JPS58196934A - Precision oscillation cutting method for ceramics - Google Patents

Precision oscillation cutting method for ceramics

Info

Publication number
JPS58196934A
JPS58196934A JP7697582A JP7697582A JPS58196934A JP S58196934 A JPS58196934 A JP S58196934A JP 7697582 A JP7697582 A JP 7697582A JP 7697582 A JP7697582 A JP 7697582A JP S58196934 A JPS58196934 A JP S58196934A
Authority
JP
Japan
Prior art keywords
cutting
workpiece
tool
speed
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7697582A
Other languages
Japanese (ja)
Other versions
JPS6240121B2 (en
Inventor
Junichiro Kumabe
隈部 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP7697582A priority Critical patent/JPS58196934A/en
Publication of JPS58196934A publication Critical patent/JPS58196934A/en
Publication of JPS6240121B2 publication Critical patent/JPS6240121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/02Arrangements for chip-breaking in turning-machines

Abstract

PURPOSE:To reduce cutting force in a precision oscillation cutting method for working ceramics by applying ultrasonic oscillation to a tool by applying periodical tool oscillation to a work in such a manner as to cut the work from the inside thereof toward the surface thereof. CONSTITUTION:A cutting speed (v) and an oscillation speed are composed of frequency (f) and unilateral amplitude (a) so that the locus of the movement of the blade edge of a tool 3 shows the waveform A, B, C, D. When a work further makes one revolution to get a depth (t') of cutting, the waveform is A', B', C', D'. In this case, the portion cut by a cutting edge of the tool 3 is an approximate area BB', CC', DD' EE'... indicated by oblique lines. This is not a continuous area, but divided areas to be cut fractionally. At this time, the cutting force works upon the work from the inside thereof toward the surface thereof.

Description

【発明の詳細な説明】 新しい工業材料として多くの産業分野で期待されている
セラミックスについては、これを普通炭素鋼と同様に自
由自在に旋削加工できる切削理論と技術の開発が要請さ
れている。
[Detailed Description of the Invention] Regarding ceramics, which is expected to be used as a new industrial material in many industrial fields, there is a need for the development of cutting theory and technology that can be turned freely in the same way as ordinary carbon steel.

本発明は、このような要請に応える新しいセラミックス
の精密振動旋削法に関するものである。
The present invention relates to a new precision vibration turning method for ceramics that meets these demands.

セラミックスのもつ優れた緒特性が、切削加工における
難削材としての要因となっている。
The excellent properties of ceramics make them difficult-to-cut materials in cutting processes.

硬い性質は脆性を意味し、硬いという機械的性質がもた
らす切削力の増大によって、脆いセラミックス工作物が
巨視的には折損や破損を起こし易くなり、また微視的に
は工作物表面に微細クラックを発生させることになる。
Hard properties mean brittleness, and the increased cutting force brought about by hard mechanical properties makes brittle ceramic workpieces more likely to break or break macroscopically, and microscopically causes microscopic cracks on the workpiece surface. will occur.

このセラミックスの旋削加工では、切削力がわずかでも
軽減される方法、また微細クラックの発生が他の方法に
比べてわずかでも軽減される方法によって旋削加工する
ことが肝要となる。
When turning ceramics, it is important to use a method that reduces the cutting force even slightly, and a method that reduces the occurrence of microcracks even slightly compared to other methods.

しかるに1周知のように耐熱性に優れるセラミックスを
高温切削、低温切削しても切削力には変化が見られず、
工具形状を変化させてもセラミックスに対しては何ら影
響を与えない。また。
However, as is well known, there is no change in cutting force even when ceramics, which have excellent heat resistance, are cut at high or low temperatures.
Even if the tool shape is changed, it has no effect on ceramics. Also.

切削油剤の種類を変えても切削工具の冷却効果のみとな
って、本質的な切削機構に寄与させてその切削力を軽減
させる効果は得られない。
Even if the type of cutting fluid is changed, it only has a cooling effect on the cutting tool, and does not have the effect of contributing to the essential cutting mechanism and reducing the cutting force.

ここにおいて、切削力そのものを軽減させる方法に適切
な方法が全くないと仮定するならば、この切削力が作用
するセラミックス工作物の剛性、すなわち、ばね定数を
増大させる方法について考える。すなわち、大きな切削
力が作用してもセラミックス工作物のたわみが少ない切
削方法について考える。
Here, assuming that there is no suitable method for reducing the cutting force itself, we will consider a method of increasing the rigidity, that is, the spring constant, of the ceramic workpiece on which this cutting force acts. In other words, we will consider a cutting method that minimizes deflection of ceramic workpieces even when large cutting forces are applied.

いま、第1図のようにして丸棒工作物1をバイト2によ
って高速切削する場合を考える。高速切削の背分力方向
切削力波形はp;+Bs1nωtで近似化して表わされ
るのも、 M:旋盤主軸に取り付けた工作物1の等価質量(ゆf 
−s ” 7m) C:主軸に取り付けた工、作物の水平方向の粘性減衰係
数(kgf−s/n+) k:旋盤主軸に取り付けた工作物の水平方向のばね定数
(kgf/龍) P、:背分力方向静的切削力成分(’9f)pt:背分
力方向動的切削力成分(kgf)ω:切削力の変動角固
有振動数(rad /s )賜:工作物の水平方向角固
有振動数(rad/s)ここで、(1)式の運動方程式
の解は、ω/叫〉1のとき、 t となる。すなわち、時間tの項がなくなり、ばね定数に
で静的切削力Ptを割った値のXをもって変位すること
がわかる。すなわち、高速切削した場合には工作物本来
のばね定数にで切削力を割った値をもって工作物が変位
する。さて次に をもって表わされる。パルス切削力波形が工作物に作用
する場合を考える。
Now, let us consider the case where a round bar workpiece 1 is cut at high speed by the cutting tool 2 as shown in FIG. The cutting force waveform in the direction of back force during high-speed cutting is approximated by p;
-s” 7m) C: Horizontal viscous damping coefficient of the workpiece or crop attached to the spindle (kgf-s/n+) k: Horizontal spring constant of the workpiece attached to the lathe spindle (kgf/dragon) P, : Static cutting force component in back force direction ('9f) pt: Dynamic cutting force component in back force direction (kgf) ω: Cutting force variation angle natural frequency (rad/s): Horizontal direction of workpiece Angular natural frequency (rad/s) Here, the solution to the equation of motion in equation (1) becomes t when ω/c〉1.In other words, the time t term disappears, and the spring constant becomes static. It can be seen that the workpiece is displaced by the value X divided by the cutting force Pt.In other words, when cutting at high speed, the workpiece is displaced by the value obtained by dividing the cutting force by the workpiece's original spring constant.Now, it can be expressed as follows. Consider the case where a pulsed cutting force waveform acts on the workpiece.

このときの工作物の運動を表わす運動方程式は(2)式
のようになる。
The equation of motion representing the motion of the workpiece at this time is as shown in equation (2).

2) (tc:バイトの振動−周期ごとの正味切削時間S T :バイトの振動周期 S  ) (2)式において、ω/へ 〉1のとき。2) (tc: vibration of the cutting tool - net cutting time per cycle S T: Vibration period of the cutting tool S) In equation (2), when ω/>1.

となる。すなわち、工作物本来のばね定数にの値をT/
lc倍高めることができる。T/lcの値は一般には?
/4 の値とほぼ等しい。ここでVは切削速度で、PC
=2 n a f (f :バイトの振動数、a:バイ
トの片振幅)である。約T/lc中3〜10の値となる
。したがって、見掛上ばね定数をパルス切削力が作用す
る作用時間tcとバイトの振動−周期Tとの比倍だけ高
めることができる。
becomes. In other words, the value of the workpiece's original spring constant is T/
It can be increased by lc times. What is the value of T/lc in general?
It is almost equal to the value of /4. where V is the cutting speed and PC
=2 n a f (f: frequency of the bite, a: half amplitude of the bite). The value is approximately 3 to 10 in T/lc. Therefore, the apparent spring constant can be increased by the ratio of the action time tc during which the pulse cutting force acts and the vibration period T of the cutting tool.

この効果は、バイトを切削方向、すなわち主分力方向に
振動させてえられる振動切削効果として既に発表され、
実用化もされているところである。セラミックスを旋削
する上には、この運動方程式の解が示す数学的効果を工
学的に利用すること力雉−の方法のように考えられる。
This effect has already been announced as a vibration cutting effect obtained by vibrating the cutting tool in the cutting direction, that is, in the principal force direction.
It is also being put into practical use. When turning ceramics, the mathematical effect shown by the solution to this equation of motion can be used in engineering, similar to the method of turning ceramics.

一方、(3)式の分子のPl、すなわち切削力そのもの
を軽減させ、さらに微細クラックの発生を防止する新し
い方法が本発明によって創作された。
On the other hand, the present invention has created a new method for reducing Pl in the molecule of formula (3), that is, the cutting force itself, and further preventing the occurrence of microcracks.

第2図において、バイト2に切込みt′を与えて工作物
1に対して矢印方向に切削速度1をもって二次元切削す
ると、主分力Pcおよび背分力P、は図示の方向に働き
1合力Pが発生し、これが切削速度Vの方向に対して−
φの負の方向に作用する。すなわち、工作物に作用する
切削力の合力はセラミックス工作物の表面から工作物内
部に向かって作用し、バイトに作用する切削抵抗の合力
は図示の方向に作用する。
In Fig. 2, when a depth of cut t' is given to the cutting tool 2 and two-dimensional cutting is performed on the workpiece 1 in the direction of the arrow at a cutting speed of 1, the principal force Pc and the back force P act in the direction shown, resulting in a resultant force. P is generated, which is - with respect to the direction of cutting speed V.
It acts in the negative direction of φ. That is, the resultant force of the cutting forces acting on the workpiece acts from the surface of the ceramic workpiece toward the inside of the workpiece, and the resultant force of the cutting forces acting on the cutting tool acts in the direction shown in the figure.

さて、一般のタガネを使用してはつり作業をする場合に
、工作物内部から表面に向かってメガネをたたいた方が
、その抵抗は小さく容易にはつれることは周知のところ
である。この現象などを参考として、第3図のように・
傾斜した方向に示した切削速度Vの方向にバイト2を送
ることによって切削力は軽減されることがわかる。
Now, when performing chisel work using a general chisel, it is well known that if the glasses are struck from inside the workpiece toward the surface, the resistance will be smaller and the glasses will break more easily. Taking this phenomenon as a reference, as shown in Figure 3,
It can be seen that the cutting force is reduced by sending the cutting tool 2 in the direction of the cutting speed V shown in the inclined direction.

すなわち、工作物の内部から工作物表面に向かって切削
することを繰返せば、特に工作物がセラミックスのよう
な脆性材料の場合には有効となり、切削力は軽減される
ものと考えられる。
That is, if the workpiece is repeatedly cut from the inside toward the surface of the workpiece, it is effective, especially when the workpiece is made of a brittle material such as ceramics, and the cutting force is thought to be reduced.

切削力Pは主分力Pcおよび背分力P、で合成され、そ
の方向は(+φ)の方向角を有し、明らかに切削力Pを
工作物内部より工作物表面に向かって作用させることが
できる。
The cutting force P is composed of the principal force Pc and the thrust force P, and its direction has a direction angle of (+φ), which clearly means that the cutting force P acts from the inside of the workpiece toward the surface of the workpiece. Can be done.

このような切削方法が、第4図(a) 、 (b)に示
す切削方法によって実現される。
Such a cutting method is realized by the cutting method shown in FIGS. 4(a) and 4(b).

すなわち、バイト3を縦超音波振動子4をもって矢印5
の方向に振動数f、片振幅aをもって振動させ、また工
作物1を回転させて切削速度Vを与える。
That is, hold the cutting tool 3 with the vertical ultrasonic transducer 4 in the direction of the arrow 5.
The workpiece 1 is vibrated in the direction with a frequency f and a single amplitude a, and the workpiece 1 is rotated to give a cutting speed V.

この一定速度で回転する工作物の切削速度yとバイト刃
先の振動による方向が変化する振動速度とが合成されて
、バイト刃先はジクザクに進行し第3図のように工作物
内部から工作物上方に向かって切削する運動を繰返すこ
とができるようになる。このバイト2Vc切込み(送り
)t″を矢印6の方向に与えて、パイプ状工作物の端面
を二次元切削する。
The cutting speed y of the workpiece rotating at a constant speed and the vibration speed at which the direction changes due to the vibration of the cutting tool tip are combined, and the cutting tool tip advances in a zigzag pattern from inside the workpiece to above the workpiece, as shown in Figure 3. You will be able to repeat the cutting motion towards. This cutting tool 2Vc depth of cut (feed) t'' is applied in the direction of arrow 6 to two-dimensionally cut the end face of the pipe-shaped workpiece.

このときの切削機構を第5図に示して説明する。切削速
度Vと振動数fおよび片振幅aとによる振動速度とが合
成されて、バイト刃先の運動軌跡は波形ABCD・・・
を示す。工作物がさらに1回転して切込み(送り)t′
が与えられると、波形A/ B/ C/σ・・・となる
。このときのバイト切刃で切削する部分は斜線で示した
近似面積BB’Cσ、DD’E、E’・・・となる。図
かられかるように、従来の普通の連続した面積とはなら
ずにこれらを分割した面積として小刻みに切削すること
になる。すなわち、切削力をバイトの振動−周期の十の
短い時間だけ作用させるパルス切削力波形とすることが
でき、T/l C=2となる。このときの切削力は、第
5図に示すように、工作物内部より工作物表面に向かっ
て作用する。この方向はバイトの振動姿態によって若干
変化するが、その方向はいずれも工作物内部より表面空
間に向かって作用する。そして、切削力が軽減される。
The cutting mechanism at this time will be explained with reference to FIG. The cutting speed V, the vibration speed due to the frequency f and the half amplitude a are synthesized, and the motion trajectory of the cutting tool tip is a waveform ABCD...
shows. The workpiece rotates one more time and the depth of cut (feed) t'
When given, the waveform becomes A/B/C/σ... At this time, the portions to be cut by the cutting edge of the cutting tool have approximate areas BB'Cσ, DD'E, E', etc. shown by diagonal lines. As can be seen from the figure, these areas are not cut into continuous areas as in the conventional case, but are divided into small areas and cut into small increments. That is, it is possible to form a pulsed cutting force waveform in which the cutting force is applied only for a short period of time equal to the vibration period of the cutting tool, and T/l C=2. The cutting force at this time acts from the inside of the workpiece toward the surface of the workpiece, as shown in FIG. This direction varies slightly depending on the vibration state of the cutting tool, but in all cases the direction acts from the inside of the workpiece toward the surface space. And the cutting force is reduced.

この切込み(送り) tlをバイトの片振幅aに比べて
極小とするのが、本発明の切削法の特色の1つである。
One of the characteristics of the cutting method of the present invention is to make this depth of cut (feed) tl extremely small compared to the single amplitude a of the cutting tool.

例えばa−15μmとするとt’= 0.5〜3μm程
度の値が理想的である。
For example, if a-15 μm, then t'=0.5 to 3 μm is ideal.

このようにして切削力Pを軽減させることができ、その
上、微細クラックの発生については、波形の例えばB′
σがで表わされる工作物の曲部分にその発生を集中させ
ることができる。
In this way, the cutting force P can be reduced, and in addition, regarding the generation of microcracks, the waveform, for example, B'
Its occurrence can be concentrated on the curved part of the workpiece where σ is represented by .

この凸部は本発明の切削法の実施によって規則的に発生
する部分で、その表面あらさば3〜4μm程度を示す。
These convex portions are regularly generated by the cutting method of the present invention, and have a surface roughness of approximately 3 to 4 μm.

従って、ラッピング作業などを行なって平滑な仕上面に
する必要がある。
Therefore, it is necessary to perform a lapping operation or the like to obtain a smooth finished surface.

このラッピング工程によって微細クラックの発生に伴う
微少凸部群が除去され、平滑な仕上面が得られることに
なる。
This lapping process removes the minute protrusions caused by the occurrence of minute cracks, resulting in a smooth finished surface.

このようにして、微少量の取り代部を加工して精密仕上
加工することを特徴とするラッピング作業に必要な形状
と表面あらさを有する素地に、粗旋削加工するのに最適
な旋削方法が、本発明によって実現されるのである。
In this way, the turning method that is most suitable for performing rough turning on a base material that has the shape and surface roughness necessary for lapping work, which is characterized by machining a small amount of machining allowance and performing precision finishing, is This is achieved by the present invention.

この本発明を実施するにあたって用いられるバイト形状
には、次のような条件が必要とされる。第5図において
、振動数f、片振幅aのバイトの最大振動速度と工作物
の切削速度との関係から求められるバイト逃げ角θを与
える必要がある。すなわち、θ−tan’−呵一のバイ
ト逃げn 角を与えて工作物表面とバイト逃げ面とが接触しないよ
うにすることが肝要である。ここにおいて、Dは工作物
直径、nは工作物回転数である。
The following conditions are required for the shape of the cutting tool used in carrying out the present invention. In FIG. 5, it is necessary to give the cutting tool clearance angle θ, which is determined from the relationship between the maximum vibration speed of the cutting tool with frequency f and half amplitude a and the cutting speed of the workpiece. That is, it is important to provide a cutting tool relief n angle of θ-tan'-1 to prevent the workpiece surface and the cutting tool relief surface from coming into contact. Here, D is the workpiece diameter and n is the workpiece rotation speed.

いま、バイトの逃げ角θ−2o°として、f−20kH
z、 a= 15 μm、工作物の直径D:40111
1とすると、n中250Orpmとなる。そして、この
とき切削速度r中310 m/−となる。t’=0.5
〜1μm程度の微少の切込み(送り)によって、例えば
水溶性切削油剤を給油して潤滑を兼ねて切刃の冷却を行
なう。
Now, assuming the relief angle of the cutting tool to be θ-2o°, f-20kHz
z, a = 15 μm, workpiece diameter D: 40111
When it is set to 1, it becomes 250 Orpm in n. At this time, the cutting speed r becomes 310 m/-. t'=0.5
By making a minute cut (feed) of about 1 μm, for example, a water-soluble cutting oil is supplied to cool the cutting edge while also providing lubrication.

このように、本発明における切削速度は極めて高い。ま
た、その切込み(送り)は微少である。旋盤往復台の送
り量が微少でも、その回転数が高速であるから、その送
り速度は早く、ステックスリップを発生させずに、一様
な送りをバイトに与えることができ、一様な切削面に加
工することができる。
Thus, the cutting speed in the present invention is extremely high. Further, the depth of cut (feed) is minute. Even if the feed amount of the lathe carriage is small, its rotational speed is high, so the feed rate is fast, and uniform feed can be given to the cutting tool without causing stick slip, resulting in a uniform cutting surface. It can be processed into

本発明の具体例を第6図に示して説明する。A specific example of the present invention will be explained with reference to FIG.

電れい縦振動子4の振幅を振幅拡大用ホーン7で拡大し
て、そのホーン先端に、電れい縦振動子4の固有振動数
fで共振する曲げ振動系バイト3を締付ボルト8によっ
て固定する。曲げ振動系バイト3には、多数の振動節が
発生する。
The amplitude of the electrophoretic vertical vibrator 4 is expanded by an amplitude expansion horn 7, and a bending vibration system tool 3 that resonates at the natural frequency f of the electrophoretic vertical vibrator 4 is fixed to the tip of the horn with a tightening bolt 8. do. A large number of vibration nodes occur in the bending vibration system cutting tool 3.

そのうちの2個所の振動節の位置を利用して、両側より
締付金具9,10を介し、曲げ振動系バイト3を刃物台
11に締付ボルト12によって固定する。一方、ホーン
7の振動節の位置にホルダ13を取付け、縦振動系ホー
ンを刃物台に固定する。
By utilizing the positions of two of the vibration nodes, the bending vibration system cutting tool 3 is fixed to the tool rest 11 with the tightening bolt 12 via the tightening fittings 9 and 10 from both sides. On the other hand, a holder 13 is attached to the vibration node position of the horn 7, and the longitudinal vibration system horn is fixed to the tool post.

このようにして安定した例えばf=20kHz、a−1
5μmという超音波振動を、バイト3の先端に設けた横
切刃に与えることができる。
For example, f = 20kHz, a-1 stabilized in this way
Ultrasonic vibrations of 5 μm can be applied to the cross-cutting blade provided at the tip of the cutting tool 3.

さて1次に重要な点は、図示のような円筒旋削加工にお
ける切刃の振動方向である。この振動方向を決めるにあ
たっては、第4図および第5図の二次元高速切削の振動
方向が基本となる。したがって1円筒旋削加工の横切刃
が切削する3次元切削の場合には、矢印5′の方向で示
す振動方向と工作物の回転中心軸と交わる角θを前切刃
角ηよりも小さくする。すなわち、前切刃逃げ角は本発
明で限定する逃げ角を与えていないので、前切刃逃げ面
が本発明の切削機構に作用しないように逃がしておく必
要が生ずる。この角ηよりも小さい角度θの方向に外周
から工作部内部に向かって横切刃を振動させながら切込
みを矢印6′の方向に与えて本発明を実施する。横逃げ
角および前逃げ角が等しい斜剣バイトおよび先丸刃バイ
トを使用する場合には、この角θはゼロ以外の角度なら
ばいずれの角度でも、本発明の切削法は円滑に実施され
る。
Now, the first important point is the vibration direction of the cutting edge in cylindrical turning as shown in the figure. In determining this vibration direction, the vibration direction of two-dimensional high-speed cutting shown in FIGS. 4 and 5 is the basis. Therefore, in the case of three-dimensional cutting in which the transverse blade cuts in one cylindrical turning process, the angle θ between the vibration direction shown in the direction of arrow 5' and the rotation center axis of the workpiece should be smaller than the front cutting edge angle η. . That is, since the front cutting edge clearance angle does not provide the clearance angle limited in the present invention, it is necessary to provide relief so that the front cutting blade flank does not act on the cutting mechanism of the present invention. The present invention is carried out by making a cut in the direction of arrow 6' while vibrating the transverse blade from the outer periphery toward the inside of the workpiece in the direction of an angle θ smaller than this angle η. When using a diagonal cutting tool and a rounded cutting tool with equal side clearance angle and front clearance angle, the cutting method of the present invention can be carried out smoothly even if the angle θ is any angle other than zero. .

工作物はダイヤモンドに近い硬さを有するセラミックス
をも対象とするために、ダイヤモンドバイトを使用する
。そして、θ=20°という大きな逃げ角を与えるため
に、約20°の負のすくい角を与えてバイト切刃強度を
補強する。直径60m、長さ1005mの酸化アルミナ
工作物に、回転数200Orpm、送り0.4 a/r
ev、切込み0.5fiを与え、振動数21.7 kH
z、振幅15μmをもって超音波振動するバイトを、前
切刃角η=22、ノーズ角88′、横切刃角70°とし
て、第6図のように本発明を実施することにより、セラ
ミックス工作物を切損、破損することなく、その表面あ
らさな4〜6μmをもって。
A diamond cutting tool is used to work on ceramics, which have a hardness close to that of diamond. In order to provide a large clearance angle of θ=20°, a negative rake angle of approximately 20° is provided to strengthen the cutting edge strength of the cutting tool. For an alumina oxide workpiece with a diameter of 60 m and a length of 1005 m, the rotation speed is 200 Orpm and the feed rate is 0.4 a/r.
ev, depth of cut 0.5fi, frequency 21.7 kHz
By carrying out the present invention as shown in FIG. 6 using a cutting tool that vibrates ultrasonically with an amplitude of 15 μm and a front cutting edge angle η = 22, a nose angle of 88', and a side edge angle of 70°, a ceramic workpiece can be produced. With a surface roughness of 4 to 6 μm without cutting or damage.

真円 度2〜3μm程度の加工精度で旋削加工すること
に成功した。
We succeeded in turning with a roundness accuracy of approximately 2 to 3 μm.

なお、この旋削加工では、第7図および第8図のように
して、正面旋削あるいは中ぐりが実施される。このとき
の振動方向はバイトの送り方向と角θをなす方向に与え
られ、バイト逃げ面が切削面と接触しないようにして、
本発明を実施する。
In this turning process, face turning or boring is performed as shown in FIGS. 7 and 8. The direction of vibration at this time is given in the direction that makes an angle θ with the feed direction of the cutting tool, and the flank surface of the cutting tool is prevented from contacting the cutting surface.
Implement the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバイトとセラミックス工作物との振動系をモデ
ル化して示した正断面図、第2図は慣用切削における切
削力の合力の方向がセラミックス工作物内部に向かうこ
とを示す説明図、第3図は本発明の実施によって切削力
の合力の方向がセラミックス工作物内部より上方に向っ
て切削力が減少することを示す説明図、第4図(a)。 (b)は本発明の一実施例を示す僧面図および上面図、
第5図は本発明の実施による切削機構の特徴を示す説明
図、第6図は本発明の具体例における旋削装置の上面断
面図、第7図は本発明による正面旋削方法の説明図、第
8図は本発明による中ぐり方法の説明図である。 l・・セラミックス工作物、2,3・・ハイド、4・・
超音波振動子、5.5’・・振動方向、6.6’・・送
り方向。 代理人 弁理士  飯 沼 義 音 節1図 第2図 一ψ 第3図 第4図 〕 第5図 、、、□ 第6図 第7図
Figure 1 is a front cross-sectional view modeling the vibration system between the cutting tool and the ceramic workpiece, Figure 2 is an explanatory diagram showing that the direction of the resultant of cutting forces in conventional cutting is directed toward the inside of the ceramic workpiece. FIG. 3 is an explanatory diagram showing that the direction of the resultant force of the cutting force decreases upward from the inside of the ceramic workpiece according to the present invention, and FIG. 4(a). (b) is a monk side view and a top view showing an embodiment of the present invention;
FIG. 5 is an explanatory diagram showing the features of a cutting mechanism according to the present invention, FIG. 6 is a top sectional view of a turning device in a specific example of the present invention, and FIG. 7 is an explanatory diagram of a face turning method according to the present invention. FIG. 8 is an explanatory diagram of the boring method according to the present invention. l...ceramic workpiece, 2,3...hide, 4...
Ultrasonic vibrator, 5.5'...vibration direction, 6.6'...feeding direction. Agent Patent Attorney Yoshi Iinuma Syllable 1 Figure 2 Figure 1 ψ Figure 3 Figure 4] Figure 5,,,□ Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 振動数f、振幅aのバイトの最大速度と、工作物の直径
りおよび同工作物の回転数nによる切削速度とで決まる
逃げ角θ=tan−” ”、をパイn トに与え、同バイトに、2次元切削においては送り方向
と同方向、3次元切削においては送り方向と所要の角度
θをなす方向を与えて同バイトの振動方向が工作物内部
に向かうようにして超音波域の高い振動数で同バイトを
振動させ、バイト逃げ面が切削面と接触しないような高
速切削速度とし、送り量を振幅aよりも極小としてパル
ス切削力の方向を工作物内部に向かって作用させながら
切削することを特徴とする、セラミックスの精密振動切
削法。
[Claims] Relief angle θ=tan-” ”, which is determined by the maximum speed of the cutting tool with frequency f and amplitude a, and the cutting speed depending on the diameter of the workpiece and the rotation speed n of the workpiece, is defined as pi n For two-dimensional cutting, give the same direction to the feed direction, and for three-dimensional cutting, give the same direction to the feed direction and make the required angle θ with the feed direction so that the vibration direction of the tool is directed toward the inside of the workpiece. The cutting tool is vibrated at a high frequency in the ultrasonic range, the cutting speed is set to a high cutting speed so that the flank of the cutting tool does not come into contact with the cutting surface, the feed rate is set to a minimum of amplitude a, and the direction of the pulsed cutting force is directed inside the workpiece. A precision vibration cutting method for ceramics that is characterized by cutting while acting in the same direction.
JP7697582A 1982-05-08 1982-05-08 Precision oscillation cutting method for ceramics Granted JPS58196934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7697582A JPS58196934A (en) 1982-05-08 1982-05-08 Precision oscillation cutting method for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7697582A JPS58196934A (en) 1982-05-08 1982-05-08 Precision oscillation cutting method for ceramics

Publications (2)

Publication Number Publication Date
JPS58196934A true JPS58196934A (en) 1983-11-16
JPS6240121B2 JPS6240121B2 (en) 1987-08-26

Family

ID=13620781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7697582A Granted JPS58196934A (en) 1982-05-08 1982-05-08 Precision oscillation cutting method for ceramics

Country Status (1)

Country Link
JP (1) JPS58196934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027526B4 (en) * 1999-06-04 2007-04-19 Balič, Jože A method of milling a workpiece with a milling tool and milled therefrom
CN102380626A (en) * 2011-08-19 2012-03-21 清华大学 Ultrasonic oval vibrating mechanism for assisting diamond cutter in ultra-precision cutting
WO2016027205A1 (en) * 2014-08-18 2016-02-25 Bharat Forge Limited An apparatus for and a method of turning difficult-to-cut alloys
CN114102050A (en) * 2021-12-08 2022-03-01 中国航发南方工业有限公司 Cutting method for cantilever mounting edge of high-temperature alloy part of aero-engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249847A (en) * 1988-08-11 1990-02-20 Sekisui Chem Co Ltd Waves conduit hanging tool
JPWO2022269751A1 (en) * 2021-06-22 2022-12-29

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147641A (en) * 1984-08-15 1986-03-08 Toshiba Corp Formation of resist pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147641A (en) * 1984-08-15 1986-03-08 Toshiba Corp Formation of resist pattern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027526B4 (en) * 1999-06-04 2007-04-19 Balič, Jože A method of milling a workpiece with a milling tool and milled therefrom
CN102380626A (en) * 2011-08-19 2012-03-21 清华大学 Ultrasonic oval vibrating mechanism for assisting diamond cutter in ultra-precision cutting
WO2016027205A1 (en) * 2014-08-18 2016-02-25 Bharat Forge Limited An apparatus for and a method of turning difficult-to-cut alloys
CN114102050A (en) * 2021-12-08 2022-03-01 中国航发南方工业有限公司 Cutting method for cantilever mounting edge of high-temperature alloy part of aero-engine

Also Published As

Publication number Publication date
JPS6240121B2 (en) 1987-08-26

Similar Documents

Publication Publication Date Title
Moriwaki et al. Ultrasonic elliptical vibration cutting
Shamoto et al. Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting
Shen et al. Ultrasonic vibration-assisted milling of aluminum alloy
Kumabe et al. Ultrasonic superposition vibration cutting of ceramics
Yanyan et al. Ultraprecision surface finishing of nano-ZrO 2 ceramics using two-dimensional ultrasonic assisted grinding
Suzuki et al. Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting
Peng et al. Effect of vibration on surface and tool wear in ultrasonic vibration-assisted scratching of brittle materials
JP4512737B2 (en) Ultrasonic vibration processing equipment
Liu et al. Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance
JP2007307680A (en) Cutting method, optical element and die
JPS58196934A (en) Precision oscillation cutting method for ceramics
CN105458902B (en) A kind of micro-structure surface three-dimensional elliptical vibrates Ultraprecise polished method
JPS6147641B2 (en)
JPS62140701A (en) Superposed vibration cutting method
JPS62292306A (en) Precision vibration boring method
JPS6246281B2 (en)
Saito et al. Mirror surface machining of steel by elliptical vibration cutting with diamond-coated tools sharpened by pulse laser grinding
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
JPS62140702A (en) Precise superposed vibration hole processing method
Isobe et al. Improvement of drill life for nickel super alloy by ultrasonic vibration machining with minimum quantity lubrication
Kiswanto et al. Preliminary design of two dimensional vibration assisted machining system for multi-axis micro-milling application
JPH01109007A (en) Vibration-cut drilling machine for precise boring of ceramics
JPH07299629A (en) Groove machining device using ultrasonic vibration cutting
Suzuki et al. Development of 3 DOF ultrasonic elliptical vibration system for elliptical vibration cutting
JP2002096201A (en) Ductile mode cutting work method of brittle material by slitting direction vibrational cutting and cutting work device