JPS58143901A - Turning and cutting method by fine and high speed oscillation - Google Patents

Turning and cutting method by fine and high speed oscillation

Info

Publication number
JPS58143901A
JPS58143901A JP57023665A JP2366582A JPS58143901A JP S58143901 A JPS58143901 A JP S58143901A JP 57023665 A JP57023665 A JP 57023665A JP 2366582 A JP2366582 A JP 2366582A JP S58143901 A JPS58143901 A JP S58143901A
Authority
JP
Japan
Prior art keywords
cutting
tool
cut
workpiece
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57023665A
Other languages
Japanese (ja)
Other versions
JPS6147641B2 (en
Inventor
Junichiro Kumabe
隈部 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57023665A priority Critical patent/JPS58143901A/en
Publication of JPS58143901A publication Critical patent/JPS58143901A/en
Publication of JPS6147641B2 publication Critical patent/JPS6147641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/04Tool holders for a single cutting tool
    • B23B29/12Special arrangements on tool holders
    • B23B29/125Vibratory toolholders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/10Use of ultrasound

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

PURPOSE:To turn and cut a bar steel precisely so that the cut surface becomes finely jagged by giving a cutter ultrasonic oscillation, cutting a material at a high cutting speed and giving a fine feeding. CONSTITUTION:A cutter 2 is oscillated in the direction 12 of back components at an oscillation frequency (f), an amplitude (a), a high cutting speed (v) exceeding 200m/min, and a feed (depth of cut) S to make a two-dimensional cutting. In this case, the relief angle theta of the cutter is a value to be determined by the frequency (f), the amplitude (a) and the cutting speed (v). The cutting surface shape similar to a triangular wave shape is designed not to be brought into contact with the relief surface of the cutter. Crests and troughs are created, the cutting surface becomes finely jagged and chips 13, 14, 15 are cut into pieces.

Description

【発明の詳細な説明】 切削遠吠は近年ますます高速化されてきている。そして
、高精度加工が可能となってきている。しかし、この高
床切削による切削性の改善効果の反面では連続する高温
切りくずの処理には大変苦慮しているのが現状である。
DETAILED DESCRIPTION OF THE INVENTION Cutting howls have become increasingly faster in recent years. High-precision machining is now possible. However, although this raised bed cutting has the effect of improving machinability, it is currently very difficult to deal with continuous high-temperature chips.

捷だ、無人化、ロボット化の傾向が著しい今日とは云う
ものの、この切りくず処理技術がないために生産工程の
無人化、ロボット化が実現されていない鳴合が非常に多
い。連続する切りくずを寸断し一1集じん榊などによっ
て吸入しこれを処理しすることは切りくず処理の理想と
するところである。そして、また、この寸断切りくずを
プラスチック材の強化などに活甲できればと期待されて
いる。
Today, there is a remarkable trend toward unmanned and robotized manufacturing, but there are still many cases where unmanned and robotized production processes have not been realized due to the lack of chip processing technology. The ideal method of chip disposal is to cut continuous chips into pieces, suck them in with a dust collector, etc., and dispose of them. It is also hoped that these shredded chips can be used to strengthen plastic materials.

本発明は、その期待に応えるべ〈発明したもので、二次
元切削においてはバイトをその背分力方向に超音波撮動
さ“せ、200〜3QQ m/miル 以、」二の高速
の切削1索変で切削し、送りを振幅(片振幅)の例えば
K。程度の微少送り齢として切削油剤を十分に注油して
切削することによって、プラスチック材から炭素中材に
いたる工業材料すべてに対して賭事に針状切りくずに寸
断して、■同庁などの形状相変にも悪影響を与えずに従
来の旋削加工精度をもって精密旋削加工できるという画
期的な切りくず寸断精密旋削方法に関するものである。
The present invention was invented to meet these expectations.In two-dimensional cutting, the cutting tool is ultrasonically imaged in the direction of its back force, and the cutting speed is 200~3QQ m/mil or more. Cutting is carried out with one cutting curve, and the feed is set to the amplitude (half amplitude), for example, K. By cutting with enough cutting fluid as a minute feed age, all industrial materials from plastic materials to carbon medium materials can be shredded into needle-like chips, and the shape of the agency etc. This invention relates to an innovative chip-shredding precision turning method that allows precision turning to be performed with conventional turning accuracy without any adverse effects.

次に、本発明を図によって詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は板厚t、長さlの板状工作物lを切削jlil
fvをもって工具2に切込みSを与えて2次元切削する
場合である。このときの切りくず形状は切りくず3のよ
うに連続するのが一般である。そこで従来は、チップブ
レーカなどを工具に設けたり、振動送り切削などの方法
によって、この連続する切りくずの分断を試みてきた。
Figure 1 shows the cutting process of a plate-shaped workpiece l with a thickness t and a length l.
This is a case where two-dimensional cutting is performed by giving the cutting depth S to the tool 2 with fv. The chip shape at this time is generally continuous like chip 3. Conventionally, attempts have been made to break up these continuous chips by installing a chip breaker on the tool or using methods such as vibration feed cutting.

これらは、特定な一部の切削条件に対しては成果をあげ
ているようであるがまだ般用化されてはいない。すなわ
ち、加工精度に影響を与えないようにすると切りくずの
分断が不十分であったり、切りくずの分断を行えば加工
ftfIeが悪化したり、生産能率が低下してしまうな
ど両者を満足して実用できる方法が未だ開発されていな
いのが現状である。
Although these seem to have been successful for some specific cutting conditions, they have not yet been put into general use. In other words, if the machining accuracy is not affected, the chips may not be separated enough, and if the chips are separated, the machining ftfIe will deteriorate and the production efficiency will decrease. The current situation is that a practical method has not yet been developed.

第21ン1のように、工具2を切削方向4の方向、すな
わち、主分力方向に撮動させて切削することによって切
りくず3の長さが切りくず5のように長くなることは永
い間の振動切削に関する研究で判明している。そして、
この振動切削に関する研究において、背分力方向、ある
いは送り分力方向に工具を撮動させて切削することは特
別な場合以外実用できない方法であるとされている。例
えば、背分力方向においてはバイト逃げ面で工作物の切
削表面を衝撃する現象があり、工具切刃が損傷して切削
不可能となり、軟質材料にのみ適用できて硬質材料には
適用できないので一般的な方法ではないとされている。
As shown in No. 21-1, by moving the tool 2 in the cutting direction 4, that is, in the direction of the principal force component, the length of the chip 3 will not become as long as the chip 5. Research on vibration cutting between and,
In research on vibration cutting, it has been found that cutting by moving a tool in the direction of thrust force or feed force is a method that cannot be put to practical use except in special cases. For example, in the back force direction, there is a phenomenon in which the cutting surface of the workpiece is impacted by the flank of the cutting tool, which damages the tool cutting edge and makes cutting impossible. It is said that this is not a common method.

ところが、本発明者は前記現象が従来行なって来た10
0m/miル は下の低切削凛度において親。
However, the present inventor discovered that the above phenomenon has been observed in the past 10
0m/mil is the parent at the lower low cutting strength.

われる現象にすぎないことを解明した。It has been clarified that this is just a phenomenon that occurs.

すなわち、工具逃げ面を工作物表面と接触させないこと
は、工具の振動数f1振幅aを一定とするとき、切削速
度Vを従来前えもしなかった、1.00 m 1m i
 n以上の200 m / min 、 3QQm/m
in。
In other words, not bringing the tool flank into contact with the workpiece surface means that when the tool vibration frequency f1 and amplitude a are constant, the cutting speed V can be increased to 1.00 m 1 m i
200 m/min over n, 3QQm/m
in.

4QQ m /min という、高速切削速度とするこ
とによって実現でき、しかも、切込みSを振幅αよりも
極少として切削することによって切りくずをばらばらに
寸断して、切削面の表面あらさを数μmR,max  
として精密旋削することが究明された。主分力方向振動
切削では諸効果かえられる切削速度が約50〜6Q m
/miル程度であることにとられれ過ぎて、1桁高い切
削速度における挑戦を試みることを永らく見逃していた
。最近になって、主分力方向振動切削では約50〜60
m/min 以下の低い切削速度の領域で得られたすば
らしい切削諸効果が、本発明の振動切削方法では約30
0 m/min −400m/rnin 〜5QQ m
/min程度の高速切削速度の領域で得られることを究
明、発見した。すなわち、切りくずは荒事に寸断され、
したがって、切削力波形はパルス状切削力波形となり、
切削熱もパルス状となって切削流度を旧刊させないなど
主分力方向での効果と同様な効果かえられ、精密加工を
可能とする画期的効果があることを究明した。
This can be achieved by using a high cutting speed of 4QQ m/min, and by cutting with the depth of cut S much smaller than the amplitude α, the chips are broken into pieces and the surface roughness of the cut surface is reduced to several μmR, max.
It was discovered that precision turning can be used as a method. In principal force direction vibration cutting, the cutting speed that can change various effects is approximately 50 to 6Q m.
/mil, and for a long time overlooked the challenge of cutting at an order of magnitude higher cutting speed. Recently, approximately 50 to 60
The vibration cutting method of the present invention has excellent cutting effects obtained at low cutting speeds of less than 30 m/min.
0 m/min -400m/rnin ~5QQ m
It has been investigated and discovered that this can be obtained at high cutting speeds of about 1/min. In other words, the chips are shredded by Aragoto,
Therefore, the cutting force waveform becomes a pulsed cutting force waveform,
It was discovered that the cutting heat is also pulsed, which prevents the cutting flow rate from becoming obsolete, similar to the effect in the principal force direction, and has a groundbreaking effect that enables precision machining.

第3図において、工具2を背分力方向12の方向に振動
数f1振幅αで振動させて切削速度Vを前記したように
200m/min以七の高速の切削速度として、送り量
(切込み)Sを与えて二次元切削する。このとき、工具
の逃げ角θは振動数fX振幅aおよび切削速度Vで決る
値とし、図示のように三角波形で近似として示す切削表
面の表面形状と工具逃げ面とが接触しないようにする。
In FIG. 3, the tool 2 is vibrated in the thrust force direction 12 at a frequency f1 and amplitude α, and the cutting speed V is set to a high cutting speed of 200 m/min or higher as described above, and the feed amount (depth of cut) is Two-dimensional cutting is performed by giving S. At this time, the clearance angle θ of the tool is set to a value determined by the frequency fX amplitude a and the cutting speed V, so that the tool clearance surface does not come into contact with the surface shape of the cutting surface approximated by a triangular waveform as shown.

この第3図のようにして本発明を実施すると従来の切削
方法では第1図、第2図のように工作物の長さ方向に工
具2は一定の速度υで進行して、斜線で示す細長い面積
AxSをもつ切削部16を一率に切削してしまうために
長い連続した切りくず3.5となったものを、バイトの
振動変位をa sinωtとすると、aωCO5’ωt
で表わされるバイトの撮動速度と切削速度υの合成で画
かれるバイト刃先の運動軌跡を近似して示される三角波
形b′でバイト刃先が進行するために、第8図の斜1線
で示した矩形の微小面積の小ブロックfs、7.8・・
・を切削することになる。
When the present invention is carried out as shown in FIG. 3, in the conventional cutting method, the tool 2 advances at a constant speed υ in the length direction of the workpiece as shown in FIGS. 1 and 2, as shown by diagonal lines. If the vibration displacement of the cutting tool is a sinωt, then aωCO5′ωt is obtained by cutting the cutting part 16 with a long and narrow area AxS at a constant rate, resulting in long continuous chips of 3.5 cm.
The cutting edge moves in the triangular waveform b', which is approximated by the motion locus of the cutting tool tip drawn by combining the photographing speed of the cutting tool and the cutting speed υ, which is expressed by . A small rectangular block fs with a small area, 7.8...
- will be cut.

すなわち、卯、1図、第2図では工作物の長さlが切削
長さであったが、本発明の実施によって第3図のように
極小分割された微小長さの集合の形であるl=ΣルΔl
 に小刻に分割して−1 9J削することができる。両者の速度の合成であるから
、この小ブロック6.7.8・・・は図示のように、切
削速度Vの方向に平行には分割できずに、後述する厖帽
ja1振動数f、切削速度υで表わされる工具型動lザ
イクル毎の工作物内部から工作物表面に向う切削方向に
細分分割した微少面積を切削速度υの方向に傾斜させて
並べた形状になる。従って、山と谷とが発生し、切削表
面形状は凹凸面となる。そして、これを切削するために
、切りくずは荒事に寸断され、切りくず13,14.1
5・・・・となる。山の頂点、点aを有する凹凸面形状
の切削表面から切込み(送り量)Sを与えて二次元切削
すると、山の頂点は点すに移り、山の頂点の差が切込み
(送り量)Sに相当する。同様に小ブロック9゜1(1
,11・・・が形成されて、切りくずが寸断される。こ
の工具には後述する逃げ角θを与えることが本発明の特
長の1つである。
That is, in Figures 1 and 2, the length l of the workpiece was the cutting length, but by implementing the present invention, it is in the form of a collection of minute lengths divided into extremely small lengths as shown in Figure 3. l=ΣruΔl
It is possible to cut -19J by dividing it into small pieces. Because it is a combination of both speeds, these small blocks 6, 7, 8... cannot be divided parallel to the direction of the cutting speed V, as shown in the figure, and the cutting It has a shape in which minute areas are subdivided in the cutting direction from the inside of the workpiece toward the workpiece surface for each cycle of tool movement expressed by the speed υ, and are arranged so as to be inclined in the direction of the cutting speed υ. Therefore, peaks and valleys occur, and the cut surface becomes uneven. In order to cut this, the chips are roughly cut into pieces, chips 13, 14.1
5... becomes. When two-dimensional cutting is performed by applying a depth of cut (feed amount) S from a cutting surface with an uneven surface shape having a peak of the peak and a point a, the peak of the peak shifts to a point, and the difference between the peaks of the peak is the depth of cut (feed amount) S corresponds to Similarly, small block 9゜1 (1
, 11... are formed, and the chips are shredded. One of the features of the present invention is that this tool is provided with a relief angle θ, which will be described later.

第3図に示す切削は第4図に示す方法によって実施され
る。すなわち、パイプ状の工作物1、を旋盤主軸にチャ
ックして高速回転させて切削速度υとする。バイトシャ
ンク2の尾部に頓音彼娠動子17を接着固定してバイト
シャンクを矢印14の方向に振動数fおよび振幅aをも
って紹音波縦撮動させ、バイトシャンク先端に切削工具
用チップを接着して二次元切削用切刃を成形する。そし
て、送りS rran/reυを与えてパイプ状工作物
の端面を二次元切削する。すなわち、切Hの両端は工作
物に接触させないようにし、主分力と背分力の2分力の
みが作用するような状態で切削する。
The cutting shown in FIG. 3 is performed by the method shown in FIG. That is, a pipe-shaped workpiece 1 is chucked onto the main spindle of a lathe and rotated at high speed to achieve a cutting speed υ. The bite shank 2 is glued and fixed to the tail of the bite shank 2, and the bite shank is vertically driven by a sound wave with a frequency f and an amplitude a in the direction of the arrow 14, and a cutting tool tip is glued to the tip of the bite shank. to form a cutting edge for two-dimensional cutting. Then, a feed S rran/reυ is applied to two-dimensionally cut the end face of the pipe-shaped workpiece. That is, both ends of the cut H are kept out of contact with the workpiece, and cutting is performed in such a state that only two components of force, the main component force and the back component force, act on the workpiece.

このとき、送りSmm/revをバイトの振幅aよりも
極小にする。例えば、α−16μm、s−0,3μm/
rev〜3μm/ r e v程度とする。刃先の運動
軌跡はバイトの変位αpin(2πf)・tで表わされ
る曲線と切削速度Vとで合成されて第5図(イ)のよう
な曲線Cで表わされる。このとき、切削速度が早いので
これを近似して三角波形dとしる。このθが重要であっ
て、バイトの逃げ角θ′はこのθよりも大きく与える必
要がある。逆にバイトの逃げ角θ′を設定してバイトを
成形したあとは、振動数fおよび振幅aを一定とした場
合、切削速度Vを主分力方向の振動切削の場合とは逆に
高1朱化する方向に選ぶことによって切削性の改善が実
現することになる。
At this time, the feed Smm/rev is made smaller than the amplitude a of the bite. For example, α-16 μm, s-0,3 μm/
It should be about rev~3μm/rev. The motion locus of the cutting edge is synthesized by the curve represented by the displacement α pin (2πf)·t of the cutting tool and the cutting speed V, and is represented by a curve C as shown in FIG. 5(A). At this time, since the cutting speed is fast, this is approximated to form a triangular waveform d. This θ is important, and the relief angle θ' of the cutting tool needs to be larger than this θ. On the contrary, after setting the relief angle θ' of the cutting tool and forming the cutting tool, when the frequency f and the amplitude a are constant, the cutting speed V is set to high 1, contrary to the case of vibration cutting in the principal force direction. By choosing the direction of vermilion, the machinability can be improved.

工作物の端面から切削し始めて端面各部が一定の送りS
 m+n/re Uになったとき、その切削表面は第5
図(ロ)の三角波形状ABCDEPG・・・となる。さ
らに工作物が1回転することによって、バイト切刃は送
りSだけ進み、斜線で示した部分、BCIi(1次の振
動lサイクルでDEKJ、さらに次の振動■ザイクルで
FGMT、・・・ と断続して寸断分割し、各小ブロッ
クを切りくずとして生成して切削する。切削方向は切削
速度υの方向に対して角θをな[7、工作物内部より工
作物表面に向う方向となる。角θはバイトの逃げ角θよ
り小でtanθ−−[つで表わされる。バめら−れ、a
=16μmとすると、α2キ0であるためΔll命命し
て考えられる。
Starting cutting from the end face of the workpiece, each part of the end face has a constant feed S
When m+n/re U, the cutting surface is the fifth
The triangular waveform ABCDEPG shown in figure (b) is obtained. Furthermore, as the workpiece rotates once, the cutting edge advances by the feed S, and in the shaded area, BCIi (DEKJ in the first vibration cycle, FGMT in the next vibration cycle, etc.), etc. The block is divided into pieces and each small block is generated as chips and cut.The cutting direction is at an angle θ with respect to the direction of the cutting speed υ [7, which is the direction from the inside of the workpiece toward the surface of the workpiece. The angle θ is smaller than the relief angle θ of the cutting tool and is expressed as tanθ−[.
= 16 μm, since α2 is 0, it can be considered as Δll.

すなわち、第1図、第2図では切削長さは工断された小
ブロックの長さΔlの集合によって表わされ、この分割
された小ブロックを切りくずに生成する見本な切りくず
寸断切削機構となるのである。このときの切込み(送り
)は2Scosθで表わされ、第1図、第2図の場合の
切込み(送り)に比べて約1.5倍大きくなる。このと
きの切削力の作用時間はバイトa動1円期のしで、その
切削力波形はパルス状の切削力波形となる。
That is, in FIGS. 1 and 2, the cutting length is represented by a set of lengths Δl of the cut small blocks, and a sample chip-shredding cutting mechanism that generates chips from the divided small blocks is shown in FIGS. It becomes. The depth of cut (feed) at this time is expressed as 2 Scos θ, and is approximately 1.5 times larger than the depth of cut (feed) in the cases of FIGS. 1 and 2. The acting time of the cutting force at this time is the duration of one cycle of the cutting tool a, and the cutting force waveform is a pulse-like cutting force waveform.

本発明の実姉によって、寸断切りくずを生成する切削機
構として、切削力波形において理想としている同期の短
い、作用時間の短いパルス切削力波形を工作物に作用さ
せうる画期的効果が得られる。
As a cutting mechanism that generates shredded chips, the present invention provides an epoch-making effect in which a pulsed cutting force waveform with short synchronization and a short action time, which is ideal in a cutting force waveform, can be applied to a workpiece.

旋削作業にはこの外に第6図の円筒旋削加工、第7図の
端面のIE面面側削加工第8図の中ぐり加工、第9図の
突切り加工がある。各図はこの各作業に本発明を実施す
る場合の基本的な実施方法を示すものである。第9図の
突切りの場合は第4図から容易に理解できるように切刃
の振動方向は工作物外周から工作物中心に向う、すなわ
ち半径方向に与える。このとき、第9図の左図のように
突切り長さが長い場合には切刃側面の異常中擦を防ぐだ
めに切刃先端からバックテーパを設ける。第9図の右図
のようにパイプの突切りの場合にはバックテーパを設け
ずに実施することができる。
In addition to the above, the turning operations include cylindrical turning as shown in FIG. 6, side cutting of the IE surface of the end face as shown in FIG. 7, boring as shown in FIG. 8, and parting as shown in FIG. Each figure shows a basic implementation method when implementing the present invention in each of these operations. In the case of the parting shown in FIG. 9, as can be easily understood from FIG. 4, the direction of vibration of the cutting blade is from the outer periphery of the workpiece toward the center of the workpiece, that is, in the radial direction. At this time, if the parting length is long as shown in the left diagram of FIG. 9, a back taper is provided from the tip of the cutting blade to prevent abnormal middle rubbing on the side surface of the cutting blade. In the case of cutting off a pipe as shown in the right diagram of FIG. 9, it is possible to cut off the pipe without providing a back taper.

本発明の円1肴な実施と理想的な効果を、発揮させるた
めには前述したように切りくず生成にあつかる切刃の逃
げ角の角度の選定にある。第6図のノーズ角90のバイ
トによる円筒加工で説明すれは、横切刃の横逃げ角の選
定にある。
In order to realize the ideal effect and implement the present invention in a simple manner, it is necessary to select the clearance angle of the cutting edge that is responsible for chip formation, as described above. The reason for explaining the cylindrical machining using a cutting tool with a nose angle of 90 in FIG. 6 lies in the selection of the side relief angle of the side blade.

そして、工具切刃先端と工作物回転中心軸を含む水平断
面において横切刃を工作物外周から工作物中心に向って
、工具の送り方向と角ψを々す方向に振動vTf ’=
振幅aをもって超音波撮動させる。このとき、工具の前
切刃の前逃げ面が作用しないように考慮する必要がある
。すなわち、前切刃を振動方向と一致する位置とするか
あるいは逃げ角γを与えすなわち、ノーズ角を9♂より
小さくして前切刃が全く工作物と接触させないようにす
ることが肝要である。
Then, in a horizontal section including the tip of the tool cutting edge and the center axis of rotation of the workpiece, the transverse blade is vibrated from the outer periphery of the workpiece toward the center of the workpiece in a direction that makes an angle ψ with the feeding direction of the tool vTf'=
Ultrasonic imaging is performed with amplitude a. At this time, consideration must be given to prevent the front flank of the front cutting edge of the tool from acting. In other words, it is important to position the front cutting edge in the same position as the vibration direction or give it a clearance angle γ, that is, to make the nose angle smaller than 9♂ so that the front cutting edge does not come into contact with the workpiece at all. .

先丸刃バイトの場合には横逃げ角と11工逃げ角を同一
 としているので、8次元切削の場合送り方向と振動の
方向とが同一にならないようにして実施する。
In the case of a round-tip cutting tool, the side clearance angle and the 11th clearance angle are the same, so when performing 8-dimensional cutting, make sure that the feed direction and vibration direction are not the same.

マフζ、本発明の特長は逃げ角を指定しているところで
、その逃げ角は従来の工具の7〜8°の角度に比べて大
きい角度となっている。そのために、刃先の機械的強度
が低下するので、すくい面には被削材強度に応じて負の
すくい角(+α)を与えて補強する。
The feature of the muff ζ of the present invention is that the clearance angle is specified, and the clearance angle is larger than the 7 to 8° angle of conventional tools. As a result, the mechanical strength of the cutting edge decreases, so the rake face is reinforced by giving a negative rake angle (+α) according to the strength of the workpiece.

第7図のiE而面削、第8図の中ぐり加工の場合も第6
図と同様にして実施される。これらの各図かられかるよ
うに本発明はねじ加工を含めてあらゆる旋削加工に適用
できる。図では縦超音波振動系バイトシャンクの場合で
説明したが、曲げ撮動系バイトシャンク、ねじり撮動系
・(イトンヤンクの場合でも同じ要領で実施できる。
In the case of iE surface milling as shown in Figure 7 and boring as shown in Figure 8, the 6th
It is carried out in the same manner as shown in the figure. As can be seen from these figures, the present invention can be applied to all types of turning processing including thread processing. In the figure, the explanation was given in the case of a vertical ultrasonic vibration type bite shank, but it can be carried out in the same way in the case of a bending type bite shank, a torsion type type, etc.

以−トのようにして約「の長さに切削しさが細分割され
る。次に、これをさらに、極細分割する方法について考
える。その方法として、☆の式かられかるようにもはや
、このυとfとのみを操作して考案することはできない
。別途の方法を附加する必要が生ずる。この切削長さを
細分割すれば当然表面あらさもより平滑化できる。この
目的に適合する方法が第10図のようにして創案される
。第10図は高速二次元切削の場合を示す。
As shown above, the cutting hardness is subdivided into lengths of about It cannot be devised by manipulating only υ and f.It becomes necessary to add a separate method.If this cutting length is divided into fine sections, the surface roughness can of course be made smoother.There is a method suitable for this purpose. It is created as shown in Fig. 10. Fig. 10 shows the case of high-speed two-dimensional cutting.

すなわち、前述したように工具2を振動数f1振幅aで
矢印18の方向に振動させ、切削速変Vで切削して得ら
れる凹凸面A B CD B F G・・・を、振動し
ている工具2より若干の距離うしろに離して刃物台に固
定した普通切削用工具21でその突出した山部の三角形
19を切削する。
That is, as described above, the tool 2 is vibrated in the direction of the arrow 18 at the frequency f1 and the amplitude a, and the uneven surface A B CD B F G obtained by cutting at the variable cutting speed V is vibrated. A triangular shape 19 on the protruding peak is cut using a normal cutting tool 21 fixed to a tool rest at a distance behind the tool 2.

この工具21の刃先Xの位置する点は工具2の振幅2a
内とする。第10図の場合は工具2の振動を止めだ位置
と同位置、すなわち図で示す2aの中点に位置する場合
である。
The point where the cutting edge X of this tool 21 is located is the amplitude 2a of the tool 2
Within. In the case of FIG. 10, the tool 2 is located at the same position as the vibration stopping position, that is, at the midpoint of 2a shown in the figure.

このようにして切削すると、工具2のみの場合では面、
晴D E K Jを切削するところを工具2]−によっ
てその一部の三角形の面積部19が削除されているので
、面1潰D E K Jよりも面積の狭い面積D’ i
6 K’ J’を切削することになる。すなわち、切削
良さを短縮することができる。工具21で切削する切削
長さも短く、シかも断続するのでその切りくずは寸断さ
れたさらに細い形状となる。
When cutting in this way, if only tool 2 is used, the surface,
Since part of the triangular area 19 is deleted by tool 2 when cutting the clear D E K J, the area D' i is narrower than the one-sided flat D E K J.
6 K'J' will be cut. In other words, cutting quality can be reduced. The length of the cut made by the tool 21 is short, and the cuts are intermittent, so the chips are cut into thinner pieces.

@5図(ロ)に示す方法によって本・発明が実施され、
工具切刃はその大部分は斜線部を切削してその切りくず
を寸断するが時として、第11図に示すように凹凸面A
 B CD E F” Gと同位相の切削面A、 B、
 C,D、 B、 F’、 G、を切削する場合も発生
する。
The present invention is carried out by the method shown in Figure 5 (b),
The cutting edge of the tool mostly cuts the shaded area and shreds the chips, but sometimes the cutting edge cuts the uneven surface A as shown in Figure 11.
B CD E F” Cutting surfaces A, B, in the same phase as G
This also occurs when cutting C, D, B, F', and G.

この場合の切りくずは連続する。しかし次第にその位相
がづれて再び寸断切りくずが鏑生ずるようになる。これ
は送りが振幅と近づいたFb較的送りの大きい場合に現
われ易い。しだがって、細かく寸断された切りくず群に
ところどころに連続した切りくずが混在したりノリぐず
形状となる。第11図の工具21の刃先位置は工具2の
振幅2aで形成される凹凸面A B CD E F G
の冬山A、 C,B、 Q  から送り量Sの位置とし
ている。このような刃先位置に設置した工具21によっ
て工具2のみでは連続する面積22中の一部の三角形2
3に相当する微少面、債を断続して削除しておき、これ
を振動する工具21でV字形の面積24部を切削するよ
うにして切りくずを寸断し、本発明の切りくず寸断の完
全実施を助成することができる。すなわち、工具21の
刃先の位置を工具2が振動して工作物1がら遠ざかって
形成する切削面のA CEQのよう々凹凸面の山附近に
設置し′#C場合である。このときは工具21には犬な
る切削抵抗が作用しないので、工具21に対する力学的
配慮は全熱必要としないが表面あらさの改善には何んら
役立たない。
The chips in this case are continuous. However, the phase gradually shifts and shredded chips begin to form again. This tends to occur when the feed is close to the amplitude of Fb and the feed is relatively large. Therefore, continuous chips are mixed here and there with the group of finely chopped chips, or the shape of glue scum is formed. The cutting edge position of the tool 21 in FIG. 11 is an uneven surface formed by the amplitude 2a of the tool 2 A B CD E F G
The feed amount S is set from winter mountains A, C, B, and Q. With the tool 21 installed at such a cutting edge position, only the tool 2 can cut out part of the triangle 2 in the continuous area 22.
The minute surfaces and bonds corresponding to No. 3 are intermittently removed, and the chips are shredded by cutting 24 parts of the V-shaped area with the vibrating tool 21, thereby achieving complete chip shredding according to the present invention. Implementation can be subsidized. That is, this is the case where the cutting edge of the tool 21 is placed near the peaks of an uneven surface such as ACEQ of the cutting surface formed by the tool 2 vibrating away from the workpiece 1. At this time, since no significant cutting resistance acts on the tool 21, mechanical considerations for the tool 21 do not require total heat, but are of no use in improving the surface roughness.

そこで、工具2が振動して工作物1に最も接近した第5
図(ロ)に示したHJI、あるいは第11図に示すB、
 D、 P、点のように工具2の振幅2a内において凹
凸面の谷部附近に工具21を設置することが考えられる
。このように設置するととによって、振動する工具2で
切削する面積は面積26となります捷す侠くなり、その
切りくず長さはます捷す短かくなる。そして表面あらさ
は第11図、第10図など比べて平滑になる。
Therefore, the tool 2 vibrates and the fifth tool closest to the workpiece 1
HJI shown in Figure (B) or B shown in Figure 11,
It is conceivable to install the tool 21 near the valleys of the uneven surface within the amplitude 2a of the tool 2, as shown at points D and P. With this installation, the area to be cut by the vibrating tool 2 becomes 26, which makes it easier to cut, and the length of the chips becomes shorter. The surface roughness is smoother than in FIGS. 11 and 10.

ただし、工具21−での面積は図示の面積25のように
なり、第11図の面積23、第10図の面積19に比べ
て広くなり、切込み深さも深くなって切削抵抗は大きく
なるので工具21に対する力学的配慮が若干必要となっ
てくる。
However, the area of the tool 21- is shown as the area 25 shown in the figure, which is wider than the area 23 in FIG. 11 and the area 19 in FIG. 21 requires some mechanical consideration.

以トのような振幅2a内の、工具2に対する工具21の
設館位置が本発明の特長である。これらの位置は切削状
態に応じて選定する。そして、最適な切りくず寸断切削
条件と平滑な表面あらさが得られる切削条件とのもとに
切削加工することができる。
The position of the tool 21 relative to the tool 2 within the amplitude 2a as described below is a feature of the present invention. These positions are selected depending on the cutting condition. Then, cutting can be carried out under optimal chip cutting conditions and cutting conditions that provide a smooth surface roughness.

第13図に工具2と工具21−の取付位置の関係をパイ
プ状工作物1の端面切削の場合で示す。
FIG. 13 shows the relationship between the mounting positions of the tool 2 and the tool 21- in the case of cutting the end face of the pipe-shaped workpiece 1.

工作物1を一定の回転数ルで回転させて切削車席υとし
て、第5図で説明したように、工具切刃を矢印で示す方
向に振動ナイff X、ff5幅aで超音波振動させら
れる超音波振動切削装置を旋盤往復台上の刃物台上に取
付け、工具21を例えば往復1上の向う刃物台上にすく
い面を工具2のすくい面とはその向きを逆にして旋盤ベ
ッド面に向けて取りつけ、その刃先位置を第10図で説
明した位置になるように調整することによって本発明が
実施される。工具2]−は工具2のように振動しないの
で、伺んらの制限はなくその逃げ角は7〜8°程度に与
える。一般の旋削加工への本発明の実施方法を第14図
〜第17図に示す。第14図は円筒旋削加工、第15図
は一端面のLE面面側削加工第1−6図は中ぐり加工、
第17図は突切り加工の場合である。
The workpiece 1 is rotated at a constant rotational speed and used as a cutting wheel seat υ, and the cutting edge of the tool is ultrasonically vibrated in the direction shown by the arrow with a vibration knife ffX, ff5 width a, as explained in Fig. 5. The ultrasonic vibration cutting device is mounted on the tool post on the lathe carriage, and the tool 21 is placed, for example, on the tool post on the opposite side of the carriage 1, with the rake face in the opposite direction to the rake face of the tool 2, and the tool 21 is placed on the lathe bed surface. The present invention is carried out by attaching the blade so that the cutting edge is facing the position shown in FIG. Since the tool 2]- does not vibrate like the tool 2, there is no limit to the clearance angle and the relief angle is set to about 7 to 8 degrees. A method of implementing the present invention for general turning processing is shown in FIGS. 14 to 17. Figure 14 shows cylindrical turning, Figure 15 shows side turning of the LE surface of one end, Figures 1-6 show boring,
FIG. 17 shows the case of cut-off processing.

この8合の工具2に対する諸角度の与え方およびG動方
向は前述した第6図〜第9図の場合と同様である。この
工具2切刀に対して工具21切刃を各図に示すように工
作物の回転中心からの距離が同一となるように工作物外
周からの切込みtあるいは送りを与えて、円筒加工、中
ぐり加工あるいは正面旋削、突切り加工を実施する。
The manner in which various angles are given to the tool 2 in the 8th position and the direction of G movement are the same as in the case of FIGS. 6 to 9 described above. As shown in each figure, the cutting edge of tool 21 is given the cutting depth t or feed from the outer circumference of the workpiece so that the cutting edge of tool 21 is the same distance from the rotation center of the workpiece as shown in each figure. Perform boring, face turning, and parting.

さて、このとき前述したように切りくずの寸断と表面あ
らさの平滑化が特長である本発明では工具21に対して
さらに一つの工夫をほどこす。すなわち、従来から行わ
れていることであるが、第15図で示すように前切刃に
さらい刃を附加する。このようにすることによって表面
あらさはさらに平滑化され、1〜2μm程度の平滑な表
面あらさの切削面が得られる。
Now, as mentioned above, in the present invention, which is characterized by cutting chips and smoothing the surface roughness, one further improvement is made to the tool 21. That is, as has been conventionally done, a wiper edge is added to the front cutting edge as shown in FIG. 15. By doing so, the surface roughness is further smoothed, and a cut surface with a smooth surface roughness of about 1 to 2 μm can be obtained.

第18図に本発明の具体的な実施例を示す。FIG. 18 shows a specific embodiment of the present invention.

直径54能、長さ100酵の炭素工具端材の工作物1を
旋盤主軸にチャックして、’zzooγpm で回転さ
せる。すくい角α−〇1横逃げ角25、ノーズ角9♂、
作用前切刃角20°、横切刃角70°のバイト刃先を固
有振動数21.7kHzの縦超音波型れい振動子17の
一端に設けた型幅拡大用ホーンの先端に接着したバイト
シャンク2の先端に成形して、撮動数21.7H−Iz
、片裾幅16μmで矢印18の方向に振動させる。そし
て、このバイトシャンク2に生ずる振動節のうち2個所
の位置において締付金具27を使用して刃物台28にこ
の縦振動系バイトを取付ける。さらに振幅拡大用ホーン
の振動節を利用して補強治具29によって重量のある振
動子側の刃物台・\の取付けを補強する。このようにし
て刃先が規則的な安定したf、αを示す振動姿性とする
ことができる。この刃先に切込みt = l van、
送りS=9μm/r e v と切削油剤を十分に注油
できる準備をする。そして、同一往復台上に向う刃物台
30を設け、その刃物台に同一横切刃角をなし、この場
合には表面あらさを平滑にすることを目的として長さ約
0.5(転)程度のさらい刃81を有するバイト21を
取付ける。そして、同一の切込みtとなるように刃先位
置を調整する。
A workpiece 1 made of carbon tool scraps with a diameter of 54mm and a length of 100mm is chucked onto the main spindle of a lathe and rotated at 'zzooγpm. Rake angle α-〇1 Side relief angle 25, Nose angle 9♂,
A bite shank with a cutting edge with a front cutting edge angle of 20 degrees and a side edge angle of 70 degrees glued to the tip of a mold width expanding horn provided at one end of a vertical ultrasonic vibration transducer 17 with a natural frequency of 21.7 kHz. Molded on the tip of 2, number of shots 21.7H-Iz
, vibrate in the direction of arrow 18 with one hem width of 16 μm. Then, the vertical vibration type cutting tool is attached to the tool rest 28 using the fastening fittings 27 at two positions of the vibration nodes generated in the cutting tool shank 2. Furthermore, the attachment of the heavy tool rest on the vibrator side is reinforced by a reinforcing jig 29 using the vibration nodes of the amplitude-enlarging horn. In this way, the cutting edge can be made to have a vibrational shape exhibiting regular and stable f and α. Cut into this cutting edge t = l van,
Prepare to feed S=9 μm/r ev and sufficiently lubricate with cutting fluid. Then, a tool rest 30 facing the same carriage is provided, and the tool rest has the same cross-cutting angle, and in this case, the length is about 0.5 (turn) for the purpose of smoothing the surface roughness. A cutting tool 21 having a wiper blade 81 is attached. Then, the position of the blade edge is adjusted so that the same depth of cut t is obtained.

実施例では炭素工具鋼の場合で示したが、本発明はテフ
ロン、ナイロンなどの有機合成樹脂材からはじまって非
鉄金属材料としてのアルミニウム合金1舎同合金などの
軟質材料、さらに鉄合金の炭素鋼、ステンレス鋼材やそ
れらを焼入れした硬質材料などd:もちろん、最近の工
業材料である無機材料にいたる工作物材料が本発明の対
象となる。
In the examples, the case of carbon tool steel was shown, but the present invention can be applied not only to organic synthetic resin materials such as Teflon and nylon, but also to soft materials such as aluminum alloys as non-ferrous metal materials, and further to carbon steel of iron alloys. , stainless steel materials and hard materials obtained by quenching them. Of course, the present invention covers workpiece materials ranging from inorganic materials that are recent industrial materials.

工作物材料が硬脆材料となると、工具逃げ角の角度につ
いて細心の注意が必要と力る。すなわち、第5図におい
て近似化した三角波形での逃げ角でなく、振動速度と切
削速度とで合成した角度Hをもって逃げ角とする。工作
物直径D1回転数ル、片振幅aX振動数fのとぎ、のI
(は、近似化した三角波形から求めたθよりも7〜10
°太きい。この大きな逃げ角で低下したバイト刃先の機
械的強度は負のすくい角を与えて補強する。
When the workpiece material is a hard and brittle material, careful attention must be paid to the tool clearance angle. That is, the clearance angle is not the clearance angle in the triangular waveform approximated in FIG. 5, but the angle H obtained by combining the vibration speed and the cutting speed. Workpiece diameter D1 rotation speed le, single amplitude aX frequency f, I
(is 7 to 10 more than θ obtained from the approximated triangular waveform.
°Thick. The mechanical strength of the cutting edge, which is reduced due to this large relief angle, is reinforced by providing a negative rake angle.

本発明は以上のように、工作物とバイトとの距離が変化
するようにバイトに超音波域の振動を与え、切削を断続
的に行なうので、切りくずが微細になり、その処理が容
易になる。そして切削が断続的に行なわれる結果、工作
物及びバイトの温度−ト昇を低くすることができる。こ
のことは工作物として炭素工具鋼材を切削した場合の切
りくずが、白灰色の!、まで、高温による変色をしない
ことから実証されてい乙。また、断続的な切削とは云え
その振動数はきわめて高いので、充分な表面粗さを維持
でき、実例として3〜4μmの表面粗さ、1.5〜2μ
mの真円度が得られる。そして、切削速度をバイトの逃
げ角と、振巾及び振動数で決まる限度以上としたので、
バイトの逃げ面が工作物に接触することもない。
As described above, the present invention applies vibrations in the ultrasonic range to the cutting tool so that the distance between the workpiece and the cutting tool changes, and cutting is performed intermittently, making chips finer and easier to dispose of. Become. Since cutting is performed intermittently, the temperature rise of the workpiece and the cutting tool can be reduced. This means that when cutting carbon tool steel as a workpiece, the chips are white-gray! , it has been proven that it does not discolor due to high temperatures. In addition, since the frequency of vibration is extremely high even though it is intermittent cutting, it is possible to maintain sufficient surface roughness.
A roundness of m is obtained. Since the cutting speed was set above the limit determined by the clearance angle, swing width, and frequency of the cutting tool,
The flank surface of the cutting tool does not come into contact with the workpiece.

さらに、振動しないバイトを前記撮動するバイトと併用
して、それにより形成された直後の凹凸を有する切削面
の凸部を断続的に切削することにより、さらに平滑な切
削面を得ることができると共に、振動するバイトの負担
を軽減させることができる。
Furthermore, by using a non-vibrating cutting tool in combination with the above-mentioned moving cutting tool to intermittently cut the convex portions of the cutting surface that have irregularities immediately after being formed, an even smoother cutting surface can be obtained. At the same time, the burden on the vibrating tool can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は従来の方法を示す各側面図、第3図は
本発明方法による切削状態を示す側面図である。第4図
は本発明方法を実施する装置の−例を示す側面図、第5
図は切削面の断面形状を示す拡大図、第6図乃至第9図
は各種の切削態様を示す各平面図である。第10図乃至
第12図は振動しないバイトを併用する場合の切削状態
を示す拡大断面図、第13図乃至第18図は本発明の各
実施例を示す平面図である。 1・・・工作物、2・・・(撮動する)バイト、17超
音波据動子、19.28.25・・凸部、21・・・(
J辰動じない)バイト。 特許出願人  隈  部  考〉 師 弟1図 第3図 7− 第6 図(イノ          第6 図c口)第
7 ヌHイノ         第7 図(ロノ第8図
(イノ     第8図(0] 第74図(イリ     第14図(。〕第11図(イ
)      第″図(0)第16図(イノ     
第16図(「り1
1 and 2 are side views showing the conventional method, and FIG. 3 is a side view showing the state of cutting by the method of the present invention. FIG. 4 is a side view showing an example of an apparatus for carrying out the method of the present invention;
The figure is an enlarged view showing the cross-sectional shape of the cutting surface, and FIGS. 6 to 9 are plan views showing various cutting modes. FIGS. 10 to 12 are enlarged sectional views showing cutting conditions when a non-vibrating cutting tool is used, and FIGS. 13 to 18 are plan views showing each embodiment of the present invention. 1... Workpiece, 2... (Pictured) part-time tool, 17 Ultrasonic stationary element, 19.28.25... Convex part, 21... (
J Shinmai) Part-time job. Patent Applicant Ko Kumabe> Master and Disciple 1 Figure 3 Figure 7- Figure 6 (Ino Figure 6 c-portion) Figure 7 NuH Ino Figure 7 (Rono Figure 8 (Ino Figure 8 (0)) Figure 74 (Iri Figure 14 (.) Figure 11 (A) Figure ″ (0) Figure 16 (Inno
Figure 16 (“Ri1

Claims (2)

【特許請求の範囲】[Claims] (1)工作物とバイトとの距離が変1′ヒするように、
バイトに超音波域の振動を与え、バイトの切込み量(送
り量)を振動のべ巾よりも充分に少なくすると共に、切
削速度をバイトの逃げ角と振動数及び振巾によって決ま
る最低速度より犬にして、バイトの逃げ面が工作物に接
触しないようにし、もって切削を断続的に行なうことを
特窒とする精密高速振動旋削方法。
(1) So that the distance between the workpiece and the cutting tool changes by 1',
Apply vibrations in the ultrasonic range to the cutting tool, make the depth of cut (feed amount) of the cutting tool sufficiently smaller than the width of the vibration, and set the cutting speed to a level lower than the minimum speed determined by the clearance angle, frequency, and amplitude of the cutting tool. A precision high-speed vibration turning method in which cutting is performed intermittently by preventing the flank surface of the cutting tool from contacting the workpiece.
(2)工作物とバイトとの距離が変化するように、バイ
トに超音波域の振動を与え、バイトの切込み量(送り量
)を振動の振巾よりも充分に少なくすると共に、切削速
度をバイトの逃げ角と振動数及び振巾によって決まる最
低速度より犬にして、バイトの逃げ面が工作物に接触し
ないようにし、もって切削を断続的に行なうと共に、さ
らに、前記とは別の振動しないバイトによって、前記振
動するバイトで形成された直後の微7#I凹凸を有する
切削面の凸部を断続的に切削することを特徴とする精密
高速振動旋削方法。
(2) Apply vibrations in the ultrasonic range to the cutting tool so that the distance between the workpiece and the cutting tool changes, and reduce the depth of cut (feed amount) of the tooling tool to be sufficiently smaller than the amplitude of the vibration, and reduce the cutting speed. The cutting speed is lower than the minimum speed determined by the clearance angle, vibration frequency, and swing width of the cutting tool, so that the flank surface of the cutting tool does not come into contact with the workpiece, and cutting is performed intermittently. A precision high-speed vibration turning method characterized in that a cutting tool intermittently cuts convex portions of a cutting surface having fine 7#I unevenness immediately after being formed by the vibrating cutting tool.
JP57023665A 1982-02-18 1982-02-18 Turning and cutting method by fine and high speed oscillation Granted JPS58143901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023665A JPS58143901A (en) 1982-02-18 1982-02-18 Turning and cutting method by fine and high speed oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023665A JPS58143901A (en) 1982-02-18 1982-02-18 Turning and cutting method by fine and high speed oscillation

Publications (2)

Publication Number Publication Date
JPS58143901A true JPS58143901A (en) 1983-08-26
JPS6147641B2 JPS6147641B2 (en) 1986-10-20

Family

ID=12116786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023665A Granted JPS58143901A (en) 1982-02-18 1982-02-18 Turning and cutting method by fine and high speed oscillation

Country Status (1)

Country Link
JP (1) JPS58143901A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268188A (en) * 2003-03-07 2004-09-30 Denso Corp Method of manufacturing needle
JP2007044849A (en) * 2005-08-12 2007-02-22 Utsunomiya Univ Cutting method
KR100797720B1 (en) 2006-05-09 2008-01-23 삼성전기주식회사 Manufacturing method of printed circuit board for fine circuit formation
JPWO2005090855A1 (en) * 2004-03-22 2008-05-08 株式会社エス・ケー・ジー Light guide plate
JP2017132022A (en) * 2016-01-29 2017-08-03 株式会社ディスコ Bite cutting method and bite cutting device
CN107073612A (en) * 2014-10-28 2017-08-18 三菱电机株式会社 Numerical control device
JP2017177267A (en) * 2016-03-29 2017-10-05 シチズン時計株式会社 Machine tool and control device therefor
WO2017213026A1 (en) * 2016-06-06 2017-12-14 国立大学法人名古屋大学 Micromachining method, die manufacturing method, and micromachining apparatus
US10671046B2 (en) 2014-11-26 2020-06-02 Mitsubishi Electric Corporation Method and apparatus for applying vibration and machining an object
CN112974874A (en) * 2021-02-04 2021-06-18 吉林大学 Two-dimensional ultrasonic elliptical vibration machine tool and part machining control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495958B1 (en) * 2001-03-28 2005-06-16 가부시키가이샤 노스 Multilayer wiring board, method for producing multilayer wiring board, polisher for multilayer wiring board, and metal sheet for producing wiring board
US20240131648A1 (en) * 2021-06-22 2024-04-25 Fanuc Corporation Machine tool control device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268188A (en) * 2003-03-07 2004-09-30 Denso Corp Method of manufacturing needle
JPWO2005090855A1 (en) * 2004-03-22 2008-05-08 株式会社エス・ケー・ジー Light guide plate
JP4524282B2 (en) * 2004-03-22 2010-08-11 株式会社エス・ケー・ジー Light guide plate
JP2007044849A (en) * 2005-08-12 2007-02-22 Utsunomiya Univ Cutting method
KR100797720B1 (en) 2006-05-09 2008-01-23 삼성전기주식회사 Manufacturing method of printed circuit board for fine circuit formation
CN107073612A (en) * 2014-10-28 2017-08-18 三菱电机株式会社 Numerical control device
EP3213848A4 (en) * 2014-10-28 2018-07-11 Mitsubishi Electric Corporation Numerical control device
US10625355B2 (en) 2014-10-28 2020-04-21 Mitsubishi Electric Corporation Numerical control device
US10671046B2 (en) 2014-11-26 2020-06-02 Mitsubishi Electric Corporation Method and apparatus for applying vibration and machining an object
JP2017132022A (en) * 2016-01-29 2017-08-03 株式会社ディスコ Bite cutting method and bite cutting device
JP2017177267A (en) * 2016-03-29 2017-10-05 シチズン時計株式会社 Machine tool and control device therefor
WO2017213026A1 (en) * 2016-06-06 2017-12-14 国立大学法人名古屋大学 Micromachining method, die manufacturing method, and micromachining apparatus
CN109311095A (en) * 2016-06-06 2019-02-05 国立大学法人名古屋大学 Micro-processing method, mould manufacturing method and micro Process equipment
EP3466572A4 (en) * 2016-06-06 2020-02-26 National University Corporation Nagoya University Micromachining method, die manufacturing method, and micromachining apparatus
CN112974874A (en) * 2021-02-04 2021-06-18 吉林大学 Two-dimensional ultrasonic elliptical vibration machine tool and part machining control method thereof

Also Published As

Publication number Publication date
JPS6147641B2 (en) 1986-10-20

Similar Documents

Publication Publication Date Title
Moriwaki et al. Ultrasonic elliptical vibration cutting
Shamoto et al. Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting
JPS58143901A (en) Turning and cutting method by fine and high speed oscillation
Suzuki et al. Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting
JP3021470B2 (en) Method and apparatus for cutting articles
US7692360B2 (en) Apparatus for ultrasonic vibration-assisted machining
JP2012210689A (en) Machining method of fiber reinforced composite material, and tool therefor
Liu et al. Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance
Balamuth Ultrasonic assistance to conventional metal removal
JPH0649241B2 (en) Superposed vibration cutting method
JPS6246281B2 (en)
JP3479688B2 (en) Difficult-to-cut material cutting tools
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
US3807257A (en) Apparatus and method for delivering vibratory energy
JPS58196934A (en) Precision oscillation cutting method for ceramics
JPH0575560B2 (en)
JPH0624692B2 (en) Precision groove grinding method by compound vibration of grindstone
JPH06339847A (en) Work method for circumferential groove in ceramics
Liu et al. Ultrasonic Vibration Assisted Cutting of Tungsten Carbide
JPS6147642B2 (en)
JPS62140703A (en) Heating/cooling type precise cutting/grinding processing method for ceramics
JPH0253519A (en) Thread groove cutting method and device by ultrasonic vibration of interrupted pulse-cutting force waveform
JPH07164288A (en) Ultrasonic vibration grinding method, ultrasonic vibration grinding tool, and ultrasonic vibration grinding device
JP2002096201A (en) Ductile mode cutting work method of brittle material by slitting direction vibrational cutting and cutting work device
JPH0624693B2 (en) Precision grinding method of ceramics etc. by compound vibration of grindstone