JPS58140122A - Method for electron beam exposure - Google Patents

Method for electron beam exposure

Info

Publication number
JPS58140122A
JPS58140122A JP2376382A JP2376382A JPS58140122A JP S58140122 A JPS58140122 A JP S58140122A JP 2376382 A JP2376382 A JP 2376382A JP 2376382 A JP2376382 A JP 2376382A JP S58140122 A JPS58140122 A JP S58140122A
Authority
JP
Japan
Prior art keywords
resist
electron beam
exposure
vacuum
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2376382A
Other languages
Japanese (ja)
Inventor
Akira Shirakawa
白川 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2376382A priority Critical patent/JPS58140122A/en
Publication of JPS58140122A publication Critical patent/JPS58140122A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To contrive to short the preservation time in a vacuum preservation chamber by a method wherein a post polymerization due to the reaction radical of electron beam (EB) resist is promoted by performing a heating treatment in a vacuum after EB exposure. CONSTITUTION:The mask whereon an EB resist 7 is coated or a substrate 8 of semiconductor, etc. is placed in an exposure chamber 1, and the electron beam from an electron gun 2 is irradiated and exposed on the EB resist according to the desired pattern. Next, the substrate 8 is moved into the resonance cavity 5 in the preservation chamber 4, then the EB resist 7 is heated by the microwave from a magnetron 6. The reaction radical existing in the EB resist 7 is promoted in cross linkaged reaction by this heating, and accordingly the post polymerization is finished in a short time.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子ビームに反応するネガ型11B(電子ビー
ム)レジストに電子ビームを照射して露光する電子ビー
ム露光法に関する。 電子ビーム露光法は高密!、高精イなパターンの描−1
形成に最も有望な手法として注目を集めている。電子ビ
ームに対して感光するEBレジストも精力的に開発され
、実用的なレジストも多数市販されている。しかしり!
>型EBレジストは高解像でしかも高郷質なものは有る
が、基板との密着性が悪い等の欠点があるため、−一的
に多用されるには至っていない、それに対してネガ型E
Bレジストは高gw、高解像でプロ卑ス的に費定である
ため一製造用しシストとして恒常的に使用されている。 このネガ型EBレズストの唯一の欠点は後重合という現
象で、これは露光後EBレジストを高真空中(=放置す
ると連鎖的に架橋反応が進行して見かけ上惑星が5増加
したよ慣:見える現像である。この原因は露光により生
成した仄応基が露光後も消滅せずに反応な起こす事にあ
る。このため実際に電子ビームで描画露光するとき同じ
基板内で初期に露光した部分と末期に露光した部分で線
幅が異なる結果が起こるので、楕■露光終了後真空中を
二S O分〜1時聞程度放置して基板全面に亘ってこの
後重合現象が完了してから取出す必要がある。特に描■
時間の長い場合、線幅の精賓を高めるために描画時開と
同程度の時間だけ真空中1=保存しなければならない、
現在普及している電子ビーム露光警備1:は上記真空中
保存のための貯HNが警備されているが、描一時間の倍
以上の時間が露光1移に必要とされる事はプロセス上問
題となっている。 本発明はこのような問題点を解消する事を目的として為
されたものであって、電子ビームに依る露光量の真空中
の保持時間の短縮を目的としている。 図に於て、(1)は真空系の露光室で g子銃(2)か
らの電子ビームが電子鏡筒(3)を介して集束、偏向さ
れて照射される。C4)はこの露光N(1)に連通して
同−真空系にある真空保存室で、その一部にマイクロウ
ェーブの共擾空胴(5)が区画されている。(6)はこ
の共擾空調にマイクロウェーブを供給するマグネトロン
である。 而して露光室+11内t: II Bレジス) (7)
を働布したマスクや半導体等の基板(8)を置き、該H
Bレジスト+7)に電子銃12)からの電子ビームを所
−のパターンに従って照射露光した後、基板(8)を保
存室(4)の共擾空胴(S)内に移し、マグネトロン(
6)からのマイクロウェーブに依ってEBレジスト
The present invention relates to an electron beam exposure method in which a negative type 11B (electron beam) resist that responds to an electron beam is exposed by irradiating it with an electron beam. High density electron beam exposure method! , High precision pattern drawing-1
It is attracting attention as the most promising method for formation. EB resists that are sensitive to electron beams have also been actively developed, and many practical resists are now commercially available. But!
> Type EB resists have high resolution and high quality, but they have drawbacks such as poor adhesion to the substrate, so they are not widely used.On the other hand, negative type EB resists
B resist has a high gw, high resolution, and is inexpensive for professional use, so it is regularly used as a resist for manufacturing purposes. The only drawback of this negative-tone EB resist is the phenomenon of post-polymerization, which is caused by the fact that if the EB resist is left in a high vacuum after exposure, a chain reaction proceeds and the number of planets increases by 5. The reason for this is that the reactive groups generated by exposure do not disappear even after exposure and cause a reaction.For this reason, when actually drawing and exposing with an electron beam, the parts of the same substrate that were initially exposed are different from each other. Since different line widths occur in the exposed areas at the end of the process, after the exposure is completed, leave the substrate in a vacuum for about 2 minutes to 1 hour and remove it after the polymerization phenomenon is completed over the entire surface of the substrate. It is necessary.Especially drawing■
If the time is long, in order to improve the line width, it is necessary to store it in vacuum for the same amount of time as the opening time when drawing.
Currently popular electron beam exposure security 1: has the above-mentioned storage HN guarded for storage in vacuum, but it is a problem in the process that the time required for exposure 1 is more than twice the drawing time. It becomes. The present invention has been made to solve these problems, and its purpose is to shorten the holding time in vacuum of the exposure amount by an electron beam. In the figure, (1) is a vacuum exposure chamber, into which an electron beam from a g-son gun (2) is focused, deflected, and irradiated via an electron lens barrel (3). C4) is a vacuum storage chamber connected to the exposure N(1) and located in the same vacuum system, and a microwave co-synchronization cavity (5) is defined in a part of the chamber. (6) is a magnetron that supplies microwaves to this common air conditioner. Therefore, inside the exposure room +11: II B Regis) (7)
Place the mask or semiconductor substrate (8) on which the H is applied.
After exposing the B resist +7) to an electron beam from the electron gun 12) according to a predetermined pattern, the substrate (8) is moved into the co-synchronization cavity (S) of the storage chamber (4), and the magnetron (
6) EB resist by microwave from

【7
)を加熱し。 この加熱(=依ってEBレジスXn中に存在している反
応基は架橋y応が促進され・後重合現象は短時間で終了
する。尚、この加熱工lでの加熱温實はEBレジスト(
7)のガラス転移温實以下で行う必要があ・1.その為
に湿質センサーを用いてマグネトロン(6)の全豪出力
を制御する1通常のネガ型EBレジストの場合、真空保
存感=要する時間は富湿で保存する場合の1/1011
11Fである。従って以上に述べたようi:真空保存中
C:加熱処理を施す事1:依ってその保存時間は大巾に
短縮され、全露光工程に必要とされる処理時間を短くす
る事が出来る。 以下に本発明の具体的実施例を挙げて説明を加える。 東京応化製・ネガ型Ellレジスト(OEBB−100
)を、4インチ角のクロムマスクl[に6000jll
布し、80℃で30分間プリベークし。 この試料マスクに電子ビーム露光(加速電圧10Il、
露光量5 x 10−’り−a y/csF、 N光R
NJ50分)した後真空保存M(4)で90℃に加熱し
つつ保存した。多数板の試料マスクについて保存時間を
変化させて現像を行い、初期に露光した箇所と末期露光
箇所に於けるパターン線巾の相違を測定したところ、保
存時間が5分未満のものについては多少の差は見られた
ものの、5分以上90℃で保存したものは線巾の相違は
認められなかった。 これに対して上記実施例と同一条件にて露光した試料マ
スクな真空保存室で室温にて保存した場合、40分以上
の放置の場合は線巾の相違は認められなかったが、49
分未満の場合、初期露光箇所の線巾が末期露光箇所のそ
れよ暢】広くな番】、顕著な相違が検知された。 本発明は以上の説明から明らかな如く、電子ビーム露光
後に真空中で加熱処理を施してEBレジストの反応基に
依る後重合を促進せしめるものであるのマ、短時間で後
重合が完了してしまい一真空保存室での保存時間の短縮
力i因れ、電子ビーム露光に於ける処理時間を短縮せし
める事が出来る。
[7
) and heat it. This heating process promotes the crosslinking reaction of the reactive groups present in the EB resist Xn, and the post-polymerization phenomenon is completed in a short time.
7) It is necessary to conduct the process at a temperature below the glass transition temperature of 1. For this purpose, a humidity sensor is used to control the output of the magnetron (6) throughout Australia.1 In the case of normal negative EB resist, the feeling of vacuum storage = the time required is 1/1011 of the time required for storage in a rich humidity environment.
It is on the 11th floor. Therefore, as described above, i: Vacuum storage C: Heat treatment 1: Therefore, the storage time can be greatly shortened, and the processing time required for the entire exposure process can be shortened. Specific examples of the present invention will be given and explained below. Manufactured by Tokyo Ohka, negative type Ell resist (OEBB-100
) into a 4-inch square chrome mask l [6000 Jll
Cover with a cloth and pre-bake at 80°C for 30 minutes. This sample mask was exposed to electron beam (acceleration voltage 10Il,
Exposure amount 5 x 10-'ri-a y/csF, N light R
NJ 50 minutes) and then stored under vacuum storage M (4) while heating at 90°C. When we developed a large number of sample masks by varying the storage time and measured the difference in pattern line width between the initially exposed area and the final exposed area, we found that for those with a storage time of less than 5 minutes, there was a slight difference in pattern line width. Although a difference was observed, no difference in line width was observed for those stored at 90°C for 5 minutes or more. On the other hand, when the sample mask was exposed under the same conditions as in the above example and was stored at room temperature in a vacuum storage chamber, no difference in line width was observed when it was left for more than 40 minutes.
When the line width of the initial exposure area was wider than that of the final exposure area, a significant difference was detected. As is clear from the above description, the present invention promotes post-polymerization by the reactive groups of the EB resist by applying heat treatment in a vacuum after electron beam exposure, and the post-polymerization is completed in a short time. Since the storage time in the vacuum storage chamber can be shortened, the processing time in electron beam exposure can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明露光法を実施する装置の概念図であって、(
1)は露光室、(4)は真空保存室、16)は共擾空胴
、(6)はマグネトロン、(7)はIIBレジスト、を
夫々示している。
The figure is a conceptual diagram of an apparatus for carrying out the exposure method of the present invention.
1) is an exposure chamber, (4) is a vacuum storage chamber, 16) is a co-circulation cavity, (6) is a magnetron, and (7) is an IIB resist, respectively.

Claims (1)

【特許請求の範囲】 (11電子ビームに反応するネガ型EBレジストに電子
ビームを照射して露光する電子ビーム露光法5=於て、
基板上に塗付したネガ型KBレジストに所望パターンの
電子ビームを照射露光した後。 基板を真空中でレジストのガラス転移湿質以下の温τに
加熱してレジストの後重合を促進せしめる事を特徴とし
た電子ビーム・露光法。 (z)  上記加熱処理にはマイクロウェーブに依る高
周波加熱が用いられる事を特徴とする特許請求の範囲1
11項記載の電子ビーム露光法。
[Claims] (11 Electron beam exposure method 5 in which a negative-type EB resist responsive to an electron beam is exposed by irradiating it with an electron beam)
After exposing the negative KB resist coated on the substrate to a desired pattern of electron beams. An electron beam exposure method characterized by heating the substrate in vacuum to a temperature τ below the glass transition temperature of the resist to promote post-polymerization of the resist. (z) Claim 1, characterized in that the heat treatment uses high-frequency heating using microwaves.
The electron beam exposure method according to item 11.
JP2376382A 1982-02-16 1982-02-16 Method for electron beam exposure Pending JPS58140122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2376382A JPS58140122A (en) 1982-02-16 1982-02-16 Method for electron beam exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2376382A JPS58140122A (en) 1982-02-16 1982-02-16 Method for electron beam exposure

Publications (1)

Publication Number Publication Date
JPS58140122A true JPS58140122A (en) 1983-08-19

Family

ID=12119373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2376382A Pending JPS58140122A (en) 1982-02-16 1982-02-16 Method for electron beam exposure

Country Status (1)

Country Link
JP (1) JPS58140122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031977A (en) * 1983-07-30 1985-02-18 Konishiroku Photo Ind Co Ltd Thermal recording head
US6427246B1 (en) 1999-10-12 2002-08-06 Mizuno Corporation Glove for baseball

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031977A (en) * 1983-07-30 1985-02-18 Konishiroku Photo Ind Co Ltd Thermal recording head
JPH055669B2 (en) * 1983-07-30 1993-01-22 Konishiroku Photo Ind
US6427246B1 (en) 1999-10-12 2002-08-06 Mizuno Corporation Glove for baseball

Similar Documents

Publication Publication Date Title
JPS58140122A (en) Method for electron beam exposure
JPS6021522A (en) Formation of resist pattern
JPS58118641A (en) Radiation sensitive positive type resist for forming fine pattern
JPS5961928A (en) Pattern formation
JPS561941A (en) Image forming method
JPS5832420A (en) Electron beam lithography
JPH0130138B2 (en)
JPS5669625A (en) Minute pattern forming method
EP0103052A1 (en) Method for forming patterned resist layer on semiconductor body
JPH0464171B2 (en)
JPS60117625A (en) Forming method of resist pattern and processing device for resist
JPH0480531B2 (en)
JPS5884429A (en) Pattern formation
JPS6281027A (en) Fine pattern forming method
DE1622285C (en) Process for the production of relief images
JPS60113427A (en) Formation of fine pattern
JPS60157222A (en) Resist pattern forming method and resist treating apparatus
JPS612326A (en) Formation of resist pattern
JPS5622433A (en) Fabrication of polymer mask substrate for x-ray exposure
JPS55133042A (en) Pattern forming method
JPS62206546A (en) Method for forming x-ray resist film
JPH0287616A (en) Electron beam direct lithography
JPH03182758A (en) Formation of rugged pattern
JPS5655943A (en) Pattern forming method
JPS60178626A (en) Formation of resist pattern and resist treater