p.

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有するHgCdTe基板表面の所定領域に逆
導電型不純物を導入して複数個の逆導電型領域を形成し
た後、前記複数個の逆導電型領域の内から選ばれた所定
の逆導電型領域対に挾まれた区域表面に選択的に陽極酸
化膜を形成する工程を含むことを特徴とする半導体装置
の製造方法。
After introducing an opposite conductivity type impurity into a predetermined region on the surface of a HgCdTe substrate having one conductivity type to form a plurality of opposite conductivity type regions, a predetermined opposite conductivity type impurity selected from the plurality of opposite conductivity type regions is formed. 1. A method of manufacturing a semiconductor device, comprising the step of selectively forming an anodic oxide film on a surface of an area sandwiched between a pair of mold regions.
JP2963082A 1982-02-23 1982-02-23 Manufacture of semiconductor device Pending JPS58145157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2963082A JPS58145157A (en) 1982-02-23 1982-02-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2963082A JPS58145157A (en) 1982-02-23 1982-02-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58145157A true JPS58145157A (en) 1983-08-29

Family

ID=12281401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2963082A Pending JPS58145157A (en) 1982-02-23 1982-02-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58145157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188988A (en) * 1988-07-27 1993-02-23 Texas Instruments Incorporated Passivation oxide conversion wherein an anodically grown oxide is converted to the sulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188988A (en) * 1988-07-27 1993-02-23 Texas Instruments Incorporated Passivation oxide conversion wherein an anodically grown oxide is converted to the sulfide

Similar Documents

Publication Publication Date Title
JPS6145396B2 (en)
JPS5688354A (en) Semiconductor integrated circuit device
JPS61234041A (en) Semiconductor device and manufacture thereof
US4116722A (en) Method for manufacturing compound semiconductor devices
JPS58145157A (en) Manufacture of semiconductor device
CA1073118A (en) Field effect transistor and method of construction thereof
JPS56155531A (en) Manufacture of semiconductor device
US3518511A (en) Semiconductor device having at least one contact applied to a semiconductor material of the type ii-b-vi-a and method of manufacturing such device
JPS56111264A (en) Manufacture of semiconductor device
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPS58145162A (en) Manufacture of semiconductor device
JPS58124276A (en) Schottky gate field effect transistor and manufacture thereof
JPS6169176A (en) Manufacture of semiconductor device
JPH03159178A (en) Manufacture of capacitive schottky diode
JPH10107043A (en) Field effect semiconductor device and its manufacture
JPS57133681A (en) Field-effect semiconductor device
JPS5583265A (en) Semiconductor device and method of fabricating the same
JPS60100472A (en) Field effect transistor
JPS6077467A (en) Manufacture of field effect transistor
JPS61222176A (en) Schottky gate field effect transistor and manufacture thereof
JPS59130479A (en) Manufacture of schottky barrier gate type field effect transistor
JPH0245937A (en) Manufacture of semiconductor device
JPS5840347B2 (en) Manufacturing method of Schottky barrier gate field effect transistor
JPS58140166A (en) Manufacture of field effect transistor
JPS59213172A (en) Semiconductor device and manufacture thereof