JP2012210689A - Machining method of fiber reinforced composite material, and tool therefor - Google Patents

Machining method of fiber reinforced composite material, and tool therefor Download PDF

Info

Publication number
JP2012210689A
JP2012210689A JP2011078184A JP2011078184A JP2012210689A JP 2012210689 A JP2012210689 A JP 2012210689A JP 2011078184 A JP2011078184 A JP 2011078184A JP 2011078184 A JP2011078184 A JP 2011078184A JP 2012210689 A JP2012210689 A JP 2012210689A
Authority
JP
Japan
Prior art keywords
reinforced composite
composite material
tool
processing
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011078184A
Other languages
Japanese (ja)
Other versions
JP5729554B2 (en
Inventor
Seisuke Kano
誠介 加納
Hirofumi Shimura
洋文 志村
Toshimitsu Okane
利光 岡根
Takashi Hyodo
行志 兵藤
Shigeru Kawamoto
茂 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Koki KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Shin Nippon Koki KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Koki KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical Shin Nippon Koki KK
Priority to JP2011078184A priority Critical patent/JP5729554B2/en
Publication of JP2012210689A publication Critical patent/JP2012210689A/en
Application granted granted Critical
Publication of JP5729554B2 publication Critical patent/JP5729554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a machining method of a material having largely anisotropic mechanical characteristics and a tool therefor, capable of performing high-quality machining of a fiber reinforced composite material (a unidirectional growth solidification metallic material such as a crystalline polymer having directionality in a crystal) being a material whose mechanical characteristics largely vary depending on the direction of the material inside, particularly, a carbon fiber reinforced plastic (CFRP).SOLUTION: This machining method of the fiber reinforced composite material is characterized by cutting a surface of the fiber reinforced composite material by using a blade-shaped tool made of a hard material selected from a cemented carbide, a cermet, a ceramics, a ceramics coating film, a diamond and CBN, and having a curved shape having a radius R of a specific curvature in an edge of a rake surface. In the blade-shaped tool for machining the fiber reinforced composite material, the blade-shaped tool made of the hard material selected from the cemented carbide, the cermet, the ceramics, the ceramics coating film, the diamond and the CBN, has the smooth edge tip, and has a curved shape toward the outside from a central part of the edge, and is 30°-60° in a wedge angle.

Description

本発明は、異方性の大きな機械特性をもつ材料(繊維強化型複合材料等)の加工方法及びその工具に関する。   The present invention relates to a method for processing a material (such as a fiber-reinforced composite material) having a large anisotropic mechanical property and a tool therefor.

機械的特性が材料内部の方向によって大きく異なる材料(繊維強化型複合材料、一方向成長凝固型金属材料、結晶に方向性のある結晶性ポリマー等)、代表的には炭素繊維強化プラスチック(CFRP)やガラス繊維強化プラスチック(GFRP)等の加工においては、従来の機械加工ではこれらの異方性が強い材料は良好な精度や表面性状が得られなかった。とくに最近航空機の構造材料として炭素繊維強化プラスチック(CFRP)が注目されその利用拡大が期待されている。   Materials whose mechanical properties vary greatly depending on the internal direction of the material (fiber reinforced composite materials, unidirectionally grown solidified metal materials, crystalline polymers with crystal orientation), typically carbon fiber reinforced plastic (CFRP) In the processing of glass fiber reinforced plastic (GFRP) and the like, these machines with strong anisotropy cannot obtain good precision and surface properties by conventional machining. In particular, carbon fiber reinforced plastic (CFRP) has recently attracted attention as an aircraft structural material, and its use is expected to expand.

繊維や結晶方向とそれを横切る方向では、加工力が大きく異なるが、従来の工具や加工方法は、この異方性を無視してきた。
そのため、繊維や結晶の方向と横切る方向とでは加工された面の粗さが大きく異なり、場合によっては繊維や結晶の引き抜きやマトリックス(繊維を結合している部分)の破壊が起こる。また、繊維強化型材料によっては、加工面に大きな欠陥でき、圧縮強度を大幅に低下させることが少なからず起こっていた。
この問題の解決には、一般の金属を切削する工具と加工方法を再検討することから考えなければならない。
The processing force differs greatly between the fiber and crystal direction and the direction crossing it, but conventional tools and processing methods have ignored this anisotropy.
Therefore, the roughness of the processed surface differs greatly between the direction of the fiber and crystal and the direction of crossing, and in some cases, the fiber or crystal is pulled out or the matrix (part where the fibers are bonded) is broken. In addition, depending on the fiber reinforced material, a large defect can be formed on the processed surface, and the compressive strength is significantly reduced.
In order to solve this problem, it is necessary to reconsider a tool and a processing method for cutting a general metal.

材料内部の方向性が著しい素材として木材や竹材が挙げられるが、これらの加工は通常の金属加工用の工具でも殆ど問題なく加工できる(素材の延展性や強度が小さいため)が表面性状(粗さ)を良くすることや、表面のダメージを防ぐことは困難である。
また、これらの問題を無くすために用いられる木工用工具は金属加工工具材料と異なり、焼き入れ鋼等の安価な材料を用いて加工を行っているが、この木工用加工工具の形状は、金属加工とは極めて異なった刃先形状となっており、先端は鋭利のカミソリ状となっている。
Wood and bamboo are examples of materials that have a remarkable orientation within the material, but these materials can be processed with almost no problems even with ordinary tools for metal processing (because the spreadability and strength of the material are small), but the surface properties (roughness) It is difficult to improve the thickness) and prevent surface damage.
Also, woodworking tools used to eliminate these problems are processed using inexpensive materials such as hardened steel, unlike metalworking tool materials. The shape of this woodworking tool is metal The cutting edge shape is very different from machining, and the tip is sharp razor.

現在の炭素繊維強化プラスチック(CFRP)の機械加工は、回転工具によるもので、加工の送り速度を上げると、加工面粗度が大きくなり、層間剥離のようなダメージが懸念される。   The current machining of carbon fiber reinforced plastic (CFRP) is by a rotating tool. When the feed rate of machining is increased, the machined surface roughness increases and there is a concern about damage such as delamination.

工具の回転により加工するフライス盤やマシニングセンターによる加工では、工具先端が鋭利でないため、繊維を容易に切断できない。切りこみ時点で被加工材に圧壊する応力が発生することと、刃物先端と異方性の原因となっている要素に加わる力が大きく変化し切断できない状況が発生し(びびり等)、引きちぎり状態となる。 In processing by a milling machine or machining center that is processed by rotating a tool, the tool tip is not sharp, and thus the fibers cannot be easily cut. The material to be crushed is generated at the time of cutting, and the force applied to the blade tip and the element causing the anisotropy changes greatly, resulting in a situation where cutting is not possible (chatter, etc.), and the torn state It becomes.

工具と被削物の角度は、一般に図1に示されるように、被削物と工具の成す角は、工具の進行方向の前面には切屑が発生し、切屑をすくいとるような役割をしている面があり、これをすくい面と云い、その面の垂直面に対する角度をすくい角αと云う。また、刃先の先端の角度βを刃物角と云い、被切削物と工具の間に空間を作るための角度を、逃げ角γと云う。
本発明者は、非回転型の工具に着目し、工具の材質や工具と材料のすくい面に着目し、すくい面の刃先の形状が曲線状であり、とくに、工具の材質の硬度と特定範囲のすくい面の刃先の形状の曲率半径Rを維持すれば、炭素繊維強化プラスチック(CFRP)の表面にダメージを与えることなく、加工速度を上げることができる事実を発見し、本発明を完成させるに至った。
As shown in Fig. 1, the angle between the tool and the workpiece is generally such that the angle formed by the workpiece and the tool plays a role of generating chips on the front surface in the direction of travel of the tool and scooping up the chips. This is called the rake face, and the angle of the face with respect to the vertical plane is called the rake angle α. Further, the angle β at the tip of the blade edge is referred to as a blade angle, and an angle for creating a space between the workpiece and the tool is referred to as a clearance angle γ.
The inventor pays attention to the non-rotating type tool, pays attention to the material of the tool and the rake face of the tool and the material, and the shape of the cutting edge of the rake face is a curved shape. In order to complete the present invention, the fact that the processing speed can be increased without damaging the surface of the carbon fiber reinforced plastic (CFRP) if the curvature radius R of the shape of the cutting edge of the rake face is maintained. It came.

本願発明は、機械的特性が材料内部の方向によって大きく異なる材料である繊維強化型複合材料(一方向成長凝固型金属材料、結晶に方向性のある結晶性ポリマー等)、とくに炭素繊維強化プラスチック(CFRP)の高品質な加工をすることができる異方性の大きな機械特性をもつ材料の加工方法及びその工具を提供することである。   The present invention relates to a fiber-reinforced composite material (unidirectionally grown solidified metal material, crystalline polymer having crystal orientation, etc.), which is a material whose mechanical properties vary greatly depending on the direction inside the material, particularly carbon fiber reinforced plastic ( It is an object of the present invention to provide a method for processing a material having a large anisotropic mechanical property capable of high-quality processing (CFRP) and a tool thereof.

本発明は、繊維強化型複合材料の表面を、超硬合金、サーメット、セラミックス及びセラミックス被膜、ダイヤモンド、CBNから選ばれる硬質材質で作られ、かつ、すくい面の刃先が一定の曲率半径Rを有する曲線状である刃状工具を用いて切削することを特徴とする繊維強化型複合材料の加工方法。
また、本発明では、繊維強化型複合材料が炭素繊維強化プラスチック(CFRP)とすることが好ましい。
さらに、本発明の繊維強化型複合材料の加工方法においては、すくい面の刃先の曲率半径Rが20mm以下、とくに5〜15mmで切削することを特徴とする繊維強化型複合材料の加工方法である。
またさらに、本発明の繊維強化型複合材料の加工方法においては、刃先を加工方向と異なる方向に移動しながら加工するとより滑らかな表面が得られる。
In the present invention, the surface of the fiber reinforced composite material is made of a hard material selected from cemented carbide, cermet, ceramics and ceramic coating, diamond, and CBN, and the cutting edge of the rake face has a constant radius of curvature R. A method for processing a fiber-reinforced composite material, wherein cutting is performed using a curved blade-like tool.
In the present invention, the fiber reinforced composite material is preferably carbon fiber reinforced plastic (CFRP).
Further, the fiber-reinforced composite material processing method of the present invention is a fiber-reinforced composite material processing method characterized by cutting with a radius of curvature R of the cutting edge of the rake face of 20 mm or less, particularly 5 to 15 mm. .
Furthermore, in the processing method of the fiber reinforced composite material of the present invention, a smoother surface can be obtained by processing while moving the blade edge in a direction different from the processing direction.

また、本発明は、超硬合金、サーメット、セラミックス及びセラミックス被膜、ダイヤモンド、CBNから選ばれる硬質材質で作られた刃状工具が、滑らかな刃先先端を有し、刃先の中央部から外側に向け、曲線状であり刃物角が30°〜60°である繊維強化型複合材料の加工用刃状工具である。
さらに本発明の繊維強化型複合材料の加工用刃状工具では、刃先の中央部から外側に向けた曲線が円弧、楕円、サイクロイド、インボリュートから選ばれる曲線とすることができる。
またさらに本発明の繊維強化型複合材料の加工用刃状工具では、加工用刃状工具の一部に、切削機械のホルダーに取り付けるためのボルト孔を有することが好ましい。
Further, according to the present invention, a blade-like tool made of a hard material selected from cemented carbide, cermet, ceramics and ceramic coating, diamond, and CBN has a smooth cutting edge tip and is directed outward from the center of the cutting edge. The blade tool for processing a fiber-reinforced composite material having a curved shape and a blade angle of 30 ° to 60 °.
Furthermore, in the cutting tool for processing a fiber-reinforced composite material of the present invention, the curve from the center of the blade edge toward the outside can be a curve selected from an arc, an ellipse, a cycloid, and an involute.
Furthermore, in the cutting tool for processing a fiber-reinforced composite material of the present invention, it is preferable that a part of the cutting tool for processing has a bolt hole for attaching to a holder of a cutting machine.

本発明の繊維強化型複合材料の加工方法によれば、従来の回転型による切削加工後の被切削加工物が、加工面粗度が大きくなり、層間剥離のようなダメージが懸念されるのに対し、本発明の繊維強化型複合材料の加工方法によればその心配がなく、本発明の切削方法によって加工されたCFRP試験片と、従来の切削方法(回転工具のダイヤコートエンドミル工具)によって加工されたCFRP試験片では、明らかに破断強度において、本発明の繊維強化型複合材料の加工方法が優れていることが判明した。
また、本発明の繊維強化型複合材料の加工用刃状工具は、従来の材質を用いて手軽に作成することができる。
According to the processing method of the fiber reinforced composite material of the present invention, the workpiece to be cut after the conventional rotary mold has a high surface roughness, and there is a concern about damage such as delamination. On the other hand, according to the processing method of the fiber reinforced composite material of the present invention, there is no concern, and processing is performed by the CFRP test piece processed by the cutting method of the present invention and the conventional cutting method (diamond-coated end mill tool of a rotary tool). It was found that the processed CFRP specimen clearly has an excellent processing method for the fiber-reinforced composite material of the present invention in terms of breaking strength.
Moreover, the cutting edge tool for processing the fiber-reinforced composite material of the present invention can be easily produced using a conventional material.

切削部分の角度の関係Cutting angle relationship テスト装置の構成Configuration of test equipment ワークの顕微鏡データと工具刃先(本発明)Microscope data and tool cutting edge (invention) ワークの顕微鏡データ工具刃先(従来技術回転型)Microscope data tool cutting edge of workpiece (rotary type of conventional technology) 試験片形状と切削加工対象面Specimen shape and surface to be machined 試料及び加工方法による破断強度比較Comparison of breaking strength by sample and processing method 試料による赤外線サーモグラフィー試験結果比較Comparison of infrared thermography test results by sample

本発明で用いる工具は、非回転型工具であって、本発明で用いる工具は、除去加工される材料に対して、局所的に力を加えないと、強度の大きな強化要素全体を破壊しなければならず、加工力が大きくなってしまう。そのため、刃先はシャープあることを要求するが、欠損(欠け)を防止するため、滑らかな刃先先端にすること。また、焼結工具においては、焼結用粉体は1μm以下(ナノレベル)、または数十μm以上の大きさが望ましい。工具の刃先形状、材質、作成本数を以下の表に示す。

Figure 2012210689
表1中、超硬は、タングステンカーバイトコバルト(サーメットの1種)であり、ハイスは、ハイスピードスチール(高速度鋼)である。
テスト加工の結果、工具のチッピングが顕著に見られ、工具刃物角、送り速度を変えて最適の条件を模索した。本発明の加工工具は、被切削物の加工において、刃先を加工方向と異なる方向に移動しながら加工すると、加工力が小さく、なめらかな表面に仕上がる。
The tool used in the present invention is a non-rotating tool, and the tool used in the present invention must destroy the entire strengthening element having a high strength unless a force is locally applied to the material to be removed. The processing power will become large. Therefore, it is required that the cutting edge is sharp, but in order to prevent chipping (chipping), make the cutting edge smooth. In the sintering tool, the sintering powder is desirably 1 μm or less (nano level) or several tens of μm or more. The following table shows the cutting edge shape, material, and number of tools created.
Figure 2012210689
In Table 1, the carbide is tungsten carbide cobalt (a kind of cermet), and the high speed is high speed steel (high speed steel).
As a result of the test processing, the chipping of the tool was noticeable, and the optimum condition was sought by changing the tool blade angle and the feed speed. In the machining tool of the present invention, when machining the workpiece while moving the cutting edge in a direction different from the machining direction, the machining force is small and the surface is finished smoothly.

テスト装置の概要は以下のとおりである(図2参照)。
(イ)NC装置、(ロ)加工ヘッド、(ハ)工具取り付けアダプタ、(ニ)工具、(ホ)CFRP加工テストピース、(ヘ)ワーククランプ装置、(ト)真空ポンプ、(チ)超低温空気発生器及び噴出ノズル、(リ)加速度センサー、(ヌ)FETアナライザー、(ル)三分力動力計、(ヲ)データ収集システム、(ヲー1)表面粗さ計、(ヲの2)加工面確認用デジタルカメラ、(ヲ.)チャージアンプ、(ワ)カメラ付き実体顕微鏡システム<工具摩耗状況確認用>、(カ)切粉回収装置、(ヨ)加工テスト用機械本体。
テスト加工に必要なテスト装置の主要要素を取り付け、その動作をすべて確認し、CFRP加工テストピースを各種切削条件で加工しその時の切削動力、切削振動、加工面、工具刃先のマクロ的状況、加工面の面粗度の各種データを採取し、最適な切削条件を模索した。
また、加工後のワークのダメージ評価を行うための専用加工治具を作成した。ダメージ評価用テスト素材ピースを作成し、専用加工治具に取り付け、ダメージ評価用切削加工を実施した。比較のために従来工具(回転工具)を取り付け、ダメージ評価用切削加工を実施した。
The outline of the test apparatus is as follows (see FIG. 2).
(B) NC device, (b) Processing head, (c) Tool mounting adapter, (d) Tool, (e) CFRP processing test piece, (f) Work clamp device, (g) Vacuum pump, (h) Ultra-low temperature air Generator and jet nozzle, (li) acceleration sensor, (nu) FET analyzer, (le) three component force dynamometer, (wo) data collection system, (wo-1) surface roughness meter, (wo-2) machined surface Digital camera for confirmation, (W.) Charge amplifier, (W) Stereo microscope system with camera <For tool wear status confirmation>, (F) Chip collection device, (Y) Machine body for machining test.
Attach the main elements of the test equipment necessary for the test processing, check all the operations, process the CFRP processing test piece under various cutting conditions, cutting power, cutting vibration, processing surface, macro status of the tool edge, processing Various surface roughness data were collected and the optimum cutting conditions were sought.
In addition, a dedicated processing jig for evaluating damage of the workpiece after processing was created. A test material piece for damage evaluation was created, attached to a dedicated processing jig, and cut for damage evaluation. For comparison, a conventional tool (rotary tool) was attached, and cutting for damage evaluation was performed.

今回開発した本発明の工具の切削評価を行うため、CFRPテストパネルを立てて側面の直線加工を実施した。
刃先角の異なる工具を使用し、送り速度を変えて加工を実施した。その時の切削力のデータを取り、工具形状と送り速度の関係を調査した。刃物角45°の工具を用いて、すくい面の刃先の曲率半径R15mmで、送り速度1000mm/minで炭素繊維強化プラスチック(CFRP)を切削加工した。
また、顕微鏡で工具刃先、ワーク加工面を撮影した。その結果を図3に示す。
さらに、従来のダイヤコートエンドミル工具(回転工具)を用いて、送り速度1000mm/minで炭素繊維強化プラスチック(CFRP)を切削加工した。顕微鏡で加工面及び工具刃先の撮影を行った。その結果を図4に示す。
In order to evaluate the cutting of the tool of the present invention developed this time, the CFRP test panel was set up and the side surface was straightened.
Using tools with different edge angles, machining was performed at different feed rates. The cutting force data at that time was taken and the relationship between the tool shape and the feed rate was investigated. Using a tool with a blade angle of 45 °, carbon fiber reinforced plastic (CFRP) was cut at a radius of curvature R15 mm of the cutting edge of the rake face and at a feed rate of 1000 mm / min.
Moreover, the tool blade edge and the workpiece machining surface were photographed with a microscope. The result is shown in FIG.
Furthermore, carbon fiber reinforced plastic (CFRP) was cut at a feed rate of 1000 mm / min using a conventional diamond-coated end mill tool (rotary tool). The processing surface and tool edge were photographed with a microscope. The result is shown in FIG.

表面加工の方法のワークへの力学的な影響・効果を検証するために、本発明の切削方法によって加工されたCFRP試験片と、従来の切削方法(回転工具のダイヤコートエンドミル工具)によって加工されたCFRP試験片との差を次の実験により確認した。 In order to verify the mechanical influence and effect of the surface processing method on the workpiece, it is processed by a CFRP test piece processed by the cutting method of the present invention and a conventional cutting method (diamond-coated end mill tool of a rotary tool). The difference from the CFRP test piece was confirmed by the following experiment.

<力学試験>
本発明の切削方法によって加工されたCFRP試験片と、従来の切削方法(回転工具のダイヤコートエンドミル工具)によって加工されたCFRP試験片を作成し、
その引張強度特性を比較した。材料形状はJISK7083:1993炭素繊維強化プラスチックの低荷重−引張疲れ試験方法の規格に準じ、表面加工の力学的な効果を検証するのに適切な形状(図5)とし、材料試験機を用いて
2.0mm/minのクロスヘッドスピードにより変位を負荷し、引張強度等を求めた。その結果、例えば、45°一方向の炭素繊維によるCFRPでは、従来工具(ダイヤコートエンドミル工具)による破断強度が66.4±8.9MPa
であるのに対して、本発明による工具では破断強度が91.0±4.6MPaと有意差(p<0.05)があることが判明した。図6参照
<Mechanical test>
A CFRP test piece processed by the cutting method of the present invention and a CFRP test piece processed by a conventional cutting method (diacoat end mill tool of a rotary tool) are prepared.
The tensile strength characteristics were compared. The material shape conforms to the standard of the low load-tension fatigue test method of JIS K7083: 1993 carbon fiber reinforced plastic, and is a shape suitable for verifying the mechanical effect of surface processing (FIG. 5). Displacement was loaded at a crosshead speed of 2.0 mm / min to determine tensile strength and the like. As a result, for example, in CFRP with carbon fibers in one direction at 45 °, the breaking strength with a conventional tool (diamond coated end mill tool) is 66.4 ± 8.9 MPa.
On the other hand, the tool according to the present invention was found to have a significant difference (p <0.05) in breaking strength of 91.0 ± 4.6 MPa. See FIG.

<赤外線サーモグラフィ試験>
上記地器楽試験で用いたCFRP試験片を用いて、本発明の工具による加工方法と従来の切削方法(回転工具のダイヤコートエンドミル工具)により加工されたCFRP試験片の赤外放射特性を、2次元イメージングにより検証した。
その結果、周期荷重下の弾性的な温度変動分布(熱弾性応力測定)は炭素繊維の方向により特徴づけられること、一方、散逸エネルギーは試料ごとに異なり、また計測面で均一ではなく一定の分布を有することが可視化された。(図7)
とくに、試料C(従来工具)とD(本発明の工具)による試料の散逸エネルギを比較すると、試料C(従来工具)で顕著に計測されている。散逸エネルギは、微小クラックや摩擦に起因するものであり、従来工具による加工では、微小なダメージがより顕著に試料に発生したことが示唆される。
<Infrared thermography test>
Using the CFRP test piece used in the above earthenware test, the infrared radiation characteristics of the CFRP test piece processed by the machining method of the present invention and the conventional cutting method (diamond-coated end mill tool of a rotary tool) It was verified by dimensional imaging.
As a result, the elastic temperature fluctuation distribution (thermoelastic stress measurement) under cyclic loading is characterized by the direction of the carbon fiber, while the dissipated energy varies from sample to sample and is not uniform on the measurement surface but a constant distribution It was visualized to have (Fig. 7)
In particular, when the dissipated energy of the sample by the sample C (conventional tool) and D (tool of the present invention) is compared, the sample C (conventional tool) is remarkably measured. The dissipated energy is attributed to minute cracks and friction, and it is suggested that minute damage is more prominently generated in the sample by processing with a conventional tool.

この結果より、木工用工具の形状と類似な形状の工具で、材質としては金属加工用の超硬合金、サーメット、ダイヤモンド、CBNを用いて、加工条件を適切にすると、異方性のある材料でも加工面に殆ど欠陥が入らない加工が可能となることが判明する。
欠陥の入らない加工になる理由としては、硬質で先端が鋭利な刃物であるため、極めて局部に加工力が集中すること、シェーパーやプレーナー的加工を行うことにより、材料の異方性の原因となっている繊維や方向性のある結晶等を一定の横剪断力(ナイフでの加工剪断力と同様)で切断しやすくなるため、方向性の原因となっている要素が引きちぎられてめくり上がる現象がおこらず、結果として表面粗さが小さく、表面にダメージが少ない加工となっていると思われる。
結論的には、カミソリで加工する形態で、刃先が加工方向と一定に傾いた刃先形状をもった工具で、一方向加工を行うこととなる。
上記の工具形状は、刃先を加工方向と異なる方向に移動しながら加工すると、加工力が小さく、なめらかな表面に仕上がることと同様の加工方法となる。
From this result, it is a tool with a shape similar to the shape of a woodworking tool, and the material is cemented carbide, cermet, diamond, CBN for metal processing. However, it turns out that it is possible to process with almost no defects on the processed surface.
The reason for machining without defects is that the cutting tool is hard and has a sharp tip. Phenomenon that causes directionality torn off because it becomes easy to cut the fibers and directional crystals etc. with a certain transverse shear force (similar to the processing shear force with a knife). It appears that the surface roughness is small and the surface is less damaged as a result.
In conclusion, unidirectional machining is performed with a tool having a cutting edge shape in which the cutting edge is inclined with respect to the processing direction in the form of machining with a razor.
The above-mentioned tool shape is a processing method similar to that when the cutting is performed while moving the cutting edge in a direction different from the processing direction, the processing force is small and the surface is finished on a smooth surface.

本発明の繊維強化型複合材料の加工方法は、従来の機械加工ではこれらの異方性が強い材料は良好な精度や表面性状が得られなかったのに比して、良好な表面性状が得られ、繊維強化型複合材料の機械的強度も低下させないので、最近航空機の構造材料として注目されている炭素繊維強化プラスチック(CFRP)に有効に適用できるため、炭素繊維強化プラスチック(CFRP)の利用拡大が期待され、産業上の利用可能性がきわめて高い。
The processing method of the fiber reinforced composite material of the present invention has a good surface property as compared with the case where these materials with strong anisotropy did not have good accuracy and surface property by conventional machining. In addition, since the mechanical strength of fiber reinforced composite materials is not reduced, it can be effectively applied to carbon fiber reinforced plastic (CFRP), which has recently been attracting attention as a structural material for aircraft, so the use of carbon fiber reinforced plastic (CFRP) has been expanded. Is expected, and the industrial applicability is extremely high.

Claims (7)

繊維強化型複合材料の表面を、超硬合金、サーメット、セラミックス及びセラミックス被膜、ダイヤモンド、CBNから選ばれる硬質材質で作られ、かつ、すくい面の刃先が一定の曲率半径Rを有する曲線状である刃状工具を用いて切削することを特徴とする繊維強化型複合材料の加工方法。 The surface of the fiber reinforced composite material is made of a hard material selected from cemented carbide, cermet, ceramics and ceramic coating, diamond, and CBN, and the cutting edge of the rake face has a curved shape with a constant radius of curvature R. A method for processing a fiber-reinforced composite material, wherein cutting is performed using an edge tool. 繊維強化型複合材料が炭素繊維強化プラスチック(CFRP)である請求項1に記載した繊維強化型複合材料の加工方法。 The method for processing a fiber reinforced composite material according to claim 1, wherein the fiber reinforced composite material is carbon fiber reinforced plastic (CFRP). すくい面の刃先の曲率半径Rが20mm以下、とくに5〜15mmである請求項1に記載した繊維強化型複合材料の加工方法。 The method for processing a fiber-reinforced composite material according to claim 1, wherein the radius of curvature R of the cutting edge of the rake face is 20 mm or less, particularly 5 to 15 mm. 刃先を加工方向と異なる方向に移動しながら加工する繊維強化型複合材料の加工方法。 A processing method for a fiber-reinforced composite material that is processed while moving the cutting edge in a direction different from the processing direction. 超硬合金、サーメット、セラミックス及びセラミックス被膜、ダイヤモンド、CBNから選ばれる硬質材質で作られた刃状工具が、滑らかな刃先先端を有し、刃先の中央部から外側に向け、曲線状であり刃物角が30°〜60°である繊維強化型複合材料の加工用刃状工具。 A cutting tool made of a hard material selected from cemented carbide, cermet, ceramics and ceramic coating, diamond, CBN has a smooth cutting edge, curved from the center to the outside of the cutting edge An edge tool for processing a fiber-reinforced composite material having an angle of 30 ° to 60 °. 刃先の中央部から外側に向けた曲線が円弧、楕円、サイクロイド、インボリュートから選ばれる曲線である請求項4に記載した繊維強化型複合材料の加工用刃状工具。 The cutting edge tool for processing a fiber-reinforced composite material according to claim 4, wherein the curve from the center of the cutting edge toward the outside is a curve selected from an arc, an ellipse, a cycloid, and an involute. 加工用刃状工具の一部に、切削機械のホルダーに取り付けるためのボルト孔を有する請求項4又は請求項5に記載した繊維強化型複合材料の加工用刃状工具。
The cutting tool for processing a fiber-reinforced composite material according to claim 4 or 5, wherein a part of the cutting tool has a bolt hole for attaching to a holder of a cutting machine.
JP2011078184A 2011-03-31 2011-03-31 Method for processing fiber reinforced composite material and tool thereof Expired - Fee Related JP5729554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078184A JP5729554B2 (en) 2011-03-31 2011-03-31 Method for processing fiber reinforced composite material and tool thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078184A JP5729554B2 (en) 2011-03-31 2011-03-31 Method for processing fiber reinforced composite material and tool thereof

Publications (2)

Publication Number Publication Date
JP2012210689A true JP2012210689A (en) 2012-11-01
JP5729554B2 JP5729554B2 (en) 2015-06-03

Family

ID=47265103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078184A Expired - Fee Related JP5729554B2 (en) 2011-03-31 2011-03-31 Method for processing fiber reinforced composite material and tool thereof

Country Status (1)

Country Link
JP (1) JP5729554B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157570A1 (en) 2013-03-27 2014-10-02 三菱瓦斯化学株式会社 Entry sheet for cutting fiber reinforced composite material or metal and cutting method
KR20180034674A (en) 2015-11-26 2018-04-04 미츠비시 가스 가가쿠 가부시키가이샤 Cutting method of fiber-reinforced composites
KR20180037922A (en) 2015-08-06 2018-04-13 미츠비시 가스 가가쿠 가부시키가이샤 Cutting auxiliary lubricant and cutting method
WO2018198965A1 (en) 2017-04-25 2018-11-01 三菱瓦斯化学株式会社 Cutting-aiding lubricant, cutting-aiding lubricant sheet, and cutting method using same
WO2018216756A1 (en) 2017-05-25 2018-11-29 三菱瓦斯化学株式会社 Cutting work assisting lubricating material, cutting work assisting lubricating sheet, and cutting method
US10159153B2 (en) 2012-03-27 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
KR20190003621A (en) 2016-06-13 2019-01-09 미츠비시 가스 가가쿠 가부시키가이샤 How to make drill bits and holes
KR20190003622A (en) 2016-06-13 2019-01-09 미츠비시 가스 가가쿠 가부시키가이샤 How to make drill bits and holes
US10674609B2 (en) 2014-03-31 2020-06-02 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
CN111575611A (en) * 2020-06-19 2020-08-25 南京尚吉增材制造研究院有限公司 SiC fiber-WC-Ni hard alloy composite material and preparation method thereof
WO2021225051A1 (en) 2020-05-08 2021-11-11 三菱瓦斯化学株式会社 Support tape for processing fiber-reinforced composite materials, and machining method
WO2021225052A1 (en) 2020-05-08 2021-11-11 三菱瓦斯化学株式会社 Support material for processing fiber-reinforced composite materials, and machining method
US11325199B2 (en) 2016-02-17 2022-05-10 Mitsubishi Gas Chemical Company, Inc. Cutting work method and method for producing cut product
US11383307B2 (en) 2015-09-02 2022-07-12 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling and method for drilling processing using same
US11819930B2 (en) 2016-11-14 2023-11-21 Mitsubishi Gas Chemical Company, Inc. Material for built-up edge formation and built-up edge formation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115806A (en) * 1990-09-03 1992-04-16 Sharp Corp Cutting tool
JPH09314406A (en) * 1996-05-27 1997-12-09 Osaka Diamond Ind Co Ltd Hard cutting tip and its manufacturing
JPH10249610A (en) * 1997-03-12 1998-09-22 Osaka Diamond Ind Co Ltd Carbide cutting tip and rotary cutting tool
JPH11347807A (en) * 1998-06-03 1999-12-21 Osaka Diamond Ind Co Ltd Cutting tool and cutting method for ductile cutting-resistant material
JP2004181548A (en) * 2002-11-29 2004-07-02 Allied Material Corp Monocrystal diamond cutting tool and its manufacturing method
JP2008218823A (en) * 2007-03-06 2008-09-18 Denso Corp Metal electrode forming method for semiconductor device
JP2009291864A (en) * 2008-06-04 2009-12-17 Micro Diamond Corp Diamond cutting tool
WO2010128085A1 (en) * 2009-05-06 2010-11-11 Element Six Limited Superhard insert

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115806A (en) * 1990-09-03 1992-04-16 Sharp Corp Cutting tool
JPH09314406A (en) * 1996-05-27 1997-12-09 Osaka Diamond Ind Co Ltd Hard cutting tip and its manufacturing
JPH10249610A (en) * 1997-03-12 1998-09-22 Osaka Diamond Ind Co Ltd Carbide cutting tip and rotary cutting tool
JPH11347807A (en) * 1998-06-03 1999-12-21 Osaka Diamond Ind Co Ltd Cutting tool and cutting method for ductile cutting-resistant material
JP2004181548A (en) * 2002-11-29 2004-07-02 Allied Material Corp Monocrystal diamond cutting tool and its manufacturing method
JP2008218823A (en) * 2007-03-06 2008-09-18 Denso Corp Metal electrode forming method for semiconductor device
JP2009291864A (en) * 2008-06-04 2009-12-17 Micro Diamond Corp Diamond cutting tool
WO2010128085A1 (en) * 2009-05-06 2010-11-11 Element Six Limited Superhard insert

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159153B2 (en) 2012-03-27 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
KR20150133210A (en) 2013-03-27 2015-11-27 미츠비시 가스 가가쿠 가부시키가이샤 Entry sheet for cutting fiber reinforced composite material or metal and cutting method
WO2014157570A1 (en) 2013-03-27 2014-10-02 三菱瓦斯化学株式会社 Entry sheet for cutting fiber reinforced composite material or metal and cutting method
US10674609B2 (en) 2014-03-31 2020-06-02 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling
KR20180037922A (en) 2015-08-06 2018-04-13 미츠비시 가스 가가쿠 가부시키가이샤 Cutting auxiliary lubricant and cutting method
KR20190008444A (en) 2015-08-06 2019-01-23 미츠비시 가스 가가쿠 가부시키가이샤 Cutting auxiliary lubricant and cutting method
US10384322B2 (en) 2015-08-06 2019-08-20 Mitsubishi Gas Chemical Company, Inc. Lubricant material for assisting machining process and machining method
US11383307B2 (en) 2015-09-02 2022-07-12 Mitsubishi Gas Chemical Company, Inc. Entry sheet for drilling and method for drilling processing using same
US10518341B2 (en) 2015-11-26 2019-12-31 Mitsubishi Gas Chemical Company, Inc. Cutting method for fiber reinforced composite material
KR20180034674A (en) 2015-11-26 2018-04-04 미츠비시 가스 가가쿠 가부시키가이샤 Cutting method of fiber-reinforced composites
US11325199B2 (en) 2016-02-17 2022-05-10 Mitsubishi Gas Chemical Company, Inc. Cutting work method and method for producing cut product
US11097357B2 (en) 2016-06-13 2021-08-24 Mitsubishi Gas Chemical Company, Inc. Drill bit and hole formation method
KR20190114017A (en) 2016-06-13 2019-10-08 미츠비시 가스 가가쿠 가부시키가이샤 Drill bit and hole formation method
KR20190003622A (en) 2016-06-13 2019-01-09 미츠비시 가스 가가쿠 가부시키가이샤 How to make drill bits and holes
KR20190003621A (en) 2016-06-13 2019-01-09 미츠비시 가스 가가쿠 가부시키가이샤 How to make drill bits and holes
US11819930B2 (en) 2016-11-14 2023-11-21 Mitsubishi Gas Chemical Company, Inc. Material for built-up edge formation and built-up edge formation method
US11214748B2 (en) 2017-04-25 2022-01-04 Mitsubishi Gas Chemical Company, Inc. Lubricant material for assisting machining process, lubricant sheet for assisting machining process, and machining method using the same
WO2018198965A1 (en) 2017-04-25 2018-11-01 三菱瓦斯化学株式会社 Cutting-aiding lubricant, cutting-aiding lubricant sheet, and cutting method using same
US11225625B2 (en) 2017-05-25 2022-01-18 Mitsubishi Gas Chemical Company, Inc. Lubricant material for assisting machining process, lubricant sheet for assisting machining process, and machining method
WO2018216756A1 (en) 2017-05-25 2018-11-29 三菱瓦斯化学株式会社 Cutting work assisting lubricating material, cutting work assisting lubricating sheet, and cutting method
WO2021225051A1 (en) 2020-05-08 2021-11-11 三菱瓦斯化学株式会社 Support tape for processing fiber-reinforced composite materials, and machining method
WO2021225052A1 (en) 2020-05-08 2021-11-11 三菱瓦斯化学株式会社 Support material for processing fiber-reinforced composite materials, and machining method
CN111575611A (en) * 2020-06-19 2020-08-25 南京尚吉增材制造研究院有限公司 SiC fiber-WC-Ni hard alloy composite material and preparation method thereof

Also Published As

Publication number Publication date
JP5729554B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5729554B2 (en) Method for processing fiber reinforced composite material and tool thereof
Geng et al. Rotary ultrasonic elliptical machining for side milling of CFRP: Tool performance and surface integrity
Diaz et al. The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity
Wang et al. Occurrence and formation mechanism of surface cavity defects during orthogonal milling of CFRP laminates
Sharma et al. Characterization of chipping and tool wear during drilling of float glass using rotary ultrasonic machining
Liu et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP)
Feucht et al. Latest machining technologies of hard-to-cut materials by ultrasonic machine tool
Lopez de Lacalle et al. Design and test of a multitooth tool for CFRP milling
Liu et al. Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model
Nestler et al. Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites
James et al. Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process
Wu et al. Investigation of the wear characteristics of microcrystal alumina abrasive wheels during the ultrasonic vibration-assisted grinding of PTMCs
Liang et al. Feasibility of ultrasonic vibration assisted grinding for carbon fiber reinforced polymer with monolayer brazed grinding tools
Chen et al. Ultrasonic vibration assisted grinding of CFRP composites: Effect of fiber orientation and vibration velocity on grinding forces and surface quality
Zheng et al. Hole drilling in ceramics/Kevlar fiber reinforced plastics double-plate composite armor using diamond core drill
Dong et al. Investigation on grinding force and machining quality during rotary ultrasonic grinding deep-small hole of fluorophlogopite ceramics
Huang et al. A study of grinding forces of SiCp/Al composites
Liu et al. Tool wear mechanisms in axial ultrasonic vibration assisted milling in-situ TiB 2/7050Al metal matrix composites
Huda et al. Machinability study of ultrasonic assisted machining (UAM) of carbon fibre reinforced plastic (CFRP) with multifaceted tool
Huang et al. Predictive cutting force model for ductile-regime machining of brittle materials
Han et al. Experimental study of tool wear in milling multidirectional CFRP laminates
Júnior et al. Green ceramic machining benefits through ultrasonic-assisted turning: an experimental investigation
Zhang et al. Investigation on the machined surface quality and removal mechanism of SiCf/SiC composites in ultrasonic-assisted grinding
Tawakoli et al. Experimental investigation of material removal mechanism in grinding of alumina by single grain scratch test
Yan et al. Surface generation mechanism of ceramic matrix composite in ultrasonic assisted wire sawing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5729554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees