JPS58139443A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58139443A
JPS58139443A JP2252182A JP2252182A JPS58139443A JP S58139443 A JPS58139443 A JP S58139443A JP 2252182 A JP2252182 A JP 2252182A JP 2252182 A JP2252182 A JP 2252182A JP S58139443 A JPS58139443 A JP S58139443A
Authority
JP
Japan
Prior art keywords
film
substrate
recess
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2252182A
Other languages
Japanese (ja)
Other versions
JPH0445980B2 (en
Inventor
Ryozo Nakayama
中山 良三
Akira Kurosawa
黒沢 景
Sunao Shibata
直 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2252182A priority Critical patent/JPS58139443A/en
Publication of JPS58139443A publication Critical patent/JPS58139443A/en
Publication of JPH0445980B2 publication Critical patent/JPH0445980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To improve the reliability of a semiconductor device by superposing a film having preferable covering property on the cavity or low reduction part of the film on an Si substrate and oxidizing it, thereby readily flattening the surface. CONSTITUTION:A thermally oxidized film 12 of a P type Si substrate 11 is etched with a resist mask 13 provided, B ions are implanted into the region 14, thereby reactively ion etching deeply it to form a recess. After B ions are again implanted, a plasma CVD SiO2 film 16 is covered, and the film 16 is selectively allowed to remain, thereby forming a fine groove 15 of substantially constant sectional shape. Then, an SiO2 film 17 and a polysilicon 18 are laminated by a CVD method, and wet oxidized to alter the film 18 into an SiO2 film 20. At this time the volume is increased, and the recess 19 is completely buried. Then, a resist 21 is superposed, the surface is flattened, and the films 21, 20, 17 are uniformly etched. Then, an insulating film can be substantially flatly buried in a field region, thereby largely improving the electric characteristics and the yield of a semiconductor device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、フィールド領域に比較的厚い絶縁膜を埋め込
む半導体装置の製造方法に関する〔発明の技術的背景と
その問題点〕 半導体としてVリコンを用いた半導体装置。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device in which a relatively thick insulating film is embedded in a field region [Technical background of the invention and its problems] Semiconductor equipment.

特にMO811半導体装置においては寄生チャンネルに
よる絶縁不良をなくシ、かつ寄生容量を小さくするため
に素子間のいわゆるフィールド領域に厚い絶縁膜な形成
する事が行われている。
Particularly in MO811 semiconductor devices, a thick insulating film is formed in so-called field regions between elements in order to eliminate insulation defects due to parasitic channels and to reduce parasitic capacitance.

従来このような素子間分離法としては選択酸化法が良く
知られている。これは素子形成領域を耐酸化性マスク、
代表的にはシリコン輩化膜で覆い、高温酸化を行ってフ
ィルド領域に選択的に厚い酸化膜を形成する方法である
。しかし、このような選択酸化法においては上記高温酸
化中、シリコン輩化膜の端部からフィールド鹸化膜が鳥
のくちばしくバーズビーク)状に食い込み、これが素子
形成領域の寸法誤差の原因となり、また集積回路の高集
積化の妨げとなる。
A selective oxidation method is conventionally well known as such an element isolation method. This is an oxidation-resistant mask for the element formation area.
A typical method is to cover the filled region with a silicon oxide film and perform high-temperature oxidation to selectively form a thick oxide film in the filled region. However, in such a selective oxidation method, during the high-temperature oxidation, the field saponified film digs into the edge of the silicon saponified film in the shape of a bird's beak, which causes dimensional errors in the device formation area and also causes problems in integration. This hinders high integration of circuits.

またこのような従来の選択酸化法においては、フィール
ド酸化膜を形成後フィールド領域と素子形成領域にフィ
ールド酸化膜厚(約0.7〜1.0声調)の約半分程度
の表面段差が形成される。
In addition, in such a conventional selective oxidation method, after forming a field oxide film, a surface step about half the thickness of the field oxide film (approximately 0.7 to 1.0 tone) is formed between the field region and the element formation region. Ru.

これが後々の工程まで段差として残るため、その後のリ
ソグラフィー精度の低下や金属配線の断差部での信頼性
を下げる原因となっていた。
This remains as a step until subsequent steps, resulting in a subsequent drop in lithography accuracy and reliability at metal wiring gaps.

これに対し、上記バーズビークをなくシ、シかも平坦に
フィールP#lI化換を埋め込む方法がBOX法(Mu
ry1+ag 91de 1nto 8目1conGr
・0マ・ )として知られている。
On the other hand, the BOX method (Mu
ry1+ag 91de 1nto 8th 1conGr
・0ma・ ).

BOX法を第1図を用いて簡単に説明すイ)。The BOX method will be briefly explained using Fig. 1).

まず、第1図−)に示すように、例えばシリコン基板1
を用意して、通常の写真食刻工程により素子形成領域を
マスク2で8〜1、フィールド領域のシリコン基板1を
所望のフィールド膜埋分相当エツチングする。次に、I
J1図(b)に示すように、同じマスク2を用いてフィ
ールド領域にフィールド反転防止のためにシリコン基板
1と同導型の不純物1、例えばP型基板の場合はメロン
をイオン注入する。その後、第1図(c>に示すように
リフトオフ加工法を用いてフィールド領域にシリコン酸
化膜4を埋め込む。なお、このリフトオフ加工法は次の
ように行う。即ち、全面に例えばPlasma OVD
  840g  膜を堆積する。
First, as shown in Fig. 1-), for example, a silicon substrate 1
The device forming region is etched using a mask 2, and the silicon substrate 1 in the field region is etched to a desired amount by filling the field film using a normal photolithography process. Next, I
As shown in FIG. J1 (b), an impurity 1 of the same conductivity type as the silicon substrate 1, for example melon in the case of a P-type substrate, is ion-implanted into the field region using the same mask 2 to prevent field inversion. Thereafter, as shown in FIG. 1(c), a silicon oxide film 4 is buried in the field region using a lift-off process.The lift-off process is performed as follows.
Deposit 840g film.

次に、例えば弗化アンモニウムで1分根度エッテンダし
てやると、フィールド領域と素子形成領域の境界にでき
ている段差部の細面に堆積したP1asmaOVD81
0g膜は平坦部に比べてエツチング速度が3〜20倍は
やいため、上記段M部側薗のPlamma OVD 8
40B膜が選択的に除去される。その後、素子形成領域
上のマスク2を除去するとマスク2上に堆積したPla
sma OVD 8i01膜も一緒に除去され、フィー
ルド領域にのみPlasma OVD 8i01躾4が
埋め込まれる。この時フィールド領域と素子形成領域の
境界には第1因(@)に示すように断面形状が一定の細
い溝5が残される。
Next, when ettending with ammonium fluoride for 1 minute, P1asma OVD81 deposited on the narrow surface of the step formed at the boundary between the field region and the element formation region.
Since the etching rate of the 0g film is 3 to 20 times faster than that of the flat part, the Plamma OVD 8 on the side of the M section above
40B film is selectively removed. After that, when the mask 2 on the element formation area is removed, the Pla deposited on the mask 2 is removed.
The SMA OVD 8i01 film is also removed, and Plasma OVD 8i01 film 4 is embedded only in the field area. At this time, a narrow groove 5 having a constant cross-sectional shape is left at the boundary between the field region and the element forming region, as shown by the first factor (@).

次(;、第1図(−に示すように、上記細い溝5を例え
ばCVD  810.膜6で均一に埋め込むとOVD 
8i0.膜6表向には、上記細い溝5の上(ニ一定の凹
部1ができる。次に、流動性でかつ上記OVD  8i
01膜6とエツチング速度が等しくなるような被wkJ
を形成し、上記四部7を埋め込みかつ表面を平坦にする
。その後、第1図(荀に示すように、上記流動性被膜8
および0VD8昌0.膜6を均一にエツチング除去し、
さらにエツチングを行ない、素子形成領域のシリコンを
露出させると、フィールド領域はほぼ平坦にOVD  
8i0. !$4とPlmsma OVD 8101膜
6で埋め込まれる。その後素子形成領域に通常の方法に
より所望の素子を形成するものである。
Next (;, as shown in FIG.
8i0. On the surface of the membrane 6, a certain recess 1 is formed above the thin groove 5.
01 film 6 so that the etching rate is equal to that of the film 6.
The four parts 7 are buried and the surface is made flat. Thereafter, as shown in FIG.
and 0VD8sho0. The film 6 is uniformly etched away,
When further etching is performed to expose the silicon in the element formation region, the field region becomes almost flat and the OVD
8i0. ! $4 and embedded with Plmsma OVD 8101 film 6. Thereafter, desired elements are formed in the element forming region by a conventional method.

このようなりOX法においては、シリコン基板のエツチ
ングにサイドエツチングのない反応性イオンエツチング
(RIR)を用いる事により、素子領域の寸法は写真食
刻工程により形成したマスク寸法によってのみ規定され
、素子形成領域の寸法誤差を零にする事が可能になる。
In this way, in the OX method, by using reactive ion etching (RIR) without side etching for etching the silicon substrate, the dimensions of the element area are defined only by the mask dimensions formed by the photolithography process, and the element formation It becomes possible to reduce the dimensional error of the area to zero.

また表面が完全に平坦な構造が得られるようになつ−た
ため、その後のリングラフイー精度が上がりまた配線の
信頼性も著しく向上させる事ができる。
Furthermore, since a structure with a completely flat surface can be obtained, the accuracy of subsequent ring graphing can be improved, and the reliability of wiring can also be significantly improved.

しかしながら、この種の方法では前記@1図(d)に示
されるO V D  810.膜6の表面の一定の凹部
1を平坦にすることが困難である。叩も、上記OVD 
840ヨ 膜6を堆積した俊、表面を平坦にするために
流動性被膜8を形成するが、上記一定の凹s1に流動性
液1i!8が十分入り込まず空洞が出来る場合がある。
However, in this type of method, O V D 810. as shown in the above @1 figure (d). It is difficult to flatten certain recesses 1 on the surface of the membrane 6. Tapping too, the above OVD
840 Yo After depositing the film 6, a fluid film 8 is formed to flatten the surface, but the fluid liquid 1i! 8 may not be inserted sufficiently and a cavity may be formed.

そのため、均一なエツチングを行なっても上記空洞が残
り平坦化できない。さらに、BOX工程においては、分
離領域に形成する凹部の寸法が小さくなると、Ii]I
f[ll!iJlの絶縁膜の形成において凹部に第1の
絶縁膜が残らなくなる。沌ち、第1の絶縁膜として@述
のようl: Plasma OVD 8 i0□腺を用
いると寸法の小さい凹部においては、 Plasma 
0VD840、躾のリフトオフ加工中に上記凹部内のP
lmsma OVD 8401 IIは全部除去されて
しまう。
Therefore, even if uniform etching is performed, the cavity remains and cannot be flattened. Furthermore, in the BOX process, when the size of the recess formed in the isolation region becomes smaller, Ii]I
f[ll! In the formation of the insulating film of iJl, no first insulating film remains in the recessed portion. However, when using Plasma OVD 8 i0□ gland as the first insulating film, in a small recess, Plasma
0VD840, P inside the above recess during lift-off processing
lmsma OVD 8401 II will be completely removed.

したがって、寸法の小さい凹部は、第2の絶縁膜例えば
0vI) slow  IIで平坦に埋め込む必要があ
る。しかし、8i 基板1の凹部の寸法が小さくなると
、第2図(−に示す如く1空洞9aが形成されたり、ま
た埋め込まれても一同図(b)に示す如く酸化Ftli
の密度が低くなり、後続するNH,Fのエツテンダ時に
密度の低い所に比してニップレートが速くなり、溝がで
きてしまう。
Therefore, it is necessary to fill the small-sized concave portion flatly with the second insulating film, for example, 0vI) slow II. However, as the dimensions of the recessed portion of the 8i substrate 1 become smaller, one cavity 9a is formed as shown in FIG.
The density of the area becomes low, and during the subsequent etendering of NH and F, the nip rate becomes faster compared to areas where the density is low, resulting in the formation of grooves.

したがって、81 基板1の凹部の寸法が小さくなると
その平坦化を行うことは困難であった。
Therefore, when the dimensions of the concave portion of the 81 substrate 1 become smaller, it is difficult to planarize the concave portion.

〔発明め目的〕[Purpose of invention]

本発明の目的は、素子形成LW4城とフィールド領域と
の表向を完全に平坦化することができ、かつフィールド
領域の凹部の寸法が小さくなってもこの平坦化を確実に
行うことができ、半導体装置の電気的特性および製造歩
留りの向上に寄与し得る半導体装置の製造方法を提供す
ることにある。
An object of the present invention is to be able to completely flatten the surface of the element forming LW4 castle and the field region, and to be able to reliably perform this flattening even if the dimensions of the recessed portion of the field region are reduced. An object of the present invention is to provide a method for manufacturing a semiconductor device that can contribute to improving the electrical characteristics and manufacturing yield of the semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置を製造するに際し、半導体基板の
素子形成領域上にIJIの被膜を形成したのちこの第1
の被膜をマスクとして半導体基板な迦択エツデンダして
該基板のフィールド領域に凹部を形成し、次いでリフト
オフ法を用い上記凹部に周辺に溝が形成された状態で絶
縁性の第2の被膜を埋め込み1次いで第2の被膜および
半導体基板上に上記溝を埋め′る如く絶縁性の第3の被
膜を被着し、この第3の被膜上に酸化工程により絶縁膜
となる第4の被膜を被着したのち第4の被膜の少なくと
も一部を飯化し。
In the present invention, when manufacturing a semiconductor device, after forming an IJI film on an element formation region of a semiconductor substrate, the first
Using the film as a mask, a semiconductor substrate is selectively edendered to form a recess in the field region of the substrate, and then a lift-off method is used to embed an insulating second film with a groove formed around the recess. 1. Next, an insulating third film is deposited on the second film and the semiconductor substrate so as to fill the grooves, and a fourth film that becomes an insulating film is coated on the third film by an oxidation process. After the coating is applied, at least a portion of the fourth coating is converted into a metal.

次いで第4の被膜上を平坦化し、しかるのち第4の被膜
から全面エツチングを施し半導体基板の素子形成領域の
みを電比せしめるようにした方法である。
In this method, the fourth film is then planarized, and then the entire surface is etched from the fourth film, so that only the element formation region of the semiconductor substrate is etched.

〔発明の効果〕〔Effect of the invention〕

本発明(二よれば、II3の被験の形成後カバーレッジ
の良い第4の被膜を!83の被Ilシの空洞部或いは密
度の低い所に設け、この!i!44の被験を酸化するこ
とにより、上記空洞部に絶縁膜を埋め込んだり、上記低
密度部をエツチングに対して保縛することができる。こ
のため%8t  基板のフィールド領域の凹部の寸法が
小さい場合にあっても、平坦化を合鴨に行うことができ
る。
According to the present invention (2), after the formation of the test material II3, a fourth coating with good coverage is provided in the cavity or low density area of the test material !83, and the test material !i!44 is oxidized. This makes it possible to bury an insulating film in the cavity and to protect the low-density area from etching.Thus, even if the recess in the field area of the substrate is small in size, flattening is possible. It can be done in a duck.

また、第3の被膜のエツチング条件がそれ程きびしくな
らなくなり、旧 基板の凹部の寸法(1轡わらず、全て
の凹部な絶縁膜で平坦に埋め込むことができる。したが
って、製作のマーシンが大きくとれ、半導体表面の凹凸
がなくなることから半導体装置の信頼性向上をはかり得
る。
In addition, the etching conditions for the third film are not so strict, and all the recesses can be flatly filled with the insulating film, regardless of the dimensions of the recesses on the old substrate. Since unevenness on the semiconductor surface is eliminated, the reliability of the semiconductor device can be improved.

〔発明の実施例〕[Embodiments of the invention]

13図(1)〜(0は本発明の一実施例t:係わる半導
体M[の灸造工程を示す断面図である。まず、第3図(
sl)に示すよう6二半導体基体1例えば面方位(10
0)比抵抗S〜5001程度のP型シリコン基板11を
用意し、この基板ll上に例えば厚さ5ooX程度の熱
酸化膜12を形成して、該素子形成領域をレジスト膜I
s(第1の被膜)で覆う。次に、第3図(−に示すよう
に、本発明の方法によりレジス)ili!7 Jをマス
クにして。
13(1) to (0) are cross-sectional views showing the moxibustion process of a semiconductor M[ according to an embodiment of the present invention. First, FIG.
As shown in 62 semiconductor substrate 1, for example, the plane orientation (10
0) Prepare a P-type silicon substrate 11 with a specific resistance S~5001, form a thermal oxide film 12 with a thickness of, for example, about 5ooX on this substrate ll, and cover the element formation region with a resist film I.
Cover with s (first coating). Then, as shown in FIG. 7 Use J as a mask.

−ロンのイオン注入を例えば120 K@Vで行うと射
影飛程は0.45μmであり標準偏差0.11μm横方
向広が9O,1・4−μ輌で14に示すよう4二分布す
る。その後1例えば反応性イオンエツチング技術で同じ
レジスト膜13をマスクにして、フィールド部のシリコ
ンを前記イオン注入により導入された不純物分布のピー
クより深く0.8μ陶程度エツテンダして凹部をつくる
。その後、第3図(c)に示すようにやはり同じマスク
を用いて凹部底面1: TNロンイオンを20から30
 KeV程度の加速電圧で2回目のイオン注入を行う。
When ion implantation of -Ron is carried out at, for example, 120 K@V, the projected range is 0.45 .mu.m, the standard deviation is 0.11 .mu.m, the lateral spread is 90, 1.4-.mu., and there is a 42 distribution as shown in 14. Thereafter, using the same resist film 13 as a mask, the silicon in the field portion is etched to a depth of about 0.8 μm deeper than the peak of the impurity distribution introduced by the ion implantation to form a recessed portion using, for example, reactive ion etching technology. Thereafter, as shown in FIG. 3(c), using the same mask, 20 to 30 TN ions were applied to the bottom surface of the recess 1.
A second ion implantation is performed at an acceleration voltage of about KeV.

次に、第1図(4に示すように全部にPlamma O
VD膜を堆積し、前述の方法により)イール)’Ij域
と素子形成領域の境界に1#T而形状がほぼ一定の細い
溝15を残して、フィールド領域ミニ−Plasaxa
 OVD 8 i0@ JIQ l 6 (jN 2の
被験)を残す。なお、このOVD Mlgの代りにはス
ノダツタ蒸暑した8ム01M、又はリン、ヒ素、メロン
を含んだ酸化膜でも良い。
Next, as shown in FIG.
A VD film is deposited, and by the method described above, a thin groove 15 of approximately constant shape is left at the boundary between the Ij area and the element formation area, and the field area mini-Plasax is formed.
Leave OVD 8 i0 @ JIQ l 6 (jN 2 subjects). Incidentally, instead of this OVD Mlg, 8M 01M which is hot and humid, or an oxide film containing phosphorus, arsenic, and melon may be used.

次に、$1図(・)に示すように全面に例えばOVD法
による8101$17(第3の被膜)を1μ陶程シ堆積
し、さらにこの8i0.膜17上(:Po1y−8i 
1 J (第4の被##)をOVD法により500X厚
さに堆積する。次に、第3図(f)に示すように上記r
ely−811Jiをスチーム酸化法により酸化し84
0@flizoに変質せしめる。
Next, as shown in Figure 1 (-), 1 μm of 8101$17 (third coating) is deposited on the entire surface by, for example, the OVD method, and then this 8i0. On the membrane 17 (: Po1y-8i
1 J (fourth target ##) is deposited to a thickness of 500X by OVD method. Next, as shown in FIG. 3(f), the above r
Oxidize ely-811Ji by steam oxidation method 84
Transforms into 0@flizo.

このとき8i0.M71の体積が約2倍となるため、r
!!J部111は完全1埋め込まれる。
At this time, 8i0. Since the volume of M71 is approximately doubled, r
! ! The J section 111 is completely filled with 1's.

次に、第3図(f)に示す如<sto、膜2o上仁8j
O,1Ilj4Fの表面を平坦化する事が可能な被M2
1を形成し、表面を平坦化する。次に第3因ωに示すよ
うに上記被験11idよび81o8躾go、xvを均一
にエツチングし、フィールド領域仁シリコン酸化膜なほ
ぼ平坦に埋め込む。
Next, as shown in FIG. 3(f),
M2 that can flatten the surface of O,1Ilj4F
1 and flatten the surface. Next, as shown in the third factor ω, the above-mentioned test pieces 11id, 81o8, go, and xv are uniformly etched and buried almost flat in the silicon oxide film in the field region.

ここで被lIl!2ノとしては、レジストを塗布しても
良いし、溶融可能なガラス展例えばリン硅化ガラス、リ
ンーdfCIン硅化ガクス膜などを形成後溶融して平坦
化しても良い。この後、半導体基板にMO811半導体
素子を形成する。
Here it is! As a second method, a resist may be applied, or a meltable glass film such as phosphorus silicide glass, phosphorus-dfCI silicide film, etc. may be formed and then melted and flattened. After this, an MO811 semiconductor element is formed on the semiconductor substrate.

かくして本実施例方法によれば、8農 基板11の素子
形成領域とフィールド領域との表面な略完全ζ二平坦化
することができる。また、第3の被膜としてのPsly
 −841Jはカバーレッジがよく凹部19の全ての部
位に均一5−形成され、さらに酸化処理により絶縁膜2
0となり、その体積が2倍に増えるので、上記凹部19
の表面は清らかなものになる。このため、平坦化膜21
の形成が客筋となり、この部分で空洞ができる心配もな
くなり、さらシニ寸法の小さい凹部においても平坦化は
容易となる。
Thus, according to the method of this embodiment, the surfaces of the element formation region and field region of the substrate 11 can be almost completely flattened. In addition, Psly as the third coating
-841J has a good coverage and is uniformly formed in all parts of the recess 19, and furthermore, the insulating film 2 is formed by oxidation treatment.
0, and its volume doubles, so the recess 19
The surface becomes pure. For this reason, the planarization film 21
The formation of this area becomes a target area, there is no need to worry about the formation of a cavity in this area, and even a recess with a small width can be easily flattened.

なお、本実施例ではPM基板を用いる場合についてのみ
述べたが、Null基板の場合に適用できるのは勿論の
ことである。さら(二、NとPとが同時に存在する0 
−M O&のMmに適用することも可能である。また、
前記I83の被膜としてPsly−84で説明したが、
この代りには酸化工程により体積が増加し絶縁物となり
、かつカバーレッジの良いものであればよい。さらに。
In this embodiment, only the case where a PM substrate is used has been described, but it goes without saying that the present invention can also be applied to a case where a Null substrate is used. Furthermore (2, 0 where N and P exist at the same time)
-MO It is also possible to apply to Mm of O&. Also,
As described in Psly-84 as the coating of I83,
Instead, any material may be used as long as it increases in volume through the oxidation process, becomes an insulator, and has good coverage. moreover.

第3の被膜は最初から絶縁膜であってもよい。The third film may be an insulating film from the beginning.

また、第3の被膜としてのrely−8iに不純物をイ
オン打ち込みすれば、酸化時間が短くなり、空洞の塘め
込みが容易となる。さらに、 Po1y−8ゑは必ずし
も全部酸化する必要はない。その他1本発明の要旨を逸
脱しない範囲で、種々変形して実施することができる。
Moreover, if impurities are ion-implanted into rely-8i as the third film, the oxidation time will be shortened and the cavity will be easily filled. Furthermore, Po1y-8e does not necessarily need to be completely oxidized. 1. Other modifications may be made in various ways without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因(−〜(・)は従来のBOX法による半導体装置
の製造工程を示す断面図、第2図(a) (b)は上記
従来方法の問題点を説明するための模式図、第3図(a
)〜(−は本発明の一実施例(1係わる半導体装置の製
造工程を示す断面図である。 11・・・シリコン基板、Jffi・・・酸化膜、11
・・・マスク材(第1の被W!I)、14・・・フィー
ルトイオシ1注入層、Jj川溝、 I II−Plam
ma 0VDrl’o、 1191F (第2の被II
 ) 、 I F−OVD 8jOJ($3の被@ )
 、 11−Po1i−841F (第4の被膜)、1
#・・・凹部、2a−・8区01膜、11・・・平坦化
膜。 出−人代理人  弁理士 鈴 江 武 滲第1図 (a) (b) 第2図 (a)
The first factor (- to (·) is a cross-sectional view showing the manufacturing process of a semiconductor device by the conventional BOX method. Figure 3 (a
) to (- are cross-sectional views showing the manufacturing process of a semiconductor device according to one embodiment of the present invention (1). 11...Silicon substrate, Jffi...Oxide film, 11
...Mask material (first W!I), 14...Field Iosi 1 injection layer, Jj Kawamizo, I II-Plam
ma 0VDrl'o, 1191F (Second II
), IF-OVD 8jOJ ($3 contribution @)
, 11-Po1i-841F (fourth coating), 1
#...Concave portion, 2a--8 section 01 film, 11... Flattening film. Representative Patent Attorney Takeshi Suzue Figure 1 (a) (b) Figure 2 (a)

Claims (3)

【特許請求の範囲】[Claims] (1)  半導体基板の素子形成領域ciJ1の被膜を
形成する工程と、上記I81の被膜をマスクとして上°
紀半導体基板な選択エツチングし該基板のフィールド領
域−一凹部な形成する工程と、リフトオフ法I:より上
記凹部≦=絶縁性の第2の被膜な霧め込む工程と、上記
I82の被膜および半導体基板上6:絶縁性の第3の被
−を被着する工程と、上記II3の被膜上に酸化工程1
:より絶縁膜となる第4の被験を被着する工程と、上記
第4の被膜の少なくとも一部を酸化する工程と1次いで
上記第4の被膜上を平坦化する工程と、しかるのち上記
第4の被膜から前記半導体基板に至る深さまで今市エツ
テンダし上記半導体基板の素子形成領域を露出せしめる
工程とを具備したことを特徴とする半導体装置の製造方
法。
(1) Step of forming a film in the element formation region ciJ1 of the semiconductor substrate, and using the film I81 as a mask as a mask.
A step of selectively etching a semiconductor substrate to form a recess in the field region of the substrate, a lift-off method I: a step of atomizing the recess ≦= an insulating second film, and forming the film I82 and the semiconductor. On the substrate 6: A step of depositing an insulating third coating, and an oxidation step 1 on the coating II3 above.
: a step of depositing a fourth test material that becomes a more insulating film, a step of oxidizing at least a portion of the fourth film, a step of planarizing the fourth film, and then a step of planarizing the fourth film. 4. A method for manufacturing a semiconductor device, comprising the step of applying an Imaichi ettender to a depth from the film of step 4 to the semiconductor substrate to expose an element formation region of the semiconductor substrate.
(2)前記フィールド領域に凹部な形成するに際し、予
め前記第1の被験をマスクとして前記半導体基板に該基
板と同導電型の不純物をイオン打ち込みすることを特徴
とする特FF請求の範囲第1項記載の半導体装置の製造
方法。
(2) When forming a concave portion in the field region, ions of an impurity having the same conductivity type as that of the semiconductor substrate are implanted into the semiconductor substrate using the first test object as a mask. A method for manufacturing a semiconductor device according to section 1.
(3)  前記凹部に絶縁性の第2の被膜を纏め込むに
際し、予め上記凹部の底部に前記半導体基板と同導蓋の
不純物をイオン打ち込みすることを特徴とする特許請求
の範囲第1項記載の半導体装置の製造方法。
(3) When the second insulating film is assembled into the recess, impurities of the semiconductor substrate and the conductive lid are ion-implanted into the bottom of the recess in advance. A method for manufacturing a semiconductor device.
JP2252182A 1982-02-15 1982-02-15 Manufacture of semiconductor device Granted JPS58139443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252182A JPS58139443A (en) 1982-02-15 1982-02-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252182A JPS58139443A (en) 1982-02-15 1982-02-15 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58139443A true JPS58139443A (en) 1983-08-18
JPH0445980B2 JPH0445980B2 (en) 1992-07-28

Family

ID=12085074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252182A Granted JPS58139443A (en) 1982-02-15 1982-02-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58139443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434629B2 (en) 2016-05-28 2022-09-06 Neoperl Gmbh Sanitary insertion unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54589A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Burying method of insulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54589A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Burying method of insulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434629B2 (en) 2016-05-28 2022-09-06 Neoperl Gmbh Sanitary insertion unit

Also Published As

Publication number Publication date
JPH0445980B2 (en) 1992-07-28

Similar Documents

Publication Publication Date Title
US5413953A (en) Method for planarizing an insulator on a semiconductor substrate using ion implantation
JPS6232630A (en) Formation of contact plug
JPH118295A (en) Semiconductor device and its manufacture
US5801093A (en) Process for creating vias using pillar technology
JP2010027904A (en) Method of manufacturing semiconductor device
JPH0837232A (en) Method and apparatus for insulating active region on semiconductor substrate by almost flat and narrow groove
JPS58202545A (en) Manufacture of semiconductor device
JPS58139443A (en) Manufacture of semiconductor device
JPS58201362A (en) Manufacture of semiconductor device
IT8983643A1 (en) PROCEDURE FOR FORMING THE INSULATION STRUCTURE AND THE GATE STRUCTURE OF INTEGRATED DEVICES
JPH04209534A (en) Manufacture of semiconductor device
JPH0491468A (en) Manufacture of semiconductor device
JPH01222457A (en) Manufacture of semiconductor device
JPH02209747A (en) Manufacture of semiconductor device
KR100232888B1 (en) Method of forming a device isolation film of semiconductor device
JPH0478013B2 (en)
JPS6252934A (en) Formation of selective mask
JPS6249643A (en) Semiconductor device and its manufacture
JPH0481329B2 (en)
JPS62281345A (en) Manufacture of semiconductor device
JPS63257244A (en) Semiconductor device and manufacture thereof
JPH09172075A (en) Manufacture for interlayer connection hole in multilayer wiring of semiconductor device
JPH0483361A (en) Manufacture of semiconductor device
JPS62216341A (en) Manufacture of semiconductor device
JPS62217629A (en) Semiconductor device